Определение пространственного распределения отдачи сцинтиллятора
Иллюстрации
Показать всеИзобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор. В предложенном способе получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении не требуется облучение сцинтиллятора первичным излучением. Способ содержит этап облучения сцинтиллятора вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при указанном вторичном излучении. Изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи при первичном излучении. В осуществлении изобретения, то есть в устройстве формирования рентгеновского изображения, где первичное излучение представляет собой рентгеновское излучение, изобретением предоставляется точная калибровка детектора рентгеновского излучения без облучения детектора рентгеновского излучения рентгеновским излучением. Точнее, облучение ультрафиолетовым излучением в качестве вторичного излучения обеспечивает требуемое изображение пространственного распределения вторичной отдачи, которое может быть использовано для калибровки. 5 н. и 10 з.п. ф-лы, 10 ил.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор.
Уровень техники
В патентном документе ЕР 0642264 А1 раскрыто устройство для обнаружения изображений, имеющее полупроводниковую матрицу для обнаружения изображений, предназначенную для обнаружения рентгеновских изображений, в которых значительно снижены возмущения, обусловленные паразитными изображениями. В соответствии с этим источником такие возмущения вызывает задержанная передача зарядов вследствие захватов зарядов в полупроводниковом материале приемников излучения. В соответствии с этим источником устройство для обнаружения содержит матрицу обнаружения изображений, которая содержит чувствительные к излучению элементы для преобразования падающего излучения в заряды и линии считывания для передачи зарядов в считывающую схему, которая выполнена с возможностью преобразования передаваемых зарядов в первичный сигнал электронного изображения. Устройство для обнаружения также содержит корректирующую схему для формирования сигнала коррекции изображения, предназначенного для преобразования первичного сигнала электронного изображения в скорректированный сигнал изображения путем удаления артефактов, обусловленных задержанной передачей зарядов, из первичного сигнала электронного изображения. Сигнал коррекции изображения может быть скомпонован в виде суперпозиции экспоненциально спадающих сигналов изображений, которые были обнаружены до обнаружения изображения, обнаруживаемого в данный момент. Затем скорректированный сигнал изображения компонуется из сигнала коррекции изображения и сигнала изображения, содержащего артефакты.
Сущность изобретения
Задача настоящего изобретения заключается в получении информации о пространственном распределении отдачи сцинтиллятора при первичном излучении. Преимущество изобретения заключается в том, что информацию о пространственном распределении отдачи сцинтиллятора при первичном излучении получают без необходимости подведения первичного излучения к сцинтиллятору.
Кроме того, преимущество заключается в создании способа или радиационного детекторного устройства для получения информации о пространственном распределении отдачи сцинтиллятора без необходимости подведения первичного излучения к сцинтиллятору.
Для лучшего решения этой задачи в первом аспекте изобретения предложен способ получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении. Способ в соответствии с первым аспектом изобретения содержит этапы, на которых облучают сцинтиллятор вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при первичном излучении. В этом описании и в формуле изобретения термин «изображение пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении» сокращен до «изображения пространственного распределения вторичной отдачи». Точно так же термин «изображение пространственного распределения первичной отдачи сцинтиллятора при первичном излучении» сокращен до «изображения пространственного распределения первичной отдачи».
В соответствии со вторым аспектом изобретения предложено радиационное детекторное устройство, которое содержит сцинтиллятор для приема первичного излучения и образования в ответ на него преобразованного первичного излучения. Радиационное детекторное устройство также содержит источник вторичного излучения для подведения к сцинтиллятору вторичного излучения для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при первичном излучении.
В соответствии с осуществлением изобретения предложен способ, который дополнительно содержит этап считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.
В соответствии с еще одним осуществлением изобретения предусмотрен соответствующий радиационный детектор, содержащий считывающий блок для считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.
В соответствии с еще одним осуществлением изобретения предложен способ, который дополнительно содержит этап считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора тем же самым фотодетектором, который предусмотрен для считывания преобразованного первичного излучения, генерируемого сцинтиллятором в ответ на падающее первичное излучение. Преимущество этого осуществления заключается в том, что не требуется дополнительный фотодетектор для считывания изображения пространственного распределения вторичной отдачи. Дополнительное преимущество этого осуществления заключается в том, что от сцинтиллятора световой путь света изображения пространственного распределения вторичной отдачи является таким же, как световой путь преобразованного первичного излучения.
В соответствии с еще одним осуществлением изобретения предложено соответствующее радиационное детекторное устройство, которое дополнительно содержит фотодетектор для считывания преобразованного первичного излучения, генерируемого сцинтиллятором в ответ на падающее первичное излучение, при этом фотодетектор предусмотрен также для считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.
В соответствии с еще одним осуществлением изобретения предложен способ, который содержит этап облучения сцинтиллятора вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи. При этом эталонное состояние сцинтиллятора может быть состоянием равномерного распределения отдачи. Кроме того, опорное состояние сцинтиллятора может быть состоянием распределения отдачи, которое удовлетворяет определенному условию, например, при котором контраст отдачи находится ниже заданного уровня. Соответственно, сцинтиллятор облучают вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи. Соответственно, истинное фактическое изображение пространственного распределения вторичной отдачи формируют на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи. Это осуществление обладает преимуществом в том, что влияние неравномерного вторичного облучения будет исключено двухэтапной калибровкой при использовании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.
В соответствии с еще одним осуществлением изобретения предложено соответствующее радиационное детекторное устройство, содержащее блок управления для управления источником вторичного излучения, чтобы облучать сцинтиллятор вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи; устройство хранения данных для запоминания эталонного изображения пространственного распределения вторичной отдачи; и управления источником вторичного излучения, чтобы облучать сцинтиллятор вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи. Радиационное детекторное устройство из этого осуществления также содержит блок обработки для формирования истинного фактического изображения пространственного распределения вторичной отдачи на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.
В соответствии с еще одним осуществлением изобретения предложен способ, в соответствии с которым первичным излучением облучают первый поверхностный участок сцинтиллятора и вторичным излучением облучают второй поверхностный участок сцинтиллятора, при этом второй поверхностный участок сцинтиллятора является иным, чем первый поверхностный участок сцинтиллятора. Это осуществление обладает преимуществом в том, что световой путь для первичного излучения может быть полностью отделен от светового пути для вторичного излучения. Это делает возможным использование материалов, которые являются непрозрачными для первичного излучения, на световом пути для вторичного излучения. В соответствии с еще одним осуществлением изобретения первый поверхностный участок сцинтиллятора может быть на противоположной стороне относительно второго поверхностного участка сцинтиллятора. Это обеспечивает возможность равномерного освещения сцинтиллятора применительно к освещению первичным излучением.
Радиационное детекторное устройство в соответствующем осуществлении содержит первый путь излучения для первичного излучения и второй путь излучения для вторичного излучения, при этом первый путь излучения и второй путь излучения соответственно заканчиваются на различных поверхностных участках сцинтиллятора.
В соответствии с еще одним осуществлением изобретения предложен способ, в котором первичным излучением и вторичным излучением облучают общий поверхностный участок сцинтиллятора. Этим получают преимущество в том, что сцинтиллятор может быть расположен на подложке, которая не пригодна для сквозного облучения первичным излучением и вторичным излучением.
Радиационное детекторное устройство в соответствующем осуществлении содержит первый путь излучения для первичного излучения и второй путь излучения для вторичного излучения, при этом первый путь излучения и второй путь излучения, оба, заканчиваются на одном и том же поверхностном участке сцинтиллятора.
В соответствии с еще одним осуществлением изобретения первичное излучение представляет собой рентгеновское излучение и вторичное излучение представляет собой не рентгеновское излучение, например ультрафиолетовое излучение. Это осуществление обладает преимуществом в том, что информация о пространственном распределении отдачи сцинтиллятора при рентгеновском излучении может быть получена без использования рентгеновского излучения, то есть без облучения персонала и/или пациентов рентгеновским излучением.
В соответствии с еще одним осуществлением изобретения предложен способ формирования изображения, содержащий этапы, на которых: 1) создают радиационное детекторное устройство, имеющее фотодетектор и сцинтиллятор, при этом сцинтиллятор генерирует преобразованное первичное излучение в ответ на первичное излучение, падающее на сцинтиллятор, и фотодетектор обнаруживает преобразованное первичное излучение; 2) выполняют способ в соответствии с изобретением или способ в соответствии с одним или несколькими осуществлениями изобретения с помощью сцинтиллятора радиационного детекторного устройства, чтобы тем самым формировать изображение пространственного распределения вторичной отдачи сцинтиллятора; 3) регистрируют изображение первичного излучения радиационным детекторным устройством при приеме первичного излучения сцинтиллятором; 4) формируют скорректированное изображение первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи. «Формирование скорректированного изображения первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи» может содержать или может состоять из «калибровки зарегистрированного изображения первичного излучения с помощью изображения пространственного распределения вторичной отдачи». При использовании в способе формирования изображения способа получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении в соответствии с изобретением или способа, содержащего признаки одного или нескольких осуществлений изобретения, информация о пространственном распределении отдачи сцинтиллятора при первичном излучении может быть успешно получена без необходимости облучения сцинтиллятора первичным излучением. Тем самым калибровка сцинтиллятора может быть выполнена безопасным способом, то есть без облучения персонала и/или пациентов первичным излучением.
Устройство, соответствующее вышеуказанному способу формирования изображения, представляет собой устройство обнаружения изображения, содержащее радиационное детекторное устройство в соответствии с изобретением или радиационное детекторное устройство в соответствии с осуществлением изобретения.
В соответствии с еще одним осуществлением изобретения предложен компьютерный программный продукт, позволяющий процессору выполнять способ получения пространственного распределения отдачи сцинтиллятора при первичном излучении в соответствии с изобретением или в соответствии с осуществлением изобретения. В соответствии с еще одним осуществлением изобретения предложен компьютерный программный продукт, позволяющий процессору выполнять способ формирования изображения согласно соответствующему осуществлению изобретения. Преимущество этих осуществлений заключается в том, что блок управления, предназначенный для управления облучением сцинтиллятора первичным излучением или вторичным излучением, не должен заменяться, а может быть перепрограммирован соответствующим программным продуктом. Компьютерный программный продукт согласно соответствующему осуществлению изобретения может быть получен в любом подходящем виде, например в виде новой компьютерной программы или в виде обновления существующей компьютерной программы, через соответствующую среду, например, на съемном носителе, через Интернет и т.д.
Итак, в соответствии с одним аспектом изобретения созданы способ и установка для получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении, в которых не требуется облучение сцинтиллятора первичным облучением. Способ содержит этап облучения сцинтиллятора вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении. Изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи при первичном излучении. В осуществлении изобретения, то есть в устройстве для формирования рентгеновского изображения, где первичное излучение представляет собой рентгеновское излучение, изобретение обеспечивает точную калибровку рентгеновского детектора без облучения рентгеновского детектора рентгеновским излучением. Вместо этого облучение ультрафиолетовым излучением в качестве вторичного излучения обеспечивает требуемое изображение пространственного распределения вторичной отдачи, которое можно использовать для калибровки.
Эти и другие аспекты изобретения станут очевидными и освещенными при обращении к осуществлениям, описанным ниже.
Краткое описание чертежей
В нижеследующем подробном описании делаются ссылки на чертежи, на которых:
фиг.1 - схематический вид осуществления установки для формирования изображения в соответствии с изобретением;
фиг.2 - местный вид в сечении осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.3 - местный вид в сечении другого осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.4 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.5 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.6 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.7 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.8 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.9 - перспективный вид с пространственным разделением элементов еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;
фиг.10 - блок-схема последовательности действий способа формирования изображения в соответствии с осуществлением изобретения.
Подробное описание изобретения
Теперь с обращением к чертежам иллюстративные осуществления настоящего изобретения будут описаны более подробно. В продолжение подробного описания осуществлений иллюстративным примером первичного излучения является рентгеновское излучение и примером вторичного излучения является нерентгеновское излучение, в частности, ультрафиолетовое излучение или синий свет.
На фиг.1 показан схематический вид примера осуществления установки 2 для формирования изображения. Установка 2 для формирования изображения содержит источник 4 первичного излучения для облучения исследуемого объекта 8 первичным излучением 6. Объектом 8, показанным на фиг.1 иллюстративно, может быть человек. Однако объект 8 может быть животным или веществом любого вида. В осуществлении, показанном на фиг.1, источник 4 первичного излучения представляет собой источник рентгеновского излучения и первичное излучение представляет собой рентгеновское излучение. Однако первичное излучение может быть любым другим излучением, которое пригодно для исследования объекта 8.
После прохождения через объект 8 первичное излучение 6 обнаруживается радиационным детекторным устройством 10. Детекторное устройство 10 содержит сцинтиллятор 12 и фотодетектор 14. В ответ на падающее первичное излучение 6 сцинтиллятор 12 генерирует преобразованное первичное излучение 18. Фотодетектор 14 предусмотрен для обнаружения преобразованного первичного излучения 18 и создает в ответ на него сигналы изображения, представляющие преобразованное первичное излучение 18.
В примере осуществления, показанном на фиг.1, сцинтиллятор представляет собой сцинтиллятор CsI:Tl-типа (иодид цезия, активированный таллием). Однако сцинтиллятор может быть любым сцинтиллятором, подходящим для выбранного первичного излучения 6. Фотодетектор 14, использованный в установке 2 для формирования изображения, показанной на фиг.1, представляет собой плоский динамический детектор рентгеновского излучения, который содержит множество фотодиодов 16 для обнаружения преобразованного первичного излучения 18, что более подробно показано на фиг.2.
Сцинтиллятор CsI:Tl-типа, который обычно используют в плоскопанельных детекторах рентгеновского излучения, проявляет зависящий от времени эффект отдачи, в дальнейшем называемый «вызванным яркостью послеизображением». Этот эффект отдачи зависит от информационного наполнения проецируемого изображения: вследствие захвата носителей заряда отдача сцинтиллятора 12 и, следовательно, детекторного устройства 10 может зависеть от характера протекания процесса во времени, пространства и интенсивности. При интенсивном облучении изображение отдачи оставляет след на сцинтилляторе 12 и накладывается на изображения, собираемые впоследствии. В случае формирования малоконтрастного изображения это изображение будет просвечивать в течение длительных периодов времени (сутками). В частности, при формировании изображения мягких тканей, аналогично формированию изображения при компьютерной томографии, эти оставляющие след контрасты будут проявляться в восстановленном изображении. Эти эффекты являются нежелательными, поскольку они снижают видность тканей при низком контрасте. Как уже установлено выше, осуществления изобретения касаются исключения этого эффекта.
В зависимости от содержания Tl зависимость отдачи от применяемой дозы от нулевой экспозиции до насыщения может достигать 6%. На практике после цифровой субтракционной ангиографии будут получаться значения около 1%, которые являются слишком высокими для формирования изображения мягких тканей, когда должны обнаруживаться контрасты того же порядка величины.
Чтобы повысить видность при низком контрасте, радиационное детекторное устройство 10, согласно осуществлению, показанное на фиг.1, содержит источник 20 вторичного излучения для подведения к сцинтиллятору вторичного излучения 22, которое применено для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора 12 при вторичном излучении 22, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора 12 при первичном излучении 6, при рентгеновском излучении в настоящем осуществлении. Поскольку источник 22 вторичного излучения расположен на противоположной стороне относительно источника 4 рентгеновского излучения, то есть на обратной стороне радиационного детекторного устройства 10, детекторное устройство 10 этого типа называется плоским динамическим детектором рентгеновского излучения с задней подсветкой. В частности, «задняя подсветка» распространяется на облучение фотодиодов и/или сцинтиллирующего слоя через стеклянную подложку, поддерживающую эти фотодиоды и сцинтиллирующий слой.
Эксперименты показали, что свет с длиной волны в диапазоне от 350 нм до 450 нм или, например, от 365 нм до 400 нм, или, например, от 370 до 390 нм, или, например, 380 нм, пригоден для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора CsI:Tl, которое соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при рентгеновском излучении. В осуществлениях из фиг.1 и фиг.2 источник 20 вторичного излучения установлен под подложкой 21. Над подложкой 21 образован фотодетектор 14. Над фотодетектором 14 образован сцинтиллятор 12 детекторного устройства 10. Соответственно, источник 20 вторичного излучения установлен с обращением ко второму поверхностному участку 26 сцинтиллятора 12, который находится на противоположной стороне относительно первого поверхностного участка 24 сцинтиллятора 12, обращенного к источнику 4 первичного излучения. Поэтому в показанном осуществлении путь излучения для первичного излучения проходит между источником 4 первичного излучения и первым поверхностным участком 24, и путь излучения для вторичного излучения 22 проходит между источником 20 вторичного излучения и вторым поверхностным участком 26.
Следует отметить, что в изображении пространственного распределения вторичной отдачи может обнаруживаться обращенный контраст по сравнению с изображением пространственного распределения первичной отдачи. Например, это происходит в случае сцинтиллятора CsI:Tl и ультрафиолетового излучения в определенном диапазоне, от 365 нм до 400 нм. Однако даже такое обращенное изображение пространственного распределения вторичной отдачи можно использовать для точной калибровки радиационного детекторного устройства 10.
На фиг.3 показаны элементы из фиг.2 в другом рабочем состоянии. В то время как на фиг.2 показаны сцинтиллятор 12, фотодетектор 14 и подложка 21 во время регистрации изображения первичного излучения, то есть во время облучения сцинтиллятора 12 первичным излучением 6, на фиг.3 показаны сцинтиллятор 12, фотодетектор 14 и подложка 21 во время формирования контрастного изображения вторичной отдачи.
На фиг.3 показан пример пути излучения для вторичного излучения 22 в детекторном устройстве 10 из фиг.2. Вторичное излучение 22 проходит через прозрачные части подложки 21, проходит мимо фотодиодов 16 и достигает сцинтиллятора 12. Прохождение вторичного излучения 22 через фотодетектор 14 может включать в себя прохождение вторичного излучения мимо фотодиодов 16 через пространство 28 между фотодиодами 16, при этом пространство 28 является прозрачным для вторичного излучения 22. В показанном осуществлении обратная сторона фотодиодов 16 не является прозрачной для вторичного излучения 22, то есть для света. В качестве варианта фотодиоды 16 могут быть прозрачными для вторичного излучения 22.
Вторичное излучение 22, достигающее сцинтиллятора 12, возбуждает сцинтиллятор 12. Образующаяся флуоресценция 29 сцинтиллятора 12 является репликой наведенной ловушками характеристики сцинтиллятора на предшествующие облучения сцинтиллятора 12 рентгеновским излучением. Флуоресценция 29 образует изображение пространственного распределения вторичной отдачи сцинтиллятора 12. Флуоресценция 29 считывается со сцинтиллятора 12 фотодетектором 14. В установке 2 для формирования изображения считываемая флуоресценция 29 может использоваться в качестве калибровочного изображения. Для обеспечения точной калибровки детекторного устройства из этого осуществления плоское изображение, обусловленное вызванным яркостью послеизображением, образуемое ультрафиолетовым излучением, должно быть репликой изображения, образуемого рентгеновским излучением.
В соответствии с осуществлением изобретения флуоресценция 29, генерируемая возбужденным сцинтиллятором 12, используется для заполнения ловушек фотодетектора 14. В соответствии с другим осуществлением фотодиоды могут также обладать непосредственной чувствительностью к ультрафиолетовому свету и поэтому могут быть также объектом для заполнения ловушек. Например, флуоресценцию 29 возбужденного сцинтиллятора можно использовать для заполнения ловушек фотодиодов 16 в установке 2 для формирования изображения согласно осуществлению, показанному на фиг.1, при этом ослабляется эффект отдачи и, в частности, уменьшаются наведенные ловушками вариации отдачи между фотодиодами. Заполнение ловушек фотодиодов 16 может выполняться, например, перед формированием и считыванием изображения пространственного распределения вторичной отдачи.
На фиг.1 показан пример осуществления блока 30 управления установки для формирования изображения согласно осуществлению изобретения. Установка 2 для формирования изображения из фиг.1 управляется блоком 30 управления. С блока 30 управления управляющие сигналы 32 подаются на источник 20 вторичного излучения для осуществления источником 20 вторичного излучения испускания вторичного излучения 22.
С блока 30 управления также подаются управляющие сигналы 34 на источник 4 первичного излучения для осуществления источником 4 первичного излучения испускания первичного излучения 6.
С блока 30 управления также подаются управляющие сигналы 36 на фотодетектор 14 для, например, выбора одного или нескольких фотодетекторных элементов из фотодетектора 14 для считывания.
Кроме того, блок 30 управления принимает сигналы 38 изображения с фотодетектора 14. Сигналы изображения могут быть любыми сигналами, которые относятся к изображению, регистрируемому фотодетектором 14, например, сигналами изображения, представляющими регистрируемое изображение объекта 8 при первичном излучении, сигналами изображения, представляющими изображение пространственного распределения вторичной отдачи, сигналами изображения, представляющими изображение пространственного распределения первичной отдачи, и т.д.
Кроме того, блок 30 управления может быть выполнен с возможностью управления другими частями установки 2 для формирования изображения. Например, в компьютерном томографическом сканере установки с С-дугой, предназначенной для формирования изображений сердечно-сосудистой системы, источник 4 первичного излучения и радиационное детекторное устройство 10 установлены на диаметрально противоположных сторонах С-образной дуги. Например, при таком осуществлении установки 2 для формирования изображения блок 30 управления может быть выполнен с возможностью управления приводными двигателями С-дуги (непоказанными).
Блок 30 управления может содержать одно или несколько отдельных управляющих устройств 40, при этом каждая из упомянутых индивидуальных функций блока 30 управления может выполняться одним из управляющих устройств 40. В других осуществлениях изобретения блок управления может выполнять только часть из упомянутых выше индивидуальных функций. В дальнейших осуществлениях изобретения блок управления может выполнять дополнительные функции в добавление к части или ко всем упомянутым выше индивидуальным функциям. Некоторые или все эти индивидуальные функции блока 30 управления могут выполняться в ответ на заданную программу. Кроме того, некоторые или все эти индивидуальные функции блока 30 управления могут выполняться в ответ на сигналы датчиков или другие внешние сигналы. Некоторые или все эти индивидуальные функции блока 30 управления могут выполняться на микропроцессоре путем реализации соответствующей компьютерной программы. Блок 30 управления или одно или несколько управляющих устройств 40 блока 30 управления могут быть частью системы управления более высокого ранга.
В соответствии с осуществлением изобретения информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении образуют при облучении сцинтиллятора 12 вторичным излучением 22 для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению, относящемуся к изображению пространственного распределения первичной отдачи сцинтиллятора 12 при первичном излучении 6. Этот способ, который ниже называется «одноэтапным способом», позволяет получать информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении без подведения первичного излучения к сцинтиллятору 12. Изображение пространственного распределения вторичной отдачи, регистрируемое с помощью одноэтапного способа, содержит неравномерность, обусловленную распределением вторичного излучения, которая, однако, может быть приемлемой при многих применениях.
В соответствии с другим осуществлением изобретения информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении получают в соответствии со следующими этапами, которые к тому же показаны на фиг.10, при этом конкретные примеры, использованные в осуществлении из фиг.1 для первичного излучения (рентгеновское излучение в осуществлении из фиг.1) и вторичного излучения (ультрафиолетовое излучение в осуществлении из фиг.1), даны на фиг.10.
1. Калибровка детекторного устройства 10 при первичном излучении произвольным образом в момент t=t0, например, путем регистрации калибровочного изображения первичного излучения. Это калибровочное изображение представляет собой установившееся калибровочное изображение, которое можно использовать для нескольких регистрируемых изображений первичного излучения. Вследствие равномерного облучения сцинтиллятора первичным излучением в сцинтилляторе не создается контраст отдачи (этап А на фиг.10).
2. Облучение сцинтиллятора 12 вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения пространственного распределения вторичной отдачи в момент t=t0+dt0 (этап В на фиг.10). Эталонное изображение пространственного распределения вторичной отдачи предназначается для долговременного использования, то есть для калибровки нескольких изображений первичного излучения. Это формирование эталонного изображения пространственного распределения вторичной отдачи может быть выполнено сразу же после момента t0, то есть значение dt0 может быть небольшим. Эталонное состояние сцинтиллятора можно характеризовать равномерным распределением отдачи. Например, опорное состояние сцинтиллятора может быть состоянием неиспробованного детекторного устройства 10, в частности, состоянием неиспробованного сцинтиллятора 12. В качестве дальнейшего примера эталонное состояние сцинтиллятора можно характеризовать распределением отдачи сцинтиллятора 12, которое удовлетворяет определенному условию. Такое условие может характеризоваться тем, что контраст отдачи сцинтиллятора 12 в эталонном состоянии сцинтиллятора находится ниже заданного уровня.
При формировании эталонного изображения распределения вторичной отдачи сцинтиллятор 12 может подвергаться воздействию различных облучений первичным излучением, которые изменяют изображение распределения отдачи сцинтиллятора 12. Это показано точками при С на фиг.10.
3. Облучение сцинтиллятора 12 вторичным излучением 22 в текущем, фактическом состоянии сцинтиллятора для формирования фактического изображения пространственного распределения вторичной отдачи в момент t=t1 (этап D на фиг.10). Этот этап можно выполнять до выполнения формирования изображения мягких тканей в установке 2 формирования изображения в момент t=t1+dt1.
4. Формирование истинного фактического изображения пространственного распределения вторичной отдачи на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи (этап D на фиг.10). Этот этап можно выполнять путем деления эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.
Соответственно, это осуществление содержит два этапа облучения вторичным излучением: первый этап облучения вторичным излучением в эталонном состоянии сцинтиллятора до момента появления вызванного яркостью послеизображения и второй этап облучения вторичным излучением в фактическом состоянии сцинтиллятора до регистрации фактического изображения первичного излучения и после момента появления вызванного яркостью послеизображения. Этот двухэтапный способ обладает преимуществом в том, что только истинное фактическое изображение пространственного распределения вторичной отдачи содержит эффекты вызванного яркостью послеизображения. В частности, на истинное фактическое изображение пространственного распределения вторичной отдачи не влияет, например, неравномерное облучение сцинтиллятора 12 вторичным излучением 22. Истинное фактическое изображение пространственного распределения вторичной отдачи можно использовать для калибровки детекторного устройства 10, в частности, для калибровки сцинтиллятора 12.
В соответствии с осуществлением изобретения способ формирования изображения сцинтиллятора 12 содержит следующие этапы:
1. Формирование изображения пространственного распределения вторичной отдачи сцинтиллятора 12 в момент t=t1 (этапы с А по D на фиг.10). Это можно сделать, например, выполняя описанный выше одноэтапный способ или двухэтапный способ. Термин «изображение пространственного распределения вторичной отдачи» в этом смысле включает в себя «истинное фактическое изображение пространственного распределения вторичной отдачи», упомянутое выше.
2. Регистрация изображения первичного излучения радиационным детекторным устройством 10 при приеме первичного излучения 6 в момент t=t1+dt1 (этап Е на фиг.10). Регистрацией изображения первичного излучения может быть, например, выполнение формирования изображения мягких тканей устройством 2 для формирования изображения.
3. Формирование скорректированного изображения первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи (этап F на фиг.10) в момент t=t1+dt1+dt2. Этап формирования скорректированного изображения первичного излучения можно выполнять любым п