Способ непрерывного приготовления многокомпонентных смесей и устройство для его реализации

Иллюстрации

Показать все

Изобретения относятся к области переработки сыпучих материалов и касаются способа непрерывного приготовления многокомпонентных смесей и устройства для его реализации. Способ включает непрерывное дозирование компонентов, их загрузку в смеситель на расстоянии от места выгрузки, пропорциональном насыпным плотностям и/или размерам частиц, смешивание и выгрузку готовой смеси. Загрузку компонентов осуществляют непрерывно по длине смесителя, вплоть до разгрузочного края барабана. Непрерывную загрузку осуществляют неравномерно, весь период загрузки каждого ключевого компонента разбивается не менее чем на три равных участка и в соответствии с тем, является ли в соответствующей области циркуляционного контура концентрация ключевого компонента повышенной или пониженной, изменяется интенсивность загрузки. Устройство содержит смеситель, дозаторы, узлы загрузки компонентов и выгрузки готовой смеси, снабжено n-1 перфорированными трубами с приводами вращения. На трубе с возможностью фиксированного поворота установлены перфорированные обечайки. В исходном положении все отверстия в обечайках совпадают с отверстиями в трубе. Каждая из обечаек разделена не менее чем на три равных части с независимой возможностью поворота относительно трубы, причем каждая из них снабжена приводом ее фиксированного поворота относительно трубы. Изобретение обеспечивает повышение качества готовой смеси. 2 н.п. ф-лы, 8 ил.

Реферат

Предложенные технические решения относятся к области переработки сыпучих материалов и могут быть использованы для непрерывного приготовления многокомпонентных смесей в химической и других родственных с ней отраслях промышленности.

Известен способ приготовления многокомпонентных смесей сыпучих материалов [см. а.с. №1297895 (СССР), кл. B01F 3/18, 23.03.87], включающий непрерывное дозирование компонентов в смеситель, смешивание и выгрузку готовой смеси. Способ заключается в том, что компоненты вводят в смеситель на расстоянии от места выгрузки, пропорциональном насыпным плотностям и/или размерам частиц. В описательной части представлена схема устройства, выбранного в качестве аналога: барабанный смеситель непрерывного действия, дозаторы компонентов, узлы загрузки компонентов и выгрузки готовой смеси, а также устройства ввода ключевых компонентов на различном расстоянии от места выгрузки.

Недостатком данного технического решения является устойчивая неравномерность распределения частиц ключевых компонентов по объему смеси, снижающая ее качество.

За прототип принят способ приготовления многокомпонентных смесей сыпучих материалов и устройство для его реализации [см. а.с. №2207900 (РФ), кл. B01F 3/18, 10.07.03], включающий непрерывное дозирование компонентов, их загрузку в смеситель на расстоянии от места выгрузки, пропорциональном насыпным плотностям и/или размерам частиц, смешивание и выгрузку готовой смеси. Загрузку каждого из компонентов осуществляют непрерывно по длине смесителя, вплоть до разгрузочного края барабана. Непрерывную загрузку компонентов по длине барабана осуществляют равномерно. В описательной части представлена схема устройства, выбранного в качестве прототипа: смеситель непрерывного действия в виде барабана, дозаторы компонентов, узлы загрузки компонентов и выгрузки готовой смеси, смеситель дополнительно снабжен n-1 перфорированными трубами, установленными внутри смесителя вдоль его оси, с приводами вращения. На перфорированной трубе с возможностью фиксированного поворота установлены перфорированные обечайки, причем в исходном положении все отверстия в обечайках совпадают с отверстиями в трубе.

Недостатком данного технического решения является неравномерность распределения частиц ключевых компонентов по циркуляционному контуру в поперечном сечении смесителя, что оказывает негативное влияние на качество готовой смеси.

Технической задачей предложенных решений является повышение качества готовой смеси.

Решение поставленной технической задачи достигается следующим.

1. В способе непрерывного приготовления многокомпонентных смесей сыпучих материалов, включающем в себя непрерывное дозирование компонентов, их загрузку в смеситель на расстоянии от места выгрузки, пропорциональном насыпным плотностям и/или размерам частиц, смешивание и выгрузку готовой смеси, загрузку каждого из компонентов осуществляют непрерывно по длине смесителя, вплоть до разгрузочного края барабана, в отличие от прототипа непрерывную загрузку компонентов по длине барабана осуществляют неравномерно, весь период загрузки каждого ключевого компонента разбивается не менее чем на три равных участка и в соответствии с тем, является ли в соответствующей области циркуляционного контура концентрация ключевого компонента повышенной или пониженной, изменяется интенсивность загрузки.

2. Устройство для приготовления n-компонентной смеси содержит смеситель непрерывного действия, дозаторы компонентов, узлы загрузки компонентов и выгрузки готовой смеси, дополнительно снабжено n-1 перфорированными трубами, установленными внутри смесителя вдоль его оси, с приводами вращения, на перфорированной трубе с возможностью фиксированного поворота установлены перфорированные обечайки, отверстия в обечайке имеют характерные размеры: d1 - вдоль оси трубы и d2 - на окружности, и разделены на М групп, в каждой из которых d1 одинаков и равен диаметру отверстий в перфорированной трубе, a d2 изменяется и равно

где i - порядковый номер отверстия в группе, который изменяется от 1 до n0/М; n0 - количество отверстий в одном поперечном сечении трубы, выбирается кратным М; расстояния между центрами отверстий в поперечном сечении трубы больше или равны (n0/М)d1, причем в исходном положении все отверстия в обечайках совпадают с отверстиями в трубе, в отличие от известных решений каждая из перфорированных обечаек разделена не менее чем на три равных части с независимой возможностью поворота относительно трубы, причем каждая из них снабжена приводом ее фиксированного поворота относительно трубы.

Для обоснования правильности выбранного способа процесса смешивания были проведены численные эксперименты с расчетами концентраций и качества смеси по математическим моделям процесса смешивания дисперсных материалов, отличающихся размерами частиц [Першин В.Ф., Селиванов Ю.Т. Моделирование процесса смешивания сыпучих материалов в циркуляционных смесителях непрерывного действия // Теор. основы хим. технологии, 2003, т.37, №6, с.629-635], и реальные эксперименты на действующих лабораторных установках. В качестве компонентов смеси использовались: стеклянные шарики с диаметром d=0,8 мм - основной компонент; стеклянные шарики с d=0,4 мм и кварцевый песок d=0,2 мм - ключевые компоненты.

Для расчетов использовалась послойная модель процесса приготовления многокомпонентных смесей в барабанном смесителе непрерывного действия [Першин В.Ф. Модель процесса смешения сыпучего материала в поперечном сечении гладкого вращающегося барабана // Теор. основы хим. технологии, 1989, т.23, №3, с.370-377].

При движении в поперечном сечении гладкого вращающегося барабана полидисперсного материала наблюдается эффект сегрегации. Сущность данного эффекта заключается в том, что частицы определенного размера концентрируются в определенных зонах смесителя. Скорость продвижения частиц к их конечному распределению зависит от соотношения размеров частиц. В рассматриваемом случае наибольшую склонность к сегрегации имели самые мелкие - частицы кварцевого песка. Частицы стеклянных шариков размером d=0,4 мм будем называть менее склонными к сегрегации, а частицы стеклянных шариков с d=0,8 мм - основным компонентом. Качество смеси оценивалось по коэффициентам неоднородности VS1 и VS2 [см. а.с. №2207900 (РФ), кл. B01F 3/18, 10.07.03].

При отборе проб после проведения эксперимента и математическом моделировании процесса смешивания циркуляционный контур, образованный смешиваемыми компонентами в поперечном сечении, делят на подслои.

На фигуре 1 показаны графики изменения коэффициента неоднородности для того же состава смеси, но соответствующего характеру загрузки компонентов в смеситель по способу, выбранному в качестве аналога [см. а.с. №1297895 (СССР), кл. B01F 3/18, 23.03.87]. В соответствии с ним ключевые компоненты загружаются в определенном сечении, т.е. на незначительном участке барабана, существенно меньшем его длины. Наименее склонный к сегрегации ключевой компонент загружался в смеситель непосредственно через узел загрузки на слой, образованный в смесителе частицами основного компонента. Наиболее склонный к сегрегации ключевой компонент загружался в смеситель на 85-й секунде пребывания в барабане основного и наименее склонного к сегрегации ключевого компонента, т.е. узел загрузки для него находился на некотором расстоянии от загрузочного края барабана.

Во время продвижения вдоль оси барабана концентрация ключевых компонентов в наружных слоях циркуляционного контура уменьшается, а во внутренних слоях увеличивается. Результаты экспериментов на плоской модели барабана показали, что к моменту достижения минимального коэффициента неоднородности существует стабильная неравномерность, т.е. повторяющееся при разных опытах распределение компонентов по подслоям. В частности, минимальная концентрация наиболее склонного к сегрегации компонента наблюдалась в подслоях, непосредственно примыкающих к центру циркуляции, а максимальная - в подслоях, примыкающих к центру циркуляции. Для второго ключевого компонента наибольшая концентрация наблюдалась в подслоях, равноудаленных от центра циркуляции и обечайки. Наилучшее распределение компонентов по слою в поперечном сечении смесителя в этом случае происходит для стеклянных шариков диаметром d=0,4 мм и кварцевого песка диаметром d=0,2 мм одновременно.

При этом коэффициенты неоднородности VS1 и VS2, характеризующие качество смеси по каждому ключевому компоненту, достигают весьма значительных величин (10,1% - для наиболее склонного к сегрегации; 11,3% - для наименее склонного к сегрегации компонента).

На фигуре 2 показаны графики, характеризующие изменение качественного состава смеси в случае равномерной и непрерывной загрузки ключевых компонентов, вплоть до разгрузочного края барабана, т.е. по способу, выбранному в качестве прототипа. Время начала загрузки первого и второго ключевых компонентов, как видно из графиков, не совпадает. Длительность проведения процесса в этом случае увеличивается, однако наилучшее качество готовой смеси по обоим ключевым компонентам достигается одновременно, и коэффициенты неоднородности не превышают 2-3%.

Анализ качества распределения ключевых компонентов по подслоям циркуляционного контура показывает, что наблюдаются зоны повышенной или пониженной концентрации в различных группах подслоев. При этом в общем случае указанные зоны для различных ключевых компонентов не совпадают. Это связано с тем, что объемы подслоев уменьшаются при продвижении от наружной поверхности барабана к центру циркуляции. На скорость продвижения ключевых компонентов в область центра циркуляции также оказывает влияние их количество в соприкасающихся подслоях. Из анализа вышесказанного следует, что при целенаправленном изменении интенсивности подачи ключевых компонентов в различные зоны смесителя качество готовой смеси может быть повышено. Диапазон изменения интенсивности подачи незначителен и не превышает плюс-минус 8%.

На фигуре 3 показаны графики, характеризующие изменение качественного состава смеси в случае неравномерной непрерывной загрузки ключевых компонентов по длине барабана. Весь период загрузки каждого ключевого компонента разбивался не менее чем на три равных участка и в соответствии с тем, являлась ли в соответствующей области циркуляционного контура концентрация ключевого компонента повышенной или пониженной, изменялась интенсивность загрузки. Наилучшее качество готовой смеси по обоим ключевым компонентам достигается одновременно, и коэффициенты неоднородности не превышают 1,85%.

Экспериментальная проверка указанных способов проведения процессов смешивания соответствовала условиям проведения численных экспериментов. При этом использовался барабанный смеситель диаметром 0,3 м и длиной 1 метр. Концентрация ключевых компонентов в смеси по каждому из них составляла 5%. Состояние смеси оценивалось только для случаев, соответствующих наилучшему распределению каждого ключевого компонента в поперечном сечении барабана, рассчитанному по математической модели процесса. Экспериментальные точки, характеризующие состояние смеси, обозначены для кварцевого песка - ○, а для стеклянных шариков - □.

Устройство для осуществления указанного способа показано на фигуре 4. На фигуре 5 показано поперечное сечение смесителя А-А. Конструкция включает в себя смеситель 1 с узлами загрузки 2-4, узел выгрузки готовой смеси 5, дозаторы 6-8 для непрерывной подачи компонентов А, В и С соответственно, перфорированные трубы 9 и 10 с приводами вращения 11 и 12.

В качестве смесителя может быть использован барабанный смеситель непрерывного действия, у которого наблюдается циркуляционный характер движения в поперечных сечениях по его длине.

Устройство работает следующим образом: основной компонент А с помощью узла загрузки вводится в смеситель. Ключевые компоненты с помощью узлов загрузки 3 и 4 вводятся в перфорированные трубы таким образом, чтобы они были заполнены соответствующими сыпучими материалами. Перфорация на трубе 9 для подачи в барабан наиболее склонного к сегрегации ключевого компонента начинается не с начала трубы, а на определенном расстоянии от места выгрузки. В частности, компонент С начинали загружать в сечении, когда время пребывания двух основных составляющих смеси соответствовало расчетному моменту времени ввода данного компонента. При этом загрузка ключевых компонентов в смеситель осуществляется через отверстия перфорации в трубах. Диаметр отверстий подбирается таким образом, чтобы через них производилась вполне определенная, необходимая по требованиям к готовой смеси, загрузка ключевых компонентов в смеситель, в результате вращения труб приводами 11 и 12.

На фигуре 6 показано сечение трубы 13 с установленной на ней перфорированной обечайкой 14. Отверстия на обечайке расположены таким образом, что в случае, показанном на этом рисунке, возможна выгрузка сыпучего материала через все отверстия трубы. При повороте обечайки относительно трубы на некоторый угол против часовой стрелки возникает перекрытие одного отверстия трубы, двух и т.д. до полного перекрытия отверстий в трубе. Вследствие того, что на трубе установлен ряд подобных обечаек, возможно на определенных участках трубы как полное, так и частичное перекрытие отверстий для осуществления необходимого регламента загрузки ключевых компонентов.

На фигуре 7 показана одна из перфорированных труб 13 с тремя обечайками 15-17, расположенными на ее перфорированном участке. Стержни 18-20 жестко прикреплены к обечайкам. Их свободные концы проходят через диск с кольцевыми пазами 21, располагающийся около загрузочного края трубы. На свободных концах стержней нарезана резьба и гайками 22 они фиксируются относительно диска 21, тем самым происходит фиксация обечаек 15-17 на наружной поверхности перфорированной трубы.

Таким образом, как показывают приведенные выше результаты численных и натурных экспериментов, предлагаемый способ и устройство для его реализации способны обеспечить достижение поставленной цели - повышение качества смеси.

1. Способ непрерывного приготовления многокомпонентных смесей сыпучих материалов, включающий в себя непрерывное дозирование компонентов, их загрузку в смеситель на расстоянии от места выгрузки, пропорциональном насыпным плотностям и/или размерам частиц, смешивание и выгрузку готовой смеси, загрузку каждого из компонентов осуществляют непрерывно по длине смесителя, вплоть до разгрузочного края барабана, отличающийся тем, что непрерывную загрузку компонентов по длине барабана осуществляют неравномерно, весь период загрузки каждого ключевого компонента разбивается не менее чем на три равных участка и в соответствии с тем, является ли в соответствующей области циркуляционного контура концентрация ключевого компонента повышенной или пониженной, изменяется интенсивность загрузки.

2. Устройство для приготовления n-компонентной смеси, содержащее смеситель непрерывного действия, дозаторы компонентов, узлы загрузки компонентов и выгрузки готовой смеси, дополнительно снабжено n-1 перфорированными трубами, установленными внутри смесителя вдоль его оси, с приводами вращения, на перфорированной трубе с возможностью фиксированного поворота установлены перфорированные обечайки, отверстия в обечайке имеют характерные размеры: d1 - вдоль оси трубы и d2 - на окружности, и разделены на М групп, в каждой из которых d1 одинаков и равен диаметру отверстий в перфорированной трубе, a d2 изменяется и равно где i - порядковый номер отверстия в группе, который изменяется от 1 до n0/М; n0 - количество отверстий в одном поперечном сечении трубы, выбирается кратным М; расстояния между центрами отверстий в поперечном сечении трубы больше или равны (n0/M)d1, причем в исходном положении все отверстия в обечайках совпадают с отверстиями в трубе, отличающееся тем, что каждая из перфорированных обечаек разделена не менее чем на три равных части с независимой возможностью поворота относительно трубы, причем каждая из них снабжена приводом ее фиксированного поворота относительно трубы.