Устройство управления амортизацией колебаний в транспортном средстве и транспортное средство, оснащенное устройством управления амортизацией колебаний

Иллюстрации

Показать все

Группа изобретений относится к управлению амортизацией колебаний на транспортном средстве. Устройство управления амортизацией колебаний в транспортном средстве содержит часть управления амортизацией колебаний, которая управляет крутящим моментом приведения в движение от двигателя таким образом, чтобы ограничивать амплитуду продольных колебаний или вертикальных колебаний на основе крутящего момента на колесе, действующего на каждое колесо транспортного средства. Устройство также содержит часть регулирования компонента компенсации, которая изменяет величину, по меньшей мере, части компонента компенсации для компенсации крутящего момента на колесе для управления амортизацией колебаний, которая вычисляется частью управления амортизацией колебаний, на основе температуры электродвигателя дроссельной заслонки для регулирования степени открытия дроссельной заслонки двигателя. Транспортное средство содержит упомянутое устройство управления амортизацией колебаний. Решение направлено на уменьшение колебаний транспортного средства. 2 н. и 12 з.п. ф-лы, 12 ил.

Реферат

Область техники

Изобретение относится к устройству управления амортизацией колебаний для транспортного средства, такого как автомобиль или т.п., и, в частности, к устройству управления амортизацией колебаний, которое управляет выходной мощностью приведения в движение (силой приведения в движение или крутящим моментом приведения в движение) транспортного средства, применяющего двигатель в качестве блока приведения в движение, чтобы амортизировать колебания кузова транспортного средства, и к транспортному средству, оснащенному устройством управления амортизацией колебаний.

Уровень техники

В то время как колебания, такие как продольные/вертикальные колебания и т.п., во время движения транспортного средства вызываются тормозящей силой/силой приведения в движение (или инерционной силой), действующей на кузов транспортного средства во время ускорения/торможения транспортного средства, или другими внешними силами, действующими на кузов транспортного средства, эти силы отражаются посредством "крутящих моментов колес", прикладываемых к поверхности дороги колесами (ведущими колесами, когда транспортное средство движется) (крутящими моментами, действующими между колесами и поверхностью дороги, на которую колеса опираются). Таким образом, в области управления амортизацией колебаний для транспортного средства предполагается амортизировать колебания кузова транспортного средства во время движения транспортного средства посредством регулирования крутящих моментов на колесах через управление выходной мощностью приведения в движение от двигателя транспортного средства или любого другого блока приведения в движение транспортного средства (см., например, публикацию заявки на патент Японии JP 2004-168148 и публикацию заявки на патент Японии JP 2006-69472). В этом управлении амортизацией колебаний для амортизации колебаний посредством управления выходной мощностью приведения в движение продольные/вертикальные колебания, которые вызываются на кузове транспортного средства, когда делается запрос ускорения/торможения транспортного средства или когда внешняя сила (возмущение) действует на кузов транспортного средства, чтобы вызывать отклонения в крутящих моментах на колесах, прогнозируются с помощью кинетической модели, структурированной с учетом механической модели так называемых колебаний подрессоренной части кузова транспортного средства или так называемых колебаний подрессоренной/неподрессоренной части кузова транспортного средства, и выходная мощность приведения в движение от блока приведения в движение транспортного средства регулируется так, чтобы амортизировать спрогнозированные колебания. В случае, когда управление амортизацией колебаний задумано таким образом, формирование колебательной энергии пресекается в большей степени посредством регулирования источника силы, вызывающей колебания, чем посредством поглощения сформированной колебательной энергии, как в случае управления амортизацией колебаний посредством подвески. Следовательно, получаются преимущества, такие как относительная быстрота операции амортизации колебаний, высокая энергоэффективность и т.п. Дополнительно, при управлении амортизацией колебаний, как описано выше, цель управления ограничена крутящими моментами на колесах или тормозящими силами/силами приведения в движение, прикладываемыми к колесам. Следовательно, регулировка управления является легкой.

Когда управление амортизацией колебаний выполняется посредством упомянутого управления выходной мощностью приведения в движение, выходная мощность блока приведения в движение колеблющимся образом изменяется чаще, чем обычно, чтобы управлять крутящими моментами на колесах таким образом, чтобы амортизировать продольные/вертикальные колебания транспортного средства. В этом отношении, когда выходная мощность колеблющимся образом изменяется за счет управления амортизацией колебаний, как описано выше в случае, когда блок приведения в движение транспортного средства является бензиновым двигателем, растет температура электродвигателя дроссельной заслонки для регулирования степени открытия электронно-управляемой дроссельной заслонки, которая управляет объемом всасываемого воздуха двигателя, привода или его проводника. Обнаружено, что рабочий отклик электродвигателя дроссельной заслонки или привода может, в связи с этим, ухудшаться.

В случае, когда бензиновый двигатель применяется в качестве блока приведения в движение, управление объемом всасываемого воздуха для управления выходной мощностью приведения в движение для выполнения управления амортизацией колебаний, как описано выше, выполняется посредством управления регулировкой степени открытия электронно-управляемой дроссельной заслонки. При этом управлении электронно-управляемой дроссельной заслонкой "электродвигатель дроссельной заслонки" или "привод" задействуется, чтобы смещать положение или угол корпуса клапана дроссельной заслонки так, что степень открытия дроссельной заслонки становится равной степени открытия для получения объема всасываемого воздуха, определенного согласно произвольному способу посредством электронного блока управления. В качестве электродвигателя дроссельной заслонки или привода обычно применяется электродвигатель постоянного тока (DC), шаговый электродвигатель или т.п. Такой электродвигатель или привод питается током, и в то же время управляется посредством электронного блока управления и приводит в действие корпус клапана так, что фактическая степень открытия дроссельной заслонки совпадает с требуемой степенью открытия дроссельной заслонки (целевым значением степени открытия дроссельной заслонки), соответствующей требуемому значению объема всасываемого воздуха, на основе значения положения или угла корпуса клапана, обнаруженного датчиком положения дроссельной заслонки или датчиком степени открытия дроссельной заслонки, или значения объема воздуха, обнаруженного датчиком объема всасываемого воздуха. В этой конфигурации, когда управление амортизацией колебаний требует колеблющейся выходной мощности приведения в движение, как описано выше, объем всасываемого воздуха и, следовательно, требуемая степень открытия дроссельной заслонки также изменяются колеблющимся образом. Следовательно, когда увеличивается частота, с которой позиция или угол корпуса клапана смещается, и особенно когда увеличиваются частота и/или амплитуда изменений в позиции или угле корпуса клапана, увеличиваются количество тока в единицу времени и количество сформированного тепла, получающегося в результате этого. Вследствие этого, температура электродвигателя дроссельной заслонки, привода или его проводника может расти (в случае, когда корпус клапана приводится в действие упомянутым электродвигателем, применяемым в типичной электронно-управляемой дроссельной заслонке, управляющий ток электродвигателя при сдвиге позиции или угла корпуса клапана увеличивается в большей степени, чем ток удержания в случае, когда корпус клапана удерживается в определенной позиции или под определенным углом). Когда температура электродвигателя дроссельной заслонки, привода или его проводника затем возрастает, рабочий отклик электродвигателя дроссельной заслонки или привода замедляется. В связи с этим может происходить ухудшение устойчивости управления амортизацией колебаний и задержка или сдвиг по фазе колебательного смещения степени открытия дроссельной заслонки. Следовательно, в некоторых случаях, эффект амортизации колебаний получается недостаточным.

Краткое описание изобретения

Изобретение предлагает конфигурацию для предотвращения роста температуры электродвигателя дроссельной заслонки, привода или его проводника, который получается в результате колебательных изменений в степени открытия электронно-управляемой дроссельной заслонки для объема всасываемого воздуха в случае, когда управление выходной мощностью приведения в движение от бензинового двигателя участвует в управлении амортизацией продольных/вертикальных колебаний, как описано выше.

Дополнительно, изобретение предоставляет устройство управления амортизацией колебаний, сконфигурированное так, чтобы предотвращать ослабление операции регулирования при управлении амортизацией колебаний, в то же время не допуская роста температуры электродвигателя дроссельной заслонки, привода или его проводника, как описано выше, и транспортное средство, оснащенное устройством управления амортизацией колебаний.

Устройство управления амортизацией колебаний в транспортном средстве согласно первому аспекту изобретения управляет степенью открытия дроссельной заслонки таким образом, чтобы амортизировать, по меньшей мере, один из компонента колебаний транспортного средства, получающегося в результате входного воздействия от поверхности дороги, и компонента колебаний транспортного средства, получающегося в результате входного воздействия на элемент оперативного управления, включающий в себя педаль акселератора и тормоз. В устройстве управления амортизацией колебаний величина изменения степени открытия дроссельной заслонки изменяется в зависимости от того, является ли температура привода дроссельной заслонки двигателя высокой или низкой. Согласно этой конфигурации компонент компенсации согласно управлению амортизацией колебаний не всегда непосредственно предоставляется электродвигателю дроссельной заслонки или приводу в качестве команды управления для управления выходной мощностью приведения в движение, и, по меньшей мере, часть компонента компенсации согласно управлению амортизацией колебаний изменяется в соответствии с температурой привода дроссельной заслонки двигателя. Следовательно, частота или величина отклонений в степени открытия дроссельной заслонки уменьшается, и, соответственно, величина тока уменьшается. Таким образом, рост температуры электродвигателя дроссельной заслонки, привода или его проводника, вероятно, должен быть предотвращен.

Устройство управления амортизацией колебаний в транспортном средстве согласно второму аспекту изобретения, которое выполняет управление амортизацией колебаний для амортизации продольных колебаний или вертикальных колебаний транспортного средства посредством управления выходной мощностью приведения в движение транспортного средства, включает в себя часть управления амортизацией колебаний, которая управляет крутящим моментом приведения в движение от двигателя таким образом, чтобы ограничивать амплитуду продольных колебаний или вертикальных колебаний на основе крутящего момента на колесе, действующего на каждое колесо транспортного средства, который формируется в месте поверхности дороги, где опирается колесо, а также часть регулирования компонента компенсации, которая изменяет величину, по меньшей мере, части компонента компенсации для компенсирования крутящего момента на колесе для управления амортизацией колебаний, которая вычисляется посредством части управления амортизацией колебаний, на основе величины изменения в степени открытия дроссельной заслонки двигателя, ссылаясь на величину изменения в степени открытия дроссельной заслонки, с тем, чтобы не допускать роста температуры электродвигателя дроссельной заслонки, привода или его проводника. В соответствии с этой конфигурацией компонент компенсации согласно управлению амортизацией колебаний не всегда непосредственно предоставляется электродвигателю дроссельной заслонки или приводу в качестве команды управления для управления выходной мощностью приведения в движение. Вместо этого, по меньшей мере, часть компонента компенсации согласно управлению амортизацией колебаний изменяется в соответствии с величиной изменения в степени открытия дроссельной заслонки. Следовательно, частота или величина отклонений в степени открытия дроссельной заслонки уменьшается, и, соответственно, уменьшается величина тока. Таким образом, рост температуры электродвигателя дроссельной заслонки, привода или его проводника, вероятно, должен быть предотвращен. В упомянутой конфигурации величина изменения в степени открытия дроссельной заслонки может быть либо величиной изменения в требуемой степени открытия дроссельной заслонки, либо величиной изменения в фактической степени открытия дроссельной заслонки.

В конфигурации дроссельной заслонки двигателя, примененной ко второму аспекту изобретения, как уже описано, было обнаружено, что увеличивается ток, подаваемый на электродвигатель дроссельной заслонки или привод, когда степень открытия дроссельной заслонки изменяется. Соответственно, когда частота и амплитуда величины изменения степени открытия дроссельной заслонки увеличиваются, увеличивается вероятность роста температуры электродвигателя дроссельной заслонки, привода или его проводника. Таким образом, в конфигурации устройства согласно второму аспекту изобретения, часть регулирования компонента компенсации может уменьшать величину, по меньшей мере, части компонента компенсации для компенсирования крутящего момента на колесе, когда частота или амплитуда величины изменения в степени открытия дроссельной заслонки становится равной или большей, чем заданное значение. Следует отметить, что при определении того, что частота или амплитуда величины изменения в степени открытия дроссельной заслонки стала равной или большей, чем заданное значение, условие того, что появление частоты или амплитуды величины изменения в степени открытия дроссельной заслонки, равной или большей, чем заданное значение, наблюдалось хотя бы один раз, может быть использовано в качестве условия для выполнения определения, или условие того, что появление частоты или амплитуды величины изменения в степени открытия дроссельной заслонки, равной или большей, чем заданное значение, наблюдалось более чем заданное число раз в течение заданного периода или последовательно может быть использовано в качестве условия для выполнения определения. Дополнительно, в процессе исследования и усовершенствования изобретателем изобретения было обнаружено, что температура проводника электродвигателя дроссельной заслонки может быть оценена на основе величины изменения в степени открытия дроссельной заслонки. Таким образом, в конфигурации устройства согласно второму аспекту изобретения часть регулирования компонента компенсации может оценивать температуру проводника для подачи тока на электродвигатель дроссельной заслонки для регулирования степени открытия дроссельной заслонки на основе величины изменения в степени открытия дроссельной заслонки и уменьшать величину, по меньшей мере, части компонента компенсации, когда температура проводника становится выше, чем заданное значение.

Дополнительно, что касается одного режима, в котором величина, по меньшей мере, части компонента компенсации уменьшается в изобретении, как понятно из предшествующего описания, одним из признаков компонента, в качестве причины роста температуры проводника электродвигателя дроссельной заслонки, является то, что частота является высокой. Следовательно, часть регулирования компонента компенсации может уменьшать величину, по меньшей мере, части компонента компенсации, устраняя часть, которая имеет частоту, более высокую, чем заданная частота, из значения крутящего момента на колесе, вводимого в часть управления амортизацией колебаний или компонент компенсации. В ситуации, в которой величина, по меньшей мере, части компонента компенсации должна быть уменьшена, дальнейший рост температуры должен быть предотвращен. Следовательно, часть регулирования компонента компенсации может уменьшать величину, по меньшей мере, части компонента компенсации, уменьшая коэффициент усиления системы управления для компонента компенсации.

Кроме того, известно, что часть компонента компенсации, полученная из части управления амортизацией колебаний, которая может иметь особенно высокую частоту, является компонентом компенсации для управления крутящим моментом приведения в движение от двигателя таким образом, чтобы ограничивать амплитуду продольных колебаний или вертикальных колебаний, вызванных крутящим моментом на колесе, фактически прикладываемым к каждому колесу (т.е. "возмущение крутящего момента на колесе"). Таким образом, в устройстве управления амортизацией колебаний согласно второму аспекту изобретения часть управления амортизацией колебаний может иметь часть управления амортизацией колебаний с прямой связью, которая вычисляет компонент компенсации для управления крутящим моментом приведения в движение от двигателя таким образом, чтобы ограничивать амплитуду продольных колебаний или вертикальных колебаний, вызванных крутящим моментом на колесе, сформированным посредством запроса ускорения/торможения транспортного средства или запроса поворота транспортного средства, и часть управления амортизацией колебаний с обратной связью, которая вычисляет компонент компенсации для управления крутящим моментом приведения в движение от двигателя таким образом, чтобы ограничивать амплитуду продольных колебаний или вертикальных колебаний, вызванных крутящим моментом на колесе, фактически прикладываемым к каждому колесу, и часть регулирования компонента компенсации может уменьшать величину, по меньшей мере, части компонента компенсации, вычисленного частью управления амортизацией колебаний с обратной связью. В этом случае часть управления амортизацией колебаний с прямой связью корректирует (компенсирует) команду управления для выходной мощности приведения в движение (крутящего момента) двигателя таким образом, чтобы предотвращать появление продольных колебаний или вертикальных колебаний, получающихся в результате отклонений в крутящем моменте на колесе с относительно низкой частотой, что соответствует запросу ускорения/торможения транспортного средства или запросу поворота транспортного средства. С другой стороны, компонент компенсации, вычисленный частью управления амортизацией колебаний с обратной связью, главным образом, амортизирует продольные колебания или вертикальные колебания, получающиеся в результате возмущающего воздействия, действующего на кузов транспортного средства. Следовательно, согласно этой конфигурации, компонент компенсации для амортизации продольных/вертикальных колебаний может быть устранен или уменьшен в соответствии с характеристикой компонента компенсации. Рост температуры электродвигателя дроссельной заслонки, привода или его проводника, как ожидается, должен уменьшаться или пресекаться без уменьшения эффекта от компонента компенсации, который имеет относительно низкую частоту и вычисленного частью управления амортизацией колебаний с прямой связью. Следует понимать, что величина, по меньшей мере, части компонента компенсации может быть уменьшена согласно любому одному из вышеупомянутых способов. Часть управления амортизацией колебаний с прямой связью ссылается на запрос поворота транспортного средства для того, чтобы ограничивать колебательный компонент согласно изменениям в крутящем моменте на колесе, вызванным изменениями в угле поворота каждого колеса транспортного средства.

Как понятно из вышеупомянутой последовательности описаний, устройство, на которое нацелено изобретение, предназначено предотвращать или ограничивать, посредством управления выходной мощностью приведения в движение, передачу компонента колебания, передаваемого от поверхности дороги через каждое колесо, на кузов транспортного средства в транспортном средстве, таком как автомобиль или т.п., при этом его выходная мощность приведения в движение регулируется посредством управления степенью открытия дроссельной заслонки бензинового двигателя. Другими словами, устройство, на которое нацелено изобретение, должно быть устройством управления приведением в движение, сконфигурированным так, что крутящий момент, обратный по фазе колебаниям (обычно около 1-4 Гц), вызывающий колебания на кузове транспортного средства, прикладывается к каждому колесу, когда такие колебания вызываются в скорости колеса или крутящем моменте на колесе. Тогда, в частности, задачей изобретения является предотвращение роста температуры электродвигателя дроссельной заслонки или привода, как результата состояния, в котором степень открытия дроссельной заслонки изменяется чаще, когда компонент колебания передается транспортному средству от поверхности дороги, чем, когда такой компонент колебания не передается транспортному средству. Таким образом, согласно третьему аспекту изобретения предоставляется транспортное средство, которое управляет степенью открытия дроссельной заслонки таким образом, чтобы амортизировать, по меньшей мере, один из компонента колебаний транспортного средства, получающегося в результате входного воздействия от поверхности дороги, и компонента колебаний транспортного средства, получающегося в результате входного воздействия на элемент оперативного управления, включающий в себя педаль акселератора и педаль тормоза. В этом транспортном средстве степень открытия дроссельной заслонки изменяется на величину, которая меняется в соответствии с температурой привода дроссельной заслонки. Дополнительно, в третьем аспекте изобретения величина изменения степени открытия дроссельной заслонки может уменьшаться, когда температура привода дроссельной заслонки растет. В этой конфигурации любой способ может применяться, пока температура привода дроссельной заслонки может быть обнаружена или рассчитана. Например, температура может быть непосредственно обнаружена посредством снабжения привода дроссельной заслонки или его проводника датчиком температуры (термопарой или т.п.). Дополнительно, в третьем аспекте изобретения, значение, представляющее рабочий отклик привода дроссельной заслонки, например разницу между значением требуемой степени открытия дроссельной заслонки и значением фактической степени открытия дроссельной заслонки или т.п., может быть обнаружено, и температура привода дроссельной заслонки может быть рассчитана на основе значения, представляющего рабочий отклик привода дроссельной заслонки (скорость реакции уменьшается, когда температура растет).

Дополнительно, как уже описано, в случае, когда температура привода дроссельной заслонки не падает или растет после того, как температура однажды выросла, и величина изменения степени открытия дроссельной заслонки уменьшается, когда степень открытия дроссельной заслонки дополнительно изменяется, отклик дроссельной заслонки может дополнительно ухудшаться. Таким образом, в третьем аспекте изобретения величина изменения в степени открытия дроссельной заслонки может уменьшаться, когда температура привода дроссельной заслонки становится равной первой температуре, и работа дроссельной заслонки может быть остановлена, когда температура привода дроссельной заслонки становится равной второй температуре, более высокой, чем первая температура. Согласно этой конфигурации восстановление отклика дроссельной заслонки выполняется вследствие падения температуры дроссельной заслонки в результате остановки работы дроссельной заслонки.

Управление амортизацией продольных/вертикальных колебаний, которое является целью изобретения, является уникальным управлением, требующим изменений в выходной мощности, более частых, чем при традиционном управлении выходной мощностью приведения в движение. Следовательно, при фактическом применении этого управления к транспортному средству, необходимо гарантировать то, что это управление соответствует различным существующим механизмам, относящимся к управлению выходной мощностью приведения в движение. Изобретение должно корректировать конфигурацию управления амортизацией колебаний так, чтобы не ухудшать скорость отклика электродвигателя дроссельной заслонки или привода посредством недопущения роста температуры электродвигателя дроссельной заслонки, привода или его проводника, который, в частности, выбирается из этих существующих механизмов для управления выходной мощностью приведения в движение. Согласно этой конфигурации изобретения даже в случае, когда управление амортизацией колебаний объединено с частью управления выходной мощностью приведения в движение, рост температуры электродвигателя дроссельной заслонки или привода предотвращается. В результате, может быть предотвращено ухудшение скорости отклика электродвигателя дроссельной заслонки или привода и ослабление действия амортизации колебаний, получающееся в результате этого.

Другие цели и преимущества изобретения станут очевидными из последующего описания предпочтительного варианта осуществления изобретения.

Краткое описание чертежей

Вышеупомянутые и дополнительные признаки и преимущества изобретения станут очевидными из последующего писания примерного варианта осуществления, приведенного со ссылкой на прилагаемые чертежи. На этих чертежах одинаковыми ссылочными позициями обозначены идентичные элементы. На чертежах:

Фиг. 1A - схематический вид автомобиля, оснащенного устройством управления амортизацией колебаний согласно варианту осуществления изобретения. Фиг. 1B и 1C - схематические виды электронно-управляемой дроссельной заслонки (или корпуса дроссельной заслонки), применяемой в двигателе транспортного средства с фиг. 1A, причем фиг. 1B представляет собой вид спереди корпуса клапана (который виден в том же направлении, что и поток воздуха через впускной патрубок), а фиг. 1C представляет собой боковой вид в разрезе фиг. 1B. Контроллер 22e тока подает ток от аккумулятора на электродвигатель 74 на основе команды управления от электронного блока управления, и электродвигатель 74 формирует вращательную силу против силы упругости пружины возврата так, что степень θst открытия корпуса 70 клапана или угловое положение ψ корпуса 70 клапана совпадает с требуемой степенью открытия или целевым углом. Значение тока, текущего к электродвигателю, значительно увеличивается, когда позиция корпуса клапана смещается, чем когда корпус клапана удерживается в позиции.

Фиг. 2 - внутренняя конфигурация электронного блока управления, показанного на фиг. 1A, 1B и 1C, в форме блок-схемы управления. Различные параметры, отличные от показанных на фиг. 2, например, такие как температура двигателя и т.п., могут быть введены в часть определения объема всасываемого воздуха, часть управления моментом зажигания и часть управления степенью открытия дроссельной заслонки. Дополнительно, могут быть предусмотрены различные известные части управления (не показаны), такие как часть управления объемом впрыска топлива и т.п.

Фиг. 3A - вид, объясняющий переменную состояния колебаний кузова транспортного средства, амортизируемых во время работы части управления амортизацией колебаний устройства управления приведением в движение согласно одному варианту осуществления изобретения. Фиг. 3B - вид, объясняющий "модель колебания подрессоренной части" в качестве одной из механических кинетических моделей колебаний кузова транспортного средства, предполагаемых в части управления амортизацией колебаний согласно варианту осуществления изобретения. Фиг. 3C - вид, объясняющий модель колебания подрессоренной/неподрессоренной части.

Фиг. 4A и 4B - виды, каждый из которых показывает конфигурацию части управления амортизацией колебаний согласно варианту осуществления изобретения в форме блок-схемы управления, причем фиг. 4A и 4B показывают конфигурацию части 52a управления амортизацией колебаний с прямой связью с фиг. 2 и конфигурацию части 52b управления амортизацией колебаний с обратной связью, соответственно.

Фиг. 5A - конфигурация внутренней структуры части регулирования коэффициента усиления системы управления с фиг. 2 в форме блок-схемы управления. Фиг. 5B - вид, объясняющий способ вычисления изменения в степени открытия дроссельной заслонки во времени, частоту степени открытия дроссельной заслонки и амплитуду степени открытия дроссельной заслонки после HPF-обработки. Фиг. 5C - схематическая карта расчетной температуры проводника электродвигателя, в которой частота и амплитуда степени открытия дроссельной заслонки используются в качестве переменных. Каждая точка в рамке на фиг. 5C указывает, что дана расчетная температура. Дополнительно, толстая сплошная линия, начерченная между частотой Fo и амплитудой Ao в рамке на фиг. 5C, представляет границу порогового значения Tlimit расчетной температуры. Каждая стрелка в верхнем пустом месте показывает направление, в котором частота увеличивается, а каждая стрелка в нижнем пустом месте показывает направление, в котором увеличивается амплитуда.

Подробное описание варианта осуществления изобретения

Вариант осуществления изобретения будет описан подробно далее со ссылкой на прилагаемые чертежи. На чертежах одинаковыми ссылочными позициями обозначены одинаковые компоненты.

Конфигурация устройства

Фиг. 1A схематически показывает транспортное средство, такое как автомобиль или т.п., которое оснащено устройством управления приведением в движение, которое выполняет управление амортизацией колебаний согласно варианту осуществления изобретения. На фиг. 1A транспортное средство 10, имеющее переднее правое колесо 12FR, переднее левое колесо 12FL, заднее правое колесо 12RR и заднее левое колесо 12RL, оснащено блоком 20 приведения в движение, который прикладывает силу приведения в движение или крутящий момент приведения в движение к каждому из задних колес в соответствии с надавливанием педали 14 акселератора водителем в обычном режиме. В примере, показанном на фиг. 1A, блок 20 приведения в движение сконфигурирован так, чтобы передавать крутящий момент приведения в движение или вращательную силу приведения в движение от двигателя 22 к каждому из задних колес 12RR и 12RL через преобразователь 24 крутящего момента, автоматическую трансмиссию 26, механизм 28 дифференциальной передачи и т.п. Хотя это не показано на фиг. 1A ради простоты, транспортное средство 10 снабжено блоком тормоза, который прикладывает силу торможения к каждому из колес как в случае с традиционными транспортными средствами, и блок рулевого управления для управления углом поворота каждого из передних колес или углом поворота каждого из передних колес и задних колес. Кроме того, транспортное средство может быть транспортным средством с приводом на четыре колеса или транспортным средством с приводом на передние колеса.

Двигатель 22 является бензиновым двигателем известной конструкции, и впускной патрубок 22a снабжен электронно-управляемым блоком 22b дроссельной заслонки известного типа, как схематически показано на фиг. 1B и 1C, с тем, чтобы регулировать объем всасываемого воздуха так, чтобы достигать требуемого крутящего момента приведения в движение, который определяется в соответствии с величиной вдавливания педали акселератора и описанными ниже управляющими величинами. В блоке 22b дроссельной заслонки, как показано на фиг. 1B и 1C, корпус 70 клапана установлен во впускном патрубке 22a с возможностью вращения вокруг поворотной оси, перпендикулярной направлению потока воздуха, и площадь проходного сечения для воздуха во впускном патрубке, а именно - "степень открытия дроссельной заслонки", управляется в соответствии с угловой позицией корпуса 70 клапана. Угловая позиция корпуса 70 клапана или степень открытия дроссельной заслонки отслеживается датчиком 76 положения дроссельной заслонки и одновременно управляется описанным ниже электронным блоком 50 управления. Электродвигатель 74 дроссельной заслонки поворачивает корпус 70 клапана против силы упругости пружины 72 возврата так, что степень открытия дроссельной заслонки совпадает с требуемой степенью открытия дроссельной заслонки для достижения требуемого значения объема всасываемого воздуха (т.е. крутящего момента приведения в движение), и угловое положение корпуса 70 клапана или степень открытия дроссельной заслонки, таким образом, регулируется. Электродвигатель 74 дроссельной заслонки может быть DC-электродвигателем или шаговым электродвигателем, который применяется в известном электродвигателе дроссельной заслонки. Контроллер 22e тока управляет током, подаваемым от аккумулятора к электродвигателю 74 дроссельной заслонки через проводник 76 электропитания, на основе значения команды тока, выданной из электронного блока 50 управления, и вращательная сила электродвигателя 74 дроссельной заслонки, таким образом, регулируется. Известно, что ток, подаваемый к электродвигателю 74, увеличивается в большей степени, когда угловое положение корпуса клапана изменяется, чем когда угловое положение удерживается в определенном положении.

Как показано на фиг. 1A, управление выходной мощностью приведения в движение от двигателя 22 выполняется электронным блоком 50 управления. Электронный блок 50 управления может включать в себя схему управления и традиционно спроектированный микрокомпьютер, имеющий центральный процессор (ЦП), ПЗУ, ОЗУ и блок порта ввода/вывода, которые соединены друг с другом двунаправленной общей шиной. Сигнал, указывающий скорость Vwi каждого колеса (i=FR, FL, RR, RL), который передается от датчика 30i скорости каждого колеса (i=FR, FL, RR, RL), установленного на соответствующем колесе, сигнал, указывающий угловое положение ψ дроссельной заслонки или степень θst открытия дроссельной заслонки, который передается от датчика 76 положения дроссельной заслонки, и сигналы, указывающие скорость ne вращения двигателя, величину θa вдавливания педали акселератора, выходную скорость вращения трансмиссии, положение рычага переключения передач, установленное водителем и т.п., которые передаются от датчиков, предусмотренных в соответствующих частях транспортного средства, вводятся в электронный блок 50 управления. Следует понимать, что различные сигналы обнаружения для получения различных параметров, необходимых для различных типов управления, которые должны выполняться в транспортном средстве согласно этому варианту осуществления изобретения, могут вводиться в электронный блок 50 управления в дополнение к вышеупомянутым сигналам.

Устройство управления амортизацией колебаний согласно изобретению реализовано в упомянутом электронном блоке 50 управления. Фиг. 2 показывает внутреннюю конфигурацию электронного блока 50 управления согласно варианту осуществления изобретения в форме блока управления.

Как показано на фиг. 2, электронный блок 50 управления может состоять из устройства 50a управления приведением в движение, который управляет работой двигателя, устройства 50b управления тормозом, который управляет работой блока тормоза (не показано), а также различных устройств управления (не показано), установленных в электронном блоке управления известного транспортного средства, использующего бензиновый двигатель. Следует понимать, что конфигурации и операции различных устройств управления, таких как устройство управления приведением в движение и т.п., включающих в себя устройство управления амортизацией колебаний, реализуются посредством операции обработки ЦП и т.п. в электронном блоке 50 управления во время движения транспортного средства.

Как показано на фиг. 2, электрический сигнал импульсного типа для каждого из датчиков 30FR, 30FL, 30RR и 30RL скорости колеса на соответствующих колесах, который последовательно формируется каждый раз, когда соответствующее из колес поворачивается на заданную величину, вводится в устройство 50b управления тормозом. Скорость вращения каждого колеса вычисляется посредством измерения временного интервала поступления этого последовательно вводимого импульсного сигнала. Значение r·ω скорости колеса вычисляется посредством умножения этой скорости вращения колеса на радиус колеса. Значение r·ω скорости колеса затем передается устройству 50a управления приведением в движение, чтобы выполнять управление амортизацией колебаний, которое будет описано ниже более д