Многорежимный терминал, сканирующий запрос для выравнивания интервала сканирования wimax с окном поискового вызова cdma
Иллюстрации
Показать всеИзобретение относится к беспроводной связи и, в частности, к осуществлению связи с мобильными устройствами, которые поддерживают несколько технологий радиодоступа (RAT). Техническим результатом является улучшение эффективности переключение между двумя сетями связи и увеличение пропускной способности в любой услуге. Технический результат достигается тем, что предоставляют способ сканирования на предмет сообщений системы поискового вызова в сети со второй RAT, например, сети коллективного доступа с кодовым разделением каналов (CDMA), при подключении к сети с первой RAT, например, сети WiMAX. Для некоторых вариантов осуществления расширенное сообщение с запросом сканирования может облегчить установление цикла сканирования в первой RAT, который совпадает с циклом поискового вызова второй RAT. 4 н. и 24 з.п. ф-лы, 13 ил.
Реферат
ПРИОРИТЕТНАЯ ЗАЯВКА
Данная заявка притязает на преимущество приоритета по предварительной патентной заявке США с порядковым № 61/052264, поданной 11 мая 2008 г. и озаглавленной "Systems and Methods for Multimode Wireless Communication", которая полностью включается в этот документ путем ссылки для всех целей.
ОБЛАСТЬ ТЕХНИКИ
Некоторые варианты осуществления настоящего раскрытия изобретения в целом относятся к беспроводной связи, а конкретнее, к осуществлению связи с мобильными устройствами, которые поддерживают несколько технологий радиодоступа.
УРОВЕНЬ ТЕХНИКИ
Системы беспроводной связи OFDM и OFDMA по стандарту IEEE 802.16 используют сеть базовых станций для осуществления связи с беспроводными устройствами (то есть мобильными станциями), подписанными на услуги в этих системах, на основе ортогональности частот нескольких поднесущих и могут быть реализованы для достижения некоторого количества технических преимуществ для широкополосной беспроводной связи, например, стойкости к многолучевому замиранию и помехам. Каждая базовая станция (BS) излучает и принимает радиочастотные (RF) сигналы, которые переносят данные к мобильным станциям (MS) и от них.
Чтобы расширить услуги, доступные абонентам, некоторые MS поддерживают связь с помощью нескольких технологий радиодоступа (RAT). Например, многорежимная MS может поддерживать WiMAX для услуг широкополосной передачи данных и коллективный доступ с кодовым разделением каналов (CDMA) для голосовых услуг.
К сожалению, в традиционных системах неэффективное переключение между двумя сетями может вызвать уменьшение пропускной способности в любой услуге.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Некоторые варианты осуществления настоящего раскрытия изобретения предоставляют способ сканирования на предмет сообщений системы поискового вызова в сети со второй технологией радиодоступа (RAT), например сети CDMA, при подключении к сети с первой RAT, например сети WiMAX. Для некоторых вариантов осуществления расширенный запрос сканирования может облегчить установление цикла сканирования в первой RAT, который совпадает с циклом поискового вызова у второй RAT.
Некоторые варианты осуществления настоящего раскрытия изобретения в целом предоставляют способ осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT). Способ в целом включает в себя вычисление номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, отправку запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и переключение на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
Некоторые варианты осуществления настоящего раскрытия изобретения в целом предоставляют устройство для осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT). Устройство в целом включает в себя логику для вычисления номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, логику для отправки запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и логику для переключения на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
Некоторые варианты осуществления настоящего раскрытия изобретения в целом предоставляют устройство для осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT). Устройство в целом включает в себя средство для вычисления номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, средство для отправки запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и средство для переключения на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
Некоторые варианты осуществления настоящего раскрытия изобретения предоставляют компьютерный программный продукт для осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT), содержащий машиночитаемый носитель информации, имеющий сохраненные на нем команды, исполняемые одним или несколькими процессорами. Команды в целом включают в себя команды для вычисления номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, команды для отправки запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и команды для переключения на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Чтобы можно было обстоятельно понять способ, которым описываются вышеперечисленные признаки настоящего раскрытия изобретения, более конкретное описание, кратко обобщенное выше, может быть получено путем отсылки на варианты осуществления, некоторые из которых иллюстрируются на прилагаемых чертежах. Однако нужно отметить, что прилагаемые чертежи иллюстрируют только некоторые типичные варианты осуществления этого раскрытия изобретения и поэтому не должны считаться ограничивающими его объем, и для описания могут признавать другие, в равной степени эффективные варианты осуществления.
Фиг.1 иллюстрирует примерную систему беспроводной связи в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Фиг.2 иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Фиг.3 иллюстрирует примерный передатчик и примерный приемник, которые могут использоваться в системе беспроводной связи, которая использует технологию мультиплексирования с ортогональным частотным разделением каналов и коллективного доступа с ортогональным частотным разделением каналов (OFDM/OFDMA), в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Фиг.4 иллюстрирует сеть WiMAX, наложенную на сеть коллективного доступа с кодовым разделением каналов (CDMA) 1х, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.5 иллюстрирует примерные операции, выполняемые мобильной станцией при переключении с сети WiMAX на сеть CDMA 1x, чтобы прослушивать поисковые запросы в течение интервалов сканирования WiMAX, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.5А - блок-схема средств, соответствующих примерным операциям фиг.5 для переключения с сети WiMAX на сеть CDMA 1x в течение интервала сканирования WiMAX, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.6 иллюстрирует пример временного сдвига между началом кадра в передаче WiMAX и началом кадра в передаче CDMA 1x.
Фиг.7 иллюстрирует выравнивание интервалов сканирования WiMAX с окнами поискового вызова CDMA 1x на основе параметров, определенных из измерения временного сдвига, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.8 иллюстрирует примерные обмены между многорежимной мобильной станцией и базовой станцией WiMAX и CDMA в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.9 иллюстрирует примеры полей измененного мобильного запроса сканирования в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.10 иллюстрирует выравнивание интервалов сканирования WiMAX с окнами поискового вызова CDMA 1x на основе параметров WiMAX, сообщенных в измененном мобильном запросе сканирования, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.11 иллюстрирует примерные операции, выполняемые мобильной станцией при переключении с сети WiMAX на сеть CDMA 1x, используя измененный мобильный запрос сканирования, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Фиг.11А - блок-схема средств, соответствующих примерным операциям фиг.11 для переключения с сети WiMAX на сеть CDMA 1x, используя измененный мобильный запрос сканирования, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
Варианты осуществления настоящего раскрытия изобретения могут позволить многорежимному мобильному устройству, поддерживающему технологии радиодоступа (RAT) WiMAX и CDMA 1x, переключаться между сетью WiMAX и сетью CDMA, чтобы наблюдать за каналом передачи поисковых вызовов CDMA в течение интервала сканирования WiMAX. В частности, варианты осуществления могут предоставить способ и устройство, позволяющие многорежимной MS определить набор параметров измененного мобильного запроса сканирования WiMAX (MOB_SCN-REQ) и отправить измененный MOB_SCN-REQ, уведомляющий обслуживающую BS WiMAX об обязательном характере параметров запроса в попытке обеспечить, чтобы интервал сканирования WiMAX совпадал с окном прослушивания поискового запроса CDMA.
Типовая система беспроводной связи
Способы и устройство в настоящем раскрытии изобретения могут использоваться в системе широкополосной беспроводной связи. При использовании в данном документе термин "широкополосная беспроводная" обычно относится к технологии, которая может предоставить любое сочетание беспроводных услуг, например речь, Интернет и/или доступ к сети передачи данных в заданной области.
WiMAX, которая означает Общемировую совместимость для микроволнового доступа, является основанной на стандартах широкополосной беспроводной технологии, которая предоставляет широкополосные соединения с высокой пропускной способностью на больших расстояниях. На сегодняшний день существует два основных применения WiMAX: стационарная WiMAX и мобильная WiMAX. Применениями стационарной WiMAX являются, например, многоточечные соединения, предоставляющие широкополосный доступ домам и компаниям. Мобильная WiMAX предлагает полную мобильность сотовых сетей на широкополосных скоростях.
Мобильная WiMAX основывается на технологии OFDM (мультиплексирование с ортогональным частотным разделением каналов) и OFDMA (коллективный доступ с ортогональным частотным разделением каналов). OFDM является методикой цифровой модуляции с несколькими несущими, которая в последнее время получила широкое использование в ряде высокоскоростных систем связи. С помощью OFDM передаваемый поток двоичных сигналов разделяется на несколько подпотоков с меньшей скоростью. Каждый подпоток модулируется с одной из нескольких ортогональных поднесущих и отправляется по одному из множества параллельных подканалов. OFDMA является методикой коллективного доступа, в которой пользователям выделяются поднесущие в разных временных интервалах. OFDMA является гибкой методикой коллективного доступа, которая может обслуживать многих пользователей с сильно меняющимися приложениями, скоростями передачи данных и требованиями к качеству обслуживания.
Быстрый рост беспроводных объединенных сетей и связи привел к увеличивающейся потребности в высокой скорости передачи данных в области услуг беспроводной связи. Системы OFDM/OFDMA на сегодняшний день рассматриваются в качестве одной из наиболее многообещающих областей исследований и в качестве ключевой технологии для следующего поколения беспроводной связи. Это обусловлено тем, что схемы модуляции OFDM/OFDMA могут обеспечить много преимуществ, например эффективность модуляции, спектральную эффективность, гибкость и сильную устойчивость к многолучевому распространению по сравнению с традиционными схемами модуляции на одной несущей.
IEEE 802.16x является развивающейся организацией по стандартам для определения радиоинтерфейса для стационарных и мобильных систем беспроводного широкополосного доступа (BWA). Эти стандарты задают по меньшей мере четыре разных физических уровня (PHY) и один уровень управления доступом к среде передачи (MAC). Физический уровень OFDM и OFDMA в четырех физических уровнях является самым популярным в стационарных и мобильных областях BWA соответственно.
Фиг.1 иллюстрирует пример системы 100 беспроводной связи, в которой могут применяться варианты осуществления настоящего раскрытия изобретения. Система 100 беспроводной связи может быть системой широкополосной беспроводной связи. Система 100 беспроводной связи может обеспечивать связь для некоторого количества сот 102, каждая из которых обслуживается базовой станцией 104. Базовая станция 104 может быть стационарной станцией, которая осуществляет связь с пользовательскими терминалами 106. Базовая станция 104 в качестве альтернативы может называться точкой доступа, Узлом Б или некоторой другой терминологией.
Фиг.1 изображает различные пользовательские терминалы 106, рассредоточенные по всей системе 100. Пользовательские терминалы 106 могут быть стационарными (то есть неподвижными) или мобильными. Пользовательские терминалы 106 в качестве альтернативы могут называться удаленными станциями, терминалами доступа, терминалами, абонентскими модулями, мобильными станциями, станциями, пользовательским оборудованием и т.д. Пользовательские терминалы 106 могут быть беспроводными устройствами, например сотовыми телефонами, персональными цифровыми помощниками (PDA), карманными устройствами, беспроводными модемами, переносными компьютерами, персональными компьютерами и т.д.
Ряд алгоритмов и способов может использоваться для передач в системе 100 беспроводной связи между базовыми станциями 104 и пользовательскими терминалами 106. Например, сигналы могут отправляться и приниматься между базовыми станциями 104 и пользовательскими терминалами 106 в соответствии с методиками OFDM/OFDMA. В этом случае система 100 беспроводной связи может называться системой OFDM/OFDMA.
Линия связи, которая обеспечивает передачу от базовой станции 104 к пользовательскому терминалу 106, может называться нисходящей линией 108 связи, а линия связи, которая облегчает передачу от пользовательского терминала 106 к базовой станции 104, может называться восходящей линией 110 связи. В качестве альтернативы нисходящая линия 108 связи может называться прямой линией связи или прямым каналом, а восходящая линия 110 связи может называться обратной линией связи или обратным каналом.
Сота 102 может разделяться на несколько секторов 112. Сектор 112 является физической зоной обслуживания в соте 102. Базовые станции 104 в системе 100 беспроводной связи могут использовать антенны, которые собирают поток энергии в конкретном секторе 112 в соте 102. Такие антенны могут называться направленными антеннами.
Фиг.2 иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве 202, которое может применяться в системе 100 беспроводной связи. Беспроводное устройство 202 является примером устройства, которое может конфигурироваться для реализации различных способов, описанных в этом документе. Беспроводное устройство 202 может быть базовой станцией 104 или пользовательским терминалом 106.
Беспроводное устройство 202 может включать в себя процессор 204, который управляет работой беспроводного устройства 202. Процессор 204 также может называться центральным процессором (CPU). Запоминающее устройство 206, которое может включать в себя как постоянное запоминающее устройство (ROM), так и оперативное запоминающее устройство (RAM), предоставляет команды и данные процессору 204. Часть запоминающего устройства 206 также может включать в себя энергонезависимое оперативное запоминающее устройство (NVRAM). Процессор 204, как правило, выполняет логические и арифметические операции на основе программных команд, сохраненных в запоминающем устройстве 206. Команды в запоминающем устройстве 206 могут быть исполняемыми, чтобы реализовать описанные в этом документе способы.
Беспроводное устройство 202 также может включать в себя корпус 208, который может включать в себя передатчик 210 и приемник 212, чтобы сделать возможной передачу и прием данных между беспроводным устройством 202 и удаленным пунктом. Передатчик 210 и приемник 212 могут быть объединены в приемопередатчик 214. Антенна 216 может прикрепляться к корпусу 208 и электрически соединяться с приемопередатчиком 214. Беспроводное устройство 202 также может включать в себя (не показано) несколько передатчиков, несколько приемников, несколько приемопередатчиков и/или несколько антенн.
Беспроводное устройство 202 также может включать в себя детектор 218 сигналов, который может использоваться с целью обнаружения и измерения уровня сигналов, принятых приемопередатчиком 214. Детектор 218 сигналов может обнаруживать такие сигналы, как общая энергия, отношение энергии контрольного сигнала к псевдошумовым (PN) элементарным сигналам, спектральная плотность мощности и другие сигналы. Беспроводное устройство 202 также может включать в себя цифровой процессор 220 сигналов (DSP) для использования в обработке сигналов.
Различные компоненты беспроводного устройства 202 могут соединяться вместе с помощью магистральной системы 222, которая может включать в себя шину питания, шину управляющего сигнала и шину сигнала состояния в дополнение к шине данных.
Фиг.3 иллюстрирует пример передатчика 302, который может использоваться в системе 100 беспроводной связи, которая использует OFDM/OFDMA. Части передатчика 302 могут быть реализованы в передатчике 210 беспроводного устройства 202. Передатчик 302 может быть реализован в базовой станции 104 для передачи данных 306 пользовательскому терминалу 106 по нисходящей линии 108 связи. Передатчик 302 также может быть реализован в пользовательском терминале 106 для передачи данных 306 к базовой станции 104 по восходящей линии 110 связи.
Данные 306, которые нужно передать, показаны предоставляемыми в качестве входных данных в последовательно-параллельный (S/P) преобразователь 308. Последовательно-параллельный преобразователь 308 может разделять данные передачи на N параллельных потоков 310 данных.
N параллельных потоков 310 данных затем могут предоставляться в качестве входных данных в преобразователь 312. Преобразователь 312 может преобразовать N параллельных потоков 310 данных в N точек созвездия. Преобразование может выполняться с использованием некоторого созвездия модуляции, например двухпозиционной фазовой манипуляции (BPSK), квадратурной фазовой манипуляции (QPSK), восьмипозиционной фазовой манипуляции (8PSK), квадратурной амплитудной модуляции (QAM) и т.д. Таким образом, преобразователь 312 может выводить N параллельных потоков 316 символов, причем каждый поток 316 символов соответствует одной из N ортогональных поднесущих в обратном быстром преобразовании 320 Фурье (IFFT). Эти N параллельных потоков 316 символов представляются в частотной области и могут быть преобразованы в N параллельных потоков 318 выборок временной области с помощью компонента 320 IFFT.
Будет предоставлено короткое замечание касательно терминологии. N параллельных модуляций в частотной области идентичны N символам модуляции в частотной области, которые идентичны N преобразованиям и N-точечному IFFT в частотной области, которое идентично одному (полезному) символу OFDM во временной области, который идентичен N выборкам во временной области. Один символ OFDM во временной области, Ns, равен Ncp (количество защитных выборок на символ OFDM) + N (количество полезных выборок на символ OFDM).
N параллельных потоков 318 выборок временной области могут быть преобразованы в поток 322 символов OFDM/OFDMA с помощью параллельно-последовательного (P/S) преобразователя 324. Компонент 326 вставки защитного интервала может вставить защитный интервал между последовательными символами OFDM/OFDMA в потоке 322 символов OFDM/OFDMA. Результат компонента 326 вставки защитного интервала затем может быть преобразован с повышением частоты к нужной полосе частот передачи с помощью входного радиочастотного (RF) каскада 328. Затем антенна 330 может передать результирующий сигнал 332.
Фиг.3 также иллюстрирует пример приемника 304, который может использоваться в беспроводном устройстве 202, которое использует OFDM/OFDMA. Части приемника 304 могут быть реализованы в приемнике 212 беспроводного устройства 202. Приемник 304 может быть реализован в пользовательском терминале 106 для приема данных 306 от базовой станции 104 по нисходящей линии 108 связи. Приемник 304 также может быть реализован в базовой станции 104 для приема данных 306 от пользовательского терминала 106 по восходящей линии 110 связи.
Переданный сигнал 332 показан идущим по беспроводному каналу 334. Когда сигнал 332' принимается антенной 330', принятый сигнал 332' может быть понижающе преобразован к основополосному сигналу с помощью входного радиочастотного каскада 328'. Компонент 326' удаления защитного интервала может затем удалить защитный интервал, который вставлялся между символами OFDM/OFDMA с помощью компонента 326 вставки защитного интервала.
Результат компонента 326' удаления защитного интервала может предоставляться последовательно-параллельному преобразователю 324'. Последовательно-параллельный преобразователь 324' может разделить поток 322' символов OFDM/OFDMA на N параллельных потоков 318' символов временной области, каждый из которых соответствует одной из N ортогональных поднесущих. Компонент 320' быстрого преобразования Фурье (FFT) может преобразовать N параллельных потоков 318' символов временной области в частотную область и вывести N параллельных потоков 316' символов частотной области.
Обратный преобразователь 312' может выполнить обратное действие к операции преобразования символов, которая выполнялась преобразователем 312, посредством этого выводя N параллельных потоков 310' данных. Параллельно-последовательный преобразователь 308' может объединить N параллельных потоков 310' данных в один поток 306' данных. В идеале этот поток 306' данных соответствует данным 306, которые предоставлялись в качестве входных данных в передатчик 302. Отметим, что все элементы 308', 310', 312', 316', 320', 318' и 324' можно встретить в процессоре прямой передачи.
Типовая работа многорежимного терминала в сетях CDMA 1x с коммутацией каналов и наложением WiMAX
При развертывании беспроводных услуг разные технологии радиодоступа (RAT) могут объединяться для предоставления нескольких услуг. Например, фиг.4 иллюстрирует систему 400, в которой сеть 410 мобильной WiMAX может объединяться (или "накладываться") с сетью 420 коллективного доступа с кодовым разделением каналов (CDMA) 1x, чтобы предоставить услугу широкополосной передачи данных и речи. В системе абоненты могут использовать одну двухрежимную (CDMA и WiMAX) мобильную станцию 430 (MS) для настройки на сеть CDMA, чтобы использовать коммутируемую телефонную сеть 432 общего пользования (PSTN), и настройки на сеть WiMAX, чтобы использовать услугу широкополосной передачи данных при доступе к Интернету 434.
В традиционных системах неэффективное переключение между двумя сетями может вызвать уменьшение пропускной способности в любой услуге. Например, в традиционных системах двухрежимная MS 430, подключенная к сети WiMAX для широкополосных услуг, может периодически останавливать обмен потоком данных и сканировать соседние BS WiMAX для оценки доступного качества сигнала и, при необходимости, выполнять передачу обслуживания (HO) в соответствии со стандартом IEEE 802.16. Кроме того, двухрежимная MS 430 может быть вынуждена периодически переключаться на сеть CDMA для проверки сообщения поискового вызова CDMA и выполнения регистрации CDMA в BS 424 CDMA 1x. Частое переключение с услуги широкополосной передачи данных на сканирование BS WiMAX и контроль поискового вызова CDMA может нарушить существующую услугу широкополосной передачи данных и ухудшить восприятие пользователем.
Как проиллюстрировано на фиг.4, сеть 420 CDMA может накладываться на сеть 410 WiMAX. Услуга CDMA может предоставляться некоторой географической области с помощью множества аппаратных и программных компонентов. Эта географическая область может разделяться на зоны, называемые сотами 102, центрированными вокруг башни 440 обслуживания. В попытке увеличить пространственную эффективность одна башня обслуживания 440 может поддерживать несколько RAT. Например, башня обслуживания 440 может поддерживать как базовую станцию 414 (BS) WiMAX, так и BS 424 CDMA.
BS CDMA 424 может содержать оборудование для шифрования и дешифрования связи с контроллером 426 базовой станции (BSC), который может обеспечивать интеллектуальное управление для нескольких BS CDMA. BSC 426 может иметь десятки или даже сотни управляемых BS. BSC 426 может управлять выделением радиоканалов, принимать измерения от двухрежимных MS 430 или управлять передачами обслуживания от одной BS к другой BS. Дополнительно BSC 426 может действовать в качестве концентратора, где множество соединений с BS с низкой пропускной способностью становится сокращенным до меньшего количества соединений к центру 428 коммутации мобильной связи (MSC).
MSC 428 может служить в качестве основного узла оказания услуг для сети CDMA. Он может отвечать за обработку речевых вызовов и текстовых сообщений (SMS), а именно за установку и разъединение сквозных соединений, обработку мобильности и требований к передаче обслуживания во время вызова, слежение за зарядкой и контроль предоплаченного счета в реальном масштабе времени. Более того, MSC 428 может определять местоположение MS, которая вызывается, и может осуществлять связь с наземной линией связи, например Коммутируемой телефонной сетью общего пользования (PSTN).
Аналогично BSC 426, шлюз 416 сети доступа к услугам (ASN-GW) может управлять несколькими BS в сети 410 WiMAX. ASN-GW 416 может выделять каналы, принимать измерения от двухрежимных MS 430 и управлять передачами обслуживания от одной BS к другой BS. ASN-GW 416 может предоставить двухрежимной MS 430 доступ к Интернету 434 посредством сети 418 с возможностью подключения к услугам (CSN) поставщика услуг Интернета. CSN 418, в том числе может предоставлять Аутентификацию, Авторизацию и Учет (AAA), систему доменных имен (DNS), Протокол динамической конфигурации хоста (DHCP) и услуги межсетевого экрана для поставщика услуг Интернета.
Фиг.5 иллюстрирует примерные операции 500, которые могут выполняться, например, двухрежимной MS 430 для наблюдения за каналом передачи поисковых вызовов CDMA в течение интервалов сканирования WiMAX, в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения. Операции 500 могут выполняться, например, посредством MS в попытке позволить MS принимать речевой вызов, направленный через сеть CDMA 1x, при подключении к сети WiMAX.
Операции начинаются на этапе 502 с двухрежимной MS 430, измеряющей временной сдвиг между началом кадра WiMAX и началом кадра CDMA. Такой сдвиг показан на фиг.6 в виде T_offset 600 между началом произвольного кадра WiMAX с номером кадра N1 610 и началом соответствующего кадра CDMA с системным временем CDMA (номером кадра) N2 612. Чтобы измерить хронометраж кадров CDMA, MS 430 может потребовать интервал сканирования, в котором нужно переключаться с сети WiMAX на сеть CDMA. При измерении временного сдвига двухрежимная MS 430 также может определить номер кадра WiMAX и системное время CDMA в кадрах CDMA. Следует отметить, что кадр WiMAX (T_wm_frame) может иметь меньшую длительность, чем кадр CDMA. Например, традиционный кадр CDMA может иметь длительность в 20 миллисекунд, тогда как сопоставимый кадр WiMAX может составлять 5 миллисекунд.
На этапе 504 двухрежимная MS 430 может определить набор параметров WiMAX на основе ранее вычисленного временного сдвига. Определенные MS 430 параметры WiMAX могут включать в себя, но не ограничиваются, начальный кадр WiMAX, длительность интервала сканирования WiMAX (длительность сканирования) и длительность интервала перемежения.
В некоторых случаях (например, случаях, в которых MS наблюдает только за каналом передачи поисковых вызовов (PCH)) длительность сканирования (в единицах кадров WiMAX) может определяться, как описано уравнением (1):
(1),
где T_tune - время, которое требуется MS, чтобы настроиться с сети WiMAX на сеть CDMA, и где T_wm_frame может составлять 5 миллисекунд. Функция наименьшего целого определяет наименьшее целое число, которое больше либо равно ее аргументу (то есть Ceiling[x] вернет наименьшее целое число >=x). Однако в некоторых случаях (например, случаях, в которых MS наблюдает только за PCH и каналом быстрого поискового вызова (QPCH)) длительность сканирования (в единицах кадров WiMAX) может определяться, как описано уравнением (2).
(2)
Поскольку MS 430 должна слушать как канал передачи поисковых вызовов CDMA, так и канал быстрого поискового вызова CDMA, необходимое время прослушивания может быть больше, чем в ранее описанных вариантах осуществления.
Однако важно отметить, что текущие версии стандарта IEEE 802.16 ограничивают максимальную длительность интервала перемежения WiMAX. В частности, интервал перемежения WiMAX может определяться путем взятия максимального значения из множества чисел, k, которые удовлетворяют следующим двум условиям:
k<256; и
положительное целое (3).
Вышеприведенный Slot_Cycle_Index является параметром, используемым для определения длительности цикла поискового вызова CDMA 1x по стандартам CDMA. Например, там, где длительность кадра WiMAX (T_wm_frame) равна пяти миллисекундам, Slot_Cycle_index равен 1, а длительность сканирования равна 20 кадрам, числитель условия ii) равен 512. Соответственно, множество k чисел, которое удовлетворяет обоим условиями, включает в себя {236, 108, 44, 12}, и максимальное значение упомянутого множества чисел равно 236 (то есть цикл сканирования, N, в единицах кадров WiMAX).
Более того, при определении набора параметров WiMAX начальный кадр может относиться к самым младшим 8 битам абсолютного номера кадра WiMAX. Следовательно, варианты осуществления настоящего раскрытия изобретения могут позволить определять начальный кадр WiMAX, как описано в уравнении (4), когда MS наблюдает только за PCH:
(4),
где τ может выражаться как , а M может выражаться как (4*PGSLOT-N2) mod 64*2Slot_Cycle_Index. PGSLOT является параметром, используемым для определения сдвига на цикл поискового вызова CDMA 1x по стандартам CDMA, и он зависит от IMSI (Международный идентификатор мобильной станции) у MS 430. Однако варианты осуществления настоящего раскрытия изобретения могут позволить определять начальный кадр WiMAX, как описано в уравнении (5), когда MS наблюдает одновременно за PCH и QPCH:
(5).
На этапе 506 мобильный запрос сканирования (MOB_SCN-REQ), включающий набор параметров WiMAX, может отправляться к обслуживающей BS 414 WiMAX. Как указано раньше, набор параметров WiMAX может включать в себя начальный кадр WiMAX, длительность сканирования, интервал перемежения и количество циклов сканирования, которое запрашивает MS (или количество итераций сканирования, которое нужно выполнить).
Количество итераций может устанавливаться в любое число между 1 и 255 и указывает количество циклов сканирования, запрошенных двухрежимной MS 430. Перед завершением всех итераций MS 430 может отправить другой запрос сканирования, чтобы обновить интервалы периодических переключений. В некоторых вариантах осуществления значение итерации по умолчанию может составлять 255 для уменьшения количества запросов сигнала сканирования, отправленных MS 430.
BS 414 WiMAX может использовать один или несколько предоставленных параметров при установлении цикла сканирования WiMAX из условия, чтобы длительность сканирования WiMAX совпадала большей частью с каждым из окон поискового вызова CDMA. На этапе 508 двухрежимная MS 430 может переключиться на сеть CDMA в соответствии с циклом сканирования, установленным BS 414 WiMAX.
На этапе 510 двухрежимная MS 430 может определить, имеется ли поисковый запрос CDMA, предназначенный для MS 430, присутствующий в канале передачи поисковых вызовов. Если канал передачи поисковых вызовов CDMA не имеет поискового запроса, предназначенного для MS 430, то MS может вернуться в сеть WiMAX и возобновить обычные операции WiMAX на этапе 514. Однако если MS 430 принимает поисковый запрос CDMA, то MS 430 может прервать соединение WiMAX и заняться обычными операциями с сетью CDMA, как проиллюстрировано на этапе 512.
Фиг.7 иллюстрирует, что в некоторых вариантах осуществления длительности 7201-5 сканирования WiMAX могут быть спланированы так, что у MS 430 есть достаточно времени для настройки с сети WiMAX на сеть CDMA и прослушивания канала передачи поисковых вызовов CDMA для всего окна поискового вызова в течение одной длительности 720 сканирования. Однако в некоторых вариантах осуществления длительность 720 сканирования WiMAX может быть недостаточной по длине, чтобы позволить MS слушать все окно поискового вызова CDMA. В таких вариантах осуществления MS может настроиться на сеть CDMA настолько долго, чтобы слушать интервал канала передачи поисковых вызовов CDMA, соответствующий интервалу канала передачи поисковых вызовов, выделенному MS 430 в течение окна 730 поискового вызова CDMA. Однако двухрежимной MS 430 может выделяться интервал канала передачи поисковых вызовов. Соответственно, двухрежимная MS 430 может переключиться обратно на сеть WiMAX после прослушивания интервала канала передачи поисковых вызовов, но до окончания окна 730 поискового вызова CDMA.
Более того, следует отметить, что из-за ограниченного размера интервала 722 перемежения по стандартам WiMAX может произойти более одного цикла сканирования WiMAX между последующими окнами 730 поискового вызова CDMA. Соответственно, двухрежимная MS 430 может не настраиваться на сеть CDMA в течение каждой длительности 720 сканирования WiMAX. В течение длительностей 720 сканирования, которые не совпадаю с окнами поискового вызова CDMA, двухрежимная MS 430 может сканировать соседние BS WiMAX, чтобы оценивать соответствующее качество сигнала.
Фиг.8 иллюстрирует примерные обмены между двухрежимной MS 430, BS 414 WiMAX и BS 424 CDMA в соответствии с вариантами осуществления настоящего раскрытия изобретения. В настоящем примере MS 430 может иметь исходное активное соединение с BS 414 WiMAX, но также находиться в соте CDMA.
При подготовке к прослушиванию канала передачи поисковых вызовов CDMA MS 430 может измерить временной сдвиг между кадром WiMAX и кадром CDMA, как проиллюстрировано ссылкой 802. В течение этого периода измерения MS 430 также может определить набор параметров WiMAX, например начальный кадр WiMAX, значение длительности сканирования (измеренное в единицах кадров WiMAX), значение интервала перемежения (измеренное в единицах кадров WiMAX) и количество итераций, как описано выше.
После измерения и определения параметров WiMAX MS