Способ элементного анализа сред и реализующее его устройство

Иллюстрации

Показать все

Использование: для элементного анализа сред. Сущность: заключается в том, что источник быстрых нейтронов размещают в замедляющем блоке, γ-спектрометром, использующим метод неперегружающегося линейного детектирования, регистрируют мгновенные γ-кванты, рождающиеся при радиационном захвате нейтронов ядрами элементов, определяют калибровочные отклики отдельных элементов, входящих в состав идентифицируемого образца, по аппаратурным спектрам γ-квантов, определяют концентрацию элементов в образце через весовые коэффициенты откликов элементов, при этом химический состав сред определяют по схеме: задают априорно химический состав - известные химические соединения - среды, определяют калибровочные отклики соединений через суммы калибровочных откликов элементов, входящих в состав соединений, определяют концентрации соединений и элементов в идентифицируемой среде, определяют концентрации элементов, входящих в состав соединений, устанавливают соответствие полученной суммарной концентрации элементов среды, с учетом элементов, входящих в состав идентифицируемых соединений среды, концентрации элементов среды, полученной идентифицирующей расшифровкой только элементного состава среды, при несовпадении при заданной погрешности суммарной концентрации элементов среды, полученной идентифицирующей расшифровкой с учетом элементов, входящих в состав идентифицируемых соединений среды, с концентрацией элементов среды, полученной идентифицирующей расшифровкой только элементного состава среды, процедуру, начинающуюся с априорного задания структуры соединений, повторяют. Технический результат: увеличение скорости элементного анализа, увеличение разрешающей способности идентификации элементов, а также увеличение чувствительности определения примесей в средах. 2 н. и 1 з.п. ф-лы, 4 табл., 13 ил.

Реферат

Изобретение относится к области элементного анализа - качественного обнаружения и количественного определения содержания элементов и элементного состава веществ, материалов и различных объектов. Это могут быть жидкости, твердые материалы, газы. Элементный анализ позволяет ответить на вопрос - из каких атомов (элементов) состоит анализируемое вещество.

Элементный анализ является одной из важнейших задач на любом производстве, целью которой является контроль используемого сырья, производства, а также готовой продукции. Черная и цветная металлургия, нефтедобыча и нефтепереработка, агропромышленность, геология, горно-добывающая промышленность и многое другое практически невозможны без наличия аналитических лабораторий, осуществляющих элементный анализ. Элементный анализ важен в эколого-аналитическом и санитарно-эпидемиологическом контроле, анализе продуктов питания и кормов, металлов и сплавов, неорганических материалов, особо чистых веществ, полимерных материалов, полупроводников, нефтепродуктов, обнаружении взрывчатых веществ и др., в медицинских и научных исследованиях.

Эффективность элементного анализа во многом зависит от инструментальных методов анализа. Среди инструментальных методов анализа широко распространены рентгенофлуоресцентная, атомно-эмиссионная, атомно-абсорбционная спектрометрия, спектрофотометрия и люминесцентный анализ, электрохимические методы (полярография, потенциометрия и др.), масс-спектрометрия (искровая, лазерная и др.), различные варианты активационного анализа. При выборе метода и методики анализа учитывают структуру анализируемых материалов, требования к точности определения, пределу обнаружения элементов, чувствительности определения, селективности и специфичности, а также стоимость анализа, квалификацию персонала, скорость проведения анализа, уровень необходимой пробоподготовки и наличие необходимого оборудования.

Особо следует отметить радиоактивационный анализ. Радиоактивационный анализ - метод анализа вещества по характеру излучения радиоактивных изотопов, образующихся при бомбардировке исследуемого вещества ядерными частицами большой энергии. Радиоактивационный анализ обладает высокой чувствительностью и применяется для определения примесей в металлах, сплавах, полупроводниковых материалах и других веществах. Активационный анализ относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение активационный анализ получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10-12-10-13 г·см-3), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов. Общим для всех методов активационного анализа является активация вещества нейтронами, γ-квантами или заряженными частицами и последующая регистрация спектрального состава излучения возбужденных ядер или образовавшихся радиоактивных изотопов. Наиболее распространены первые два метода. Активационный анализ на заряженных частицах, в связи с их малым пробегом в веществе, используется главным образом для анализа тонких слоев и при изучении поверхностных эффектов.

Основным минусом перечисленных методов являются высокие требования к пробоподготовке и большое или сравнительно большое время анализа, а в некоторых случаях, как, например, в случае γ-активационного анализа, громоздкость и нетехнологичность инструментального оборудования.

Для широкого круга задач элементного анализа при приемлемой точности, в пределах 10%, чувствительности и разрешающей способности около 10-3÷10-4% важны скорость элементного анализа и большая проникающая способность инструментальных средств обнаружения и контроля элементного состава. Это имеет место при идентификации скрытых закладок, находящихся в недоступных для визуального обозрения местах, например в контейнерах крупногабаритных грузоперевозок, закладок из взрывчатых веществ, контрабанды на постах таможенного контроля и т.п. Наиболее оптимальным сочетанием возможностей для идентификации элементного состава сред, находящихся в перечисленных условиях, обладает метод (способ) элементного анализа, основанный на спектральном анализе мгновенных γ-квантов, рождающихся при радиационном захвате нейтронов ядрами элементов.

Наиболее полно данный способ разработан и используется компанией Rapiscan Systems (www.rapiscansystems.com), в которой контроль количественного состава среды (идентификация элементного состава) осуществляется с помощью нейтронного облучения материалов посредством спектрального анализа γ-квантов, возникающих при взаимодействии быстрых нейтронов с материалами (веществами). Элементный анализ используется для контроля крупногабаритных кладей (контейнеров).

В способе, предлагаемом в настоящей заявке, при элементном анализе также используется спектральный анализ γ-квантов, возникающих при радиационном захвате нейтронов ядрами элементов. Однако в отличие от методик, используемых компанией Rapiscan Systems, в предлагаемом способе анализируются спектры γ-квантов, рождающиеся при захвате только нейтронов, не вступающих с ядрами идентифицируемых элементов в реакции неупругого рассеяния [1]. Кроме того, в предлагаемом способе идентифицируется не только элементный состав, но и химический (молекулярный) состав. Использование модифицированного метода дискриминации временных интервалов существенно улучшает характеристики неперегружающегося спектрометра γ-квантов, увеличивает статистическую точность и уменьшает систематические погрешности. Погрешность измерений составляет не более 5÷15% при экспозициях (интервалах измерений) не более нескольких десятков секунд и чувствительности до 10-5÷10-6 г, например, в образцах из биологической ткани объемом V~1 см3 с удельным весом 1 г·см-3. В общем случае, метод позволяет оценивать концентрации элементов и химических соединений в конденсированных и газовых средах до 10-3÷10-4% с погрешностью менее 10%.

Авторам настоящей заявки представляется весьма перспективным использование выдвинутых предложений в медицине и особенно при лечении онкологических заболеваний. Новый метод лечения онкологических заболеваний, на который специалисты возлагают большие надежды, - это нейтрон-захватная терапия (НЗТ). Суть НЗТ состоит в следующем: в опухоль вводят препарат, содержащий бор-10 или гадолиний-157 и облучают ее пучком тепловых нейтронов большой интенсивности. Препарат обладает способностью накапливаться в опухоли, поэтому энерговыделение от образовавшихся в результате ядерной реакции частиц, уничтожающих клетки опухоли, происходит только в ней и здоровые ткани практически не повреждаются. Для полного излечения достаточно одного сеанса НЗТ. Развиваемая технология, это технология выбора для больных, которым другие методы лечения помочь не в состоянии.

БНЗТ - Бор-Нейтрон-Захватная-Терапия - одно из центральных направлений современной нехирургической онкологии пока не выходит из разряда экспериментального вида лечения только в силу ряда технических, финансовых и иных факторов. Например: незначительное отступление от соответствующих критериев точности в определении концентрации препарата с бором, установленных специалистами-онкологами, и, как следствие, некорректность планирования сеанса терапии, может привести к гибели значительных областей здоровой ткани или к недостаточной дозе облучения опухолевой ткани, требующей повторных процедур, а следовательно, к опасности повышенного риска сеансов лечения. Поэтому разработка неинвазивных методов контроля содержания бора в области опухолевого роста непосредственно в процессе проведения НЗТ является принципиально важным фактором успеха терапии. Предлагаемый способ и оборудование для его реализации по идентификации элементного и химического состава сред позволяют определять концентрацию бора-10 в биологической ткани в пределах 10-40 мкг/г при удельном весе ткани ρ~1 г·см-3 с погрешностью не более 10% за время в несколько десятков секунд и даже единиц секунд.

Известный способ идентификации элементного состава по спектральному анализу мгновенных γ-квантов, рождающихся при радиационном захвате быстрых нейтронов, используется в идентифицирующих установках компании Rapiscan Systems (www.rapiscansystems.com). Компания эффективно использует данный способ для контроля элементного состава крупногабаритных кладей в закрытых грузовых контейнерах. Недостатком известного способа является неоднозначность определения химического состава сред из-за несовершенства методики при составлении калибровочных опорных данных идентифицирующих калибровочных измерений.

Известен способ [2, 3], принятый за прототип, идентификации элементного состава по спектральному анализу мгновенных γ-квантов, образующихся в реакциях радиационного захвата нейтронов ядрами элементов. В рассматриваемом способе [2, 3] упоминается возможность идентификации химического (молекулярного) состава сред. Однако авторы нигде не описывают, как такая идентификация осуществляется. Недостатком способа является большая статистическая погрешность измерений и, в связи с этим, длительные экспозиции при проведении измерений. В предлагаемой заявке отмеченные недостатки отсутствуют.

Сущность предлагаемого способа определения элементного состава состоит в следующем: источник быстрых нейтронов размещают в замедляющем блоке, γ-спектрометром, использующим метод неперегружающегося линейного детектирования, регистрируют мгновенные γ-кванты, рождающиеся при радиационном захвате нейтронов ядрами элементов, определяют калибровочные отклики отдельных элементов, входящих в состав идентифицируемого образца, по аппаратурным спектрам γ-квантов, определяют концентрацию элементов в образце через весовые коэффициенты откликов элементов, отличающегося тем, что химический состав сред определяют по схеме: задают априорно химический состав - известные химические соединения - среды, определяют калибровочные отклики соединений через суммы калибровочных откликов элементов, входящих в состав соединений, определяют концентрации соединений и элементов в идентифицируемой среде, определяют концентрации элементов, входящих в состав соединений, устанавливают соответствие полученной суммарной концентрации элементов среды, с учетом элементов, входящих в состав идентифицируемых соединений среды, концентрации элементов среды, полученной идентифицирующей расшифровкой только элементного состава среды, при не совпадении при заданной погрешности суммарной концентрации элементов среды, полученной идентифицирующей расшифровкой с учетом элементов, входящих в состав идентифицируемых соединений среды, с концентрацией элементов среды, полученной идентифицирующей расшифровкой только элементного состава среды, процедуру, начинающуюся с априорного задания структуры соединений, повторяют. При выполнении процедур идентифицирующих измерений применяют γ-спектрометр, использующий метод неперегружающегося линейного детектирования с модифицированным методом дискриминации временных интервалов или, точнее, с методом двойной дискриминации временных интервалов (см. ниже, стр.18).

Известное устройство по идентификации элементного состава реализовано компанией Rapiscan Systems [4]. Недостатками используемого компанией устройства являются: использование изотопных источников быстрых нейтронов; невысокая разрешающая способность; невысокий уровень скорости элементного анализа, точности и чувствительности; отсутствие надежных критериев химического (молекулярного) состава контролируемых сред. К недостаткам реализованной установки следует также отнести следующее: идентифицирующая установка комплектуется различным вспомогательным оборудованием, что делает ее громоздкой и не всегда удобной. Вес установки может достигать 20÷25 тонн. Транспортировка установки осуществляется в неразобранном и в разобранном виде морским или железнодорожным способом.

В установке, реализуемой по предлагаемому способу, указанные недостатки отсутствуют.

Прототипом представленного изобретения является известное устройство по идентификации элементного состава, предложенное в работах [2, 3]. Метод оперативной идентификации и контроля, реализуемый установкой, основан на регистрации и расшифровке спектрального состава и выхода мгновенных γ-квантов, рождающихся при облучении нейтронами ядер элементов. В качестве источников нейтронов используются импульсные нейтронные генераторы. Недостатком устройства прототипа является низкая статистическая точность и, как следствие, длительные измерительные экспозиции (несколько десятков минут и более). Предложенное в настоящей заявке устройство лишено указанного недостатка.

Заявленный способ реализуют с помощью устройства, включающего источник нейтронов, блок замедления нейтронов, γ-спектрометр, использующий метод неперегружающегося линейного детектирования, программный блок, включающий библиотеку калибровочных характеристик (откликов γ-спектрометра в виде массивов аппаратурных спектров мгновенных γ-квантов, рождающихся при радиационном захвате нейтронов ядрами различных элементов), измерительный комплекс для регистрации аппаратурных спектров γ-квантов, блок программного комплекса преобразования весовых вкладов (весовых коэффициентов) поэлементных калибровочных характеристик в значения концентраций поэлементного состава, интерфейс преобразования измерительной информации в значения поэлементной концентрации в режиме on-line, отличающегося тем, что в устройство, реализующее способ элементного и химического анализа сред, установлен γ-спектрометр, использующий метод неперегружающегося линейного детектирования с модифицированным методом дискриминации временных интервалов или, точнее, с методом двойной дискриминации временных интервалов, позволяющий уменьшить на несколько десятичных порядков время измерительной процедуры по идентификации элементного и химического состава сред, установлен программный блок преобразования измерительной информации в энергетические спектры нейтронов, адаптированный для вычисления концентраций химических соединений и элементов сред на основе измерительной информации и использования модифицированных идентифицирующих калибровочных характеристик (откликов спектрометра), позволяющих оценивать концентрации элементов и химических соединений в конденсированных и газовых средах до 10-3÷10-4% с погрешностью менее 10%, устройство выполняется в стационарном и мобильном (портативном) вариантах.

Осуществление способа и работа установки поясняются следующими фигурами.

Фиг.1. Блок-схема стационарного варианта идентифицирующей установки конвейерного типа.

1 - импульсный источник нейтронов; 2 - блок замедления нейтронов; 3 - детекторы излучения (γ-спектрометр); 4 - Pentium I с программным блоком для обработки экспериментальных данных в режиме on-line; 5 - измерительно-регистрирующий комплекс; 6 - брикет ТБПО; 7 - конвейер.

Фиг.2. Временная зависимость энергии мгновенных γ-квантов радиационного захвата, поглощенной в детекторе, размещенном в нейтронном спектрометре по времени замедления.

▲ - H, v - C, --- - N, -··- - О, ···· - S, Δ - Cl, □ - Fe, ― - Ni, -·- - Gd, + - 8U.

Фиг.3. Аппаратурные спектры γ-квантов.

1 - ▲▲▲ - смесь радионуклидов (эксперимент); 2 - °°° - фон; 3 - +++ - 133Ba; 4 - *** - 152Eu; 5 - ♦♦♦ - 137Cs; 6 - ▲▲▲ 60Co.

Фиг.4. Распределение временных интервалов N(T).

Δ - расчет, <n>=1549 с-1; ° - эксперимент, <n>=1549 с-1, детектор - NaI(Tl), излучение - γ-кванты; • - эксперимент, <n>=1549 с-1, детектор - NaI(Tl), излучение - γ-кванты, уровень дискриминации временных интервалов Тд=150 мкс.

Фиг.5. Детектор, функционирующий в режиме линейного детектирования.

9 - n, γ; 10 - сцинтиллирующий монокристалл; 11 - ФЭУ; 12 - выход фотоумножителя, Rвых>1000 МОм; 13 - накопительный конденсатор, Сн; 14 - предварительный усилитель, Rвх~1000 МОм.

Фиг.6. Исходный аппаратурный спектр φ(V) смешанного потока γ-квантов от радионуклидов 137Cs и 60Co. Эксперимент. Детектор: монокристалл - NaI(Tl).

Фиг.7. Сверточный аппаратурный спектр γ-квантов Ф(V) для <n>=0,01. Исходный аппаратурный спектр γ-квантов представлен на фиг.6.

Фиг.8. Аппаратурные спектры γ-квантов. Радионуклиды: 94Nb; 137Cs; 60Co. Детектор: монокристалл NaI(Tl) высотой h=18 см и диаметром d=20 см. С использованием дискриминации временных интервалов. ° - 94Nb; × - 137Cs+60Со.

Фиг.9. Аппаратурный спектр γ-квантов. Радионуклид 94Nb. Детектор: монокристалл NaI(Tl) высотой h=18 см и диаметром d=20 см. Загрузка - 540 кГц. Без дискриминации временных интервалов.

Фиг.10. Распределение временных интервалов N(T), <N>=10 МГц.

1 - Т1; 2 - Т2Д; .

Фиг.11. Блок-схема спектрометрической установки.

9 - γ-кванты; 10 - NaI(Tl) - сцинтиллирующий монокристалл; 11 - электронный фотоумножитель, оптически сочлененный с монокристаллом NaI(Tl); 12 - динод; 16 - электронный блок (зарядово-энергетический); 19 - блок с управляемым линейным пропускателем или линейными воротами; 22 - Г5-78 - генератор прямоугольных импульсов; 25 - усилитель и формирователь импульсов, выходящих с линейного пропускателя; 26 - одноплатный анализатор SBS-60; 4 - Pentium I, в слот которого вставлен одноплатный анализатор импульсов SBS-60; Примечание: 15, 17, 18, 20, 21, 23, 24 - коаксиальные разъемы, через которые осуществляется коммутация с различными электронными блоками спектрометрического комплекса.

Фиг.12. Блок-схема зарядового блока.

27 - таймер ИМС1; 28 - лицевая панель электронного блока; 11 - ФЭУ; 12 - выход динода фотоумножителя ФЭУ (11); 15, 17, 18, 20, 23 - разъем лицевой панели; 16 - электронный блок (зарядово-энергетический); 19 - линейный пропускатель или линейные ворота; 22 - генератор Г5-78; 29 - повторитель УДП15; 30 - вход ("ножка" 2) таймера ИМС1 (1); 31 - повторитель УДП18; 32 - конденсатор С; 33 - вход ("ножка" 4) таймера ИМС1 (27); 34 - таймер ИМС5; 35 - повторитель УДП42; 36 - формирователь ИМС7; 37 - повторитель УДП43; 38 - повторитель УДП28; 39 - повторитель УДП29; 40 - вход ("ножка" 2) таймера ИМС5 (34); 41 - накопительный конденсатор С2, формирующий выходные импульсы таймера ИМС 2 (61) длительностью Т=Т1, аналогичный накопительному конденсатору С1 (42); 42 - накопительный конденсатор С1, участвующий в формировании импульсов на выходе таймера ИМС5 (34) длительностью Т=Т0; 43 - вывод ("ножка" 6) таймера (ИМС5) (34); 44 - вывод ("ножка" 7) таймера (ИМС5) (34); 45 - вывод ("ножка" 3) таймера (ИМС5) (34); 46 - повторитель УДП25; 47 - формирователь ИМС6; 48 - повторитель УДП27; 49 - переключатель П; 50 - повторитель УДП20; 51 - вывод ("ножка" 7) таймера ИМС1 (27); 52 - вывод ("ножка" 3) таймера ИМС1 (27); 53 - повторитель УДП9; 54 -повторитель УДП10; 55 - повторитель УДП11; 56 - повторитель УДП2"; 57, 58 - разъемы лицевой панели; 59 - повторитель УДП14; 60 - повторитель УДП16; 61 - таймер ИМС2; 62 - выход ("ножка" 3) таймера ИМС2 (61); 63 - повторитель УДП2; 64 - повторитель УДП3; 65 - формирователь ИМС3; 66 - выход (вывод) ("ножка" 1) формирователя ИМС3 (65); 67 - вывод (выход) ("ножка" 6) формирователя ИМС3 (65); 68 - усилитель УД1; 69 - повторитель УДП5; 70 - усилитель УД2; 71 - повторитель УДП6.

Фиг.13. Группирование событий внутри интервала ΔT=Т21=70 нс.

Остановимся более подробно на способе и установках прототипа в связи с тем, что прототип включает основы особенностей использования принципа регуляризации А.Н.Тихонова при проведении как элементного, так и химического анализов состава сред. Установки разработаны двух модификаций:

- стационарный вариант;

- "портативный" мобильный вариант.

Стационарный вариант установки, имеющей габариты, примерно, 2×2×1,8 м, может в форсированном режиме в условиях конвейерного потока идентифицируемого материала обеспечить производительность до 1000 т/сутки. При контроле брикета весом 10÷20 кг обеспечивается идентификация элементов при их концентрации (по весу) 0,5÷1% от состава всей смеси брикета.

Радиационный фон при работающей установке на расстоянии 5÷10 м от установки не превышает предельно допустимых норм, принятых для населения при круглосуточном облучении в течение года. На неработающей установке радиационный фон отсутствует, т.к. в выключенном состоянии нейтронный генератор не испускает нейтроны.

Установка монтируется из унифицированных модулей в течение 2,5÷3 часов. За такое же время разбирается. Может быть легко транспортируема и установлена, практически, в любом месте, где можно обеспечить соответствующую радиационную безопасность.

Установка позволяет идентифицировать элементный состав материалов сред при наличии собственного (в материале сред) фона γ-квантов. Стоимость (оценочная) установки - не более 150 тыс. USD.

Аналогом стационарному варианту являются устройства, используемые компанией Rapiscan Systems (www.rapiscansystems.com [4]). Преимуществом установки, разработанной в [2, 3], является лучшая (в сравнении с установками, разработанными Rapiscan Systems) идентифицирующая разрешающая (в 10÷20 раз) способность при в 2÷3 раза меньшем весе и стоимости самой установки. При этом оценочная скорость сканирования крупногабаритных закладок (контейнеров) в 2÷3 раза выше.

Рассмотренный в прототипе способ основан на регистрации и идентификации спектрального состава и выхода мгновенных γ-квантов, рождающихся при захвате нейтронов ядрами элементов. Импульсный нейтронный генератор с энергией нейтронов Ен=14 МэВ и длительностью импульсов нейтронов τи=10-6 с размещают в тяжелом слабопоглощающем замедлителе, который является пространственной средой, формирующей к определенному моменту времени потоки нейтронов с различающимися строго фиксированными средними энергиями [5]. Контролируемый материал транспортируют вблизи среды, замедляющей нейтроны. Скорость радиационного захвата замедляющихся нейтронов регистрируют по выходу мгновенных γ-квантов, образующихся при радиационном захвате нейтронов материалом среды. Скорости радиационного захвата нейтронов от времени замедления, а следовательно, и от энергии нейтронов f[Фγ(Eн(t))], где t - время замедления нейтронов, определяемые через регистрацию потока эмиссии мгновенных γ-квантов, существенно различаются для разных элементов. Рассмотрим функциональные зависимости f[Фγ(Eн(t))] в качестве функций чувствительности замедляющего блока к выходу γ-квантов в зависимости от атомного веса элементов А. Тогда

где K(t,A)=f(Фγ(t),A) - ядро интегрального уравнения (1).

Определим замедляющий блок, вкупе с транспортной системой подачи материалов и системой регистрации мгновенных γ-квантов, как идентифицирующую установку. Тогда ядро K(t,A) уравнения (1) является аппаратурной функцией отклика идентифицирующей установки и полностью идентифицируется функцией чувствительности f(Фγ(t)). Решая уравнение (1), можно по аппаратурному временному поведению выхода γ-квантов из ядер материалов u(t) оценить исходные концентрации элементов φ(A), находящихся в смеси материалов.

Решение интегрального уравнения (1) (уравнения Фредгольма 1-го рода) выполняют в соответствии с теорией регуляризации, разработанной А.Н.Тихоновым [6] для решения существенно некорректных задач типа уравнения Фредгольма 1-го рода. Решение уравнения (1) получают путем минимизации сглаживающего функционала:

где α - параметр регуляризации; - производная 1-го порядка искомого спектра концентраций элементов φ(А); - производная 1-го порядка априорного спектра концентрации φ0(А); c1 - заранее выбранные весовые коэффициенты; p(t) и q1(A) - заданные весовые коэффициенты.

Реальный набор параметров, входящих в уравнение (1), имеет дискретный характер. Поэтому уравнение (1) записывают в матричной форме и решают систему уравнений:

Применительно к операторному уравнению (3) сглаживающий функционал (2) запишется в виде:

где |P| и |Ql| - весовые матрицы, |Rl| - оператор дифференцирования 1-го порядка.

Рассмотренный подход для расшифровки измерительной информации широко используется в нейтронной спектрометрии для спектрометрических систем неклассического типа. Характерным примером спектрометрических систем неклассического типа является мультисферный спектрометр [7], [8]. В мультисферном спектрометре имеется набор сфер из материала, эффективно замедляющего нейтроны, например из полиэтилена. Сферы - разного диаметра. Функцией чувствительности или откликом в мультисферном спектрометре является функция счета нейтронного детектора, размещенного внутри замедляющей сферы, в зависимости от энергии нейтронов, падающих на сферу. Для замедляющих сфер, имеющих разные диаметры, счетные функциональные зависимости будут разные. Применительно к мультисферному спектрометру уравнение (1) запишется в виде:

где φ(E) - спектр нейтронов, падающих на замедляющую сферу; E - энергия нейтронов.

Спектр нейтронов φ(E) является аналогом спектра концентраций φ(A) в уравнении (1). Каждая сфера мультисферного спектрометра, отличающаяся от других своими замедляющими и рассеивающими свойствами, аналогична хроносрезу при определенном значении времени t с конечным временным интервалом Δt в задаче об элементном составе материалов. Однако в отличие от мультисферного спектрометра, в котором реальное число сфер ограничено (как правило, не >10 сфер), в задаче об элементном составе число хроносрезов, практически, не ограничено и верхняя граница их числа определяется достижимым рангом обратной матрицы |U|-1 при решении системы уравнений (3) и соблюдением критериев принципа регуляризации решений некорректных задач. Для практических целей это означает, что одновременный анализ сред, состоящих из 50-100 элементов, не является непосильной задачей при определении элементного состава материалов. Рассмотренный на примере мультисферного спектрометра нейтронов метод расшифровки измерительной информации апробирован в течение ряда десятилетий и характеризуется стабильной надежностью получаемых выходных экспериментальных результатов. Поэтому данный метод принят за основу для формирования алгоритма по определению элементного и химического состава идентифицируемых материалов, адаптированного в соответствии с соотношениями (1)÷(5).

По результатам исследований, приведенных в работах [2, 3], с использованием функциональных зависимостей f(Фγ(t))≡K(t,A), полученных расчетами по методу Монте-Карло [9, Фиг.2], на основе метода регуляризации разработан алгоритм и программный комплекс для вычисления концентраций химических элементов. Выполнено апробирование алгоритма и программного комплекса по расшифровке состава смеси среды, приготовленной из заранее заданных концентраций известных элементов, на примере установки, приведенной на Фиг.1. Из импульсного источника 1 нейтроны попадают в тяжелый замедлитель 2. Поток нейтронов, выходящий из замедлителя 2, падает на брикет 6 (ТБПО), расположенный на конвейерной ленте 7. В результате взаимодействия нейтронов с ядрами материальной среды брикета 6 рождаются γ-кванты радиационного захвата, которые регистрируются детекторами спектрометра γ-квантов 3. Измерительная информация поступает в программный блок 4 измерительно-регистрирующего комплекса 5, на выходе которого в режиме on-line формируется выходная информация об элементном и химическом составе брикета 6.

Функции чувствительности рассчитывались методом Монте-Карло [9] в геометрии, моделирующей реальную установку и реальные физические процессы, сопровождающие взаимодействие мгновенных γ-квантов радиационного захвата со средой детектора. Детектором является сцинтилляционный детектор, выполненный в виде пластины на основе сцинтиллирующего монокристалла Bi3GeO12. Размеры сцинтиллятора: 20×40×40 см. Параметр Фγ(t), отражающий особенности поведения функций чувствительности K(t,A), характеризует полную поглощенную энергию Eγ мгновенных γ-квантов радиационного захвата при их взаимодействии со сцинтиллятором в зависимости от времени замедления нейтронов в свинцовом замедлителе.

Идентифицируемый образец представляет собою брикет в виде куба со стороною h=40 см. Брикет располагается над горизонтальной плоскостью тяжелого замедлителя. Расстояние между плоскостью нижней грани образца и плоскостью замедлителя - 40 см. Плоскость замедлителя, практически, выполняет роль плоского источника нейтронов диаметром около 100 см. Уменьшение потока нейтронов плоского источника на расстоянии 100 см от плоскости замедлителя составляет не более 2-3 раз. Такие характеристики нейтронного потока над плоскостью тяжелого замедлителя обеспечены специальной конфигурацией каналов и пустот внутри объема тяжелого замедлителя. Рабочий диапазон временных интервалов, внутри которых осуществляется «измерительная» расчетная процедура, составляет от 10 до 1000 мкс, иногда до 2000÷3000 мкс. Этот диапазон рабочих временных интервалов охватывает диапазон энергий нейтронов от, примерно, 1÷10 эВ до 100 кэВ. Энергетическое разрешение на любом хроносрезе внутри указанного энергетического (и временного) интервала, как правило, не хуже 50÷70%.

Функции чувствительности f(Фγ(t))≡K(t,A) рассчитаны методом Монте-Карло с использованием программного комплекса MCNP [8] для элементов: Cl, Fe, Gd, Н, N, О, S. Размеры брикета - 40×40×40 см. Из перечисленных выше элементов приготовлена гомогенная смесь, имеющая плотности: ρ1=0,1 г·см-3; ρ2=0,2 г·см-3; ρ3=0,4 г·см-3. Выполнен расчет функции (см. (1)) φ(A)=Σibi·f(Eγ, t, Ai), характеризующей выход мгновенных γ-квантов смеси с наперед заданным спектром концентраций элементов, определяемым «весовыми» коэффициентами bi. В таблице 1 приведены результаты расшифровочной процедуры, описанной выше.

Таблица 1*)
№ п/п Элементный состав смеси Концентрация элементов в смеси (отн. ед.), (входная информация) Концентрация элементов в смеси (отн. ед.), (выходная информация - расшифровка) Относительная погрешность результатов выходной информации, %
плотность смеси ρ=0,1 г·см-3; геометрия смеси - куб со стороной l=40 см; смесь - гомогенная
1 H 0,05 0,0515 18,1
2 C 0,15 0,1517 16,7
3 N 0,10 0,0996 14,6
4 O 0,20 0,1968 12,0
5 S 0,10 0,0971 8,95
6 Fe 0,20 0,1884 6,2
7 Cl 0,20 0,1804 5,1
плотность смеси ρ=0,2 г·см-3; геометрия смеси - куб со стороной l=40 см; смесь - гомогенная
1 H 0,05 0,0491 10,3
2 C 0,15 0,1465 9,58
3 N 0,10 0,0975 8,58
4 O 0,20 0,1950 7,38
5 S 0,10 0,0975 6,1
6 Fe 0,20 0,1945 5,1
7 Cl 0,20 0,1925 4,8
плотность смеси ρ=0,4 г·см-3; геометрия смеси - куб со стороной l=40 см; смесь - гомогенная
1 H 0,05 0,0514 29,5
2 C 0,15 0,1506 27,16
3 N 0,10 0,0999 23,4
4 O 0,20 0,2002 18,75
5 S 0,10 0,1010 13,2
6 Fe 0,20 0,1990 8,26
7 Cl 0,20 0,1910 5,77
*) Данные, приведенные в таблице 1, получены с использованием мониторинга ослабления потока нейтронов по толщине идентифицируемых образцов.

В вышеописанном варианте расшифровки измерительной информации в качестве исходных данных используются функции чувствительности, имеющие интегральный характер. В каждом временном интервале диапазона замедления нейтронов определяется интегральная характеристика: полная поглощенная энергия, выделяемая в среде при ее взаимодействии с мгновенными γ-квантами радиационного захвата. Данный подход при определении функций чувствительности обеспечивает высокую статистическую точность при длительности экспозиции измерительной процедуры в пределах 1÷3 с. Однако сравнительно плавный характер поведения функций чувствительности и их, в связи с этим, «мягкое» различие между собой приводит к заметным систематическим погрешностям. Поэтому погрешности выходных результатов расшифровки, как правило, составляют, в среднем, 5-10%.

Для существенного уменьшения систематических погрешностей при использовании изложенного метода расшифровки элементного состава разработан и экспериментально апробирован мобильный (или "портативный") вариант идентифицирующей установки. Информационной основой мобильного варианта являются аппаратурные спектры электронов отдачи, формирующиеся в сцинтилляторе-детекторе при взаимодействии среды сцинтиллятора с мгновенными γ-квантами, возникающими при радиационном захвате нейтронов идентифицирующей средой.

В мобильном варианте тяжелый замедлитель не используется. Используется модератор, максимальный вес которого составляет не более 10 кг. При использовании импульсного генератора нейтронов с энергией нейтронов Ен=14 МэВ время замедления нейтронов в таком модераторе составляет не более 3÷5 мкс.

Аппаратурные спектры или амплитудные распределения электронов отдачи на выходе сцинтилляторов N(Eγ,Ee-,V)≡N(V) характеризуются более выраженными нерегулярностями, что обеспечивает существенно более высокую обусловленность соответствующих матриц при решении уравнений типа (1), (2). Поэтому в мобильном варианте идентифицирующей установки в качестве откликов или функций чувствительности используются амплитудные аппаратурные распределения N(V). Более полно: N(V)≡N(Eγ,Ee-,V,A), где Eγ - энергия мгновенных γ-квантов радиационного захвата, V - амплитудные распределения электронов отдачи, имеющих энергию Ee-, A≡Ai - i-й элемент - источник рождения мгновенных γ-квантов радиационного захвата.

В режиме мобильного варианта выполнены эксперименты на лабораторной установке, имитирующей мобильный вариант идентифицирующей установки. В созданной экспериментальной установке отсутствовал нейтронный генератор. В качестве источников γ-квантов радиационного захвата фигурировали имитаторы. Источниками-имитаторами мгновенных γ-квантов радиационного захвата выбраны радионуклиды, входящие в состав набора ОСГИ (образцовые спектрометрические γ-источники). Для экспериментальных исследований выбраны γ-источники: 137Cs; 60Co; 152Eu; 133Ba. Пятым источником является помещение, активность которого составляет от 10% до 50% от активности источников набора ОСГИ. Аббревиатура пятого источника - фон (fon). На Фиг.3 иллюстрируются аппаратурные спектры γ-квантов радионуклидов: смесь радионуклидов - 1; фон - 2; 133Ba - 3; 152Eu - 4; 137Cs - 5; 60Co - 6.

Аппаратурные спектры (Фиг.3) измерены с помощью монокристалла NaI(Tl), имеющего размеры: высоту h=18 см; диаметр d=20 см. Источники размещаются на установочной линейке и осуществляется регистрация аппаратурного спектра от смешанного потока γ-квантов всего ансамбля перечисленных источников.

В одном из вариантов геометрии эксперимента доля интенсивности каждого источника в смешанном потоке γ-квантов, падающих на сцинтиллятор от радионуклидов 137Cs; 60Co; 152En; 133Ba; фон: 0,160; 0,157; 0,466; 0,139; 0,078 соответственно. Результаты расшифровки измерительной информации, фигурирующей в виде аппаратурного спектра γ-квантов смеси, выполн