Способ обогащения техногенного минерального сырья цветных металлов
Изобретение относится к области флотационного обогащения техногенного сырья. Способ флотационного обогащения сульфидных руд цветных и благородных металлов включает кондиционирование измельченной руды с раствором дитиофосфата или другими сульфгидрильными собирателями в известковой среде и флотацию. При этом для снижения флотируемости пирита и повышения извлечения металлов предварительно в раствор дитиофосфата вводят в качестве модифицирующего компонента до 10 мас.% раствора тиомочевины ((NH2)2CO) или ее производных. После этого пульпу из руды последовательно кондиционируют с модифицированным дитиофосфатом при рН 8,5-9,0 при продолжительности 3-5 мин, а затем с ксантогенатом при рН более 9,0 в течение 1 мин. Затем проводят флотацию сульфидов цветных металлов и минеральных форм благородных металлов при соотношении расходов модифицированного дитиофосфата и ксантогената от 1:3 до 3:1 соответственно. Техническим результатом является снижение флотируемости пирита и других сульфидов железа, повышение флотоактивности минералов цветных металлов, частиц самородного золота, его открытых сростков с сульфидами. 3 табл., 3 пр.
Реферат
Изобретение относится к области флотационного обогащения техногенного сырья, в частности к лежалым хвостам обогатительных фабрик по переработке колчеданных медно-цинковых, медных, свинцово-цинковых, полиметаллических руд и медных шлаков, содержащих цветные и благородные металлы.
Известен комбинированный способ переработки хвостов полиметаллических руд, который включает измельчение хвостов до 40-80% класса минус 74 мкм, выщелачивание их кислыми хлоридными растворами, флотацию из пульпы выщелачивания, фильтрацию, осаждение металлов из раствора с последующим их разделением в селективные продукты, обеспечивается повышение степени извлечения благородных и цветных металлов и серы [Патент RU 2197547 РФ, 98116796/02 09.09.1998].
Прямое выщелачивание колчеданных лежалых хвостов осложняется присутствием значительной доли пирита, который отличается низкой окисляемостью, вскрытие и выщелачивание цветных металлов возможно только при повышении температуры более 300°С. Интенсификация процесса выщелачивания предварительным биовыщелачиванием, электромагнитными импульсами, другими физическими и электрохимическими воздействиями имеет ограничения по производительности [Патент 2176558 РФ, БИ №34, 2001].
Гравитация и флотация остаются наиболее производительными и экологически приемлемыми процессами обогащения, в том числе для колчеданного техногенного сырья. Гравитацию проводят при наличии в отходах техногенного минерального сырья части полезных компонентов в виде свободных зерен и открытых сростков гравитационной крупности.
Известны способы обогащения руд, в которых лежалые хвосты переработки колчеданной руды дезинтегрируют в щелочной, чаще в известковой среде, классифицируют по крупности, необходимой для гравитации и флотации, измельченную пульпу кондиционируют (перемешивают) с известными реагентами-модификаторами, собирателями и вспенивателями, затем тонкую фракцию флотируют с получением селективных промпродуктов [Шубов Л.Я., Иванков С.И., Щеглова Н.К.: Флотационные реагенты в процессах обогащения минерального сырья. Кн. 1. - М.: Недра. - 1990. - С.79-90].
Основным недостатком большинства известных способов флотационного обогащения является высокая собирательная способность многих применяемых собирателей, активно флотирующих все сульфидные минералы, и особенно сульфиды железа - пирит, пирротин и др. Бутиловый ксантогенат, часто применяемый при флотации минералов цветных металлов из сульфидных руд и техногенных продуктов, обладает слабой селективностью по отношению к пириту. Для снижения флотируемости пирита используют эффективные и «жесткие» депрессоры при высоких расходах и концентрациях: известь, цианиды, сернистый натрий и др., что, в свою очередь, приводит к подавлению флотации флотируемых минералов - сульфидов меди, цинка, свинца и др. минеральных форм, в том числе золота.
Известны более селективные собиратели, например реагенты S-703G, Берафлоты, ИМА и др., применяемые самостоятельно, иногда в сочетании с ксантогенатами [Рябой В.И. Проблема использования и разработки новых флотореагентов в России // Цветные металлы. - 2011. - №3. - С.7-14].
Однако их использование ограничено в связи с высокой стоимостью, большими расходами, а их эффективность зависит от содержания в руде сульфидов железа.
Близкими по технологической сущности являются способы флотации сульфидных минералов цветных металлов, включающие измельчение минерального сырья в щелочной среде, кондиционирование пульпы с сульфгидрильными собирателями (ксантогенатами, диалкилдитиофосфатами) и другими реагентами [Бочаров В.А., Рыскин М.Я. Технология кондиционирования и селективной флотации руд цветных металлов. М.: Недра. - 1993. - 280 с. с ил.].
По одному из известных способов сульфидную пульпу измельчают, классифицируют, кондиционируют с собирателем на основе диалкилдитиофосфатов, затем с ксантогенатом, после чего флотируют в коллективный концентрат сульфидные минералы и минеральные формы благородных металлов, который затем разделяют на селективные концентраты [Применение селективных собирателей при флотации медно-цинковых руд / В.И.Рябой, К.М.Асончик, В.Н.Полькин, Л.М.Полтавская, Н.А.Репина // Обогащение руд. - 2008. - №3. - С.20-22].
При флотации золотосодержащих минеральных продуктов и хвостов руд цветных металлов применяют смесь собирателей, включающую ксантогенат и органические фракции перегонки нефти [а.с. СССР 535370, кл. B03D 1/02, 1976], а также меркаптаны [Шубов Л.Я., Иванков С.И., Щеглова Н.К.: Флотационные реагенты в процессах обогащения минерального сырья. Кн. 1. - М.: Недра. - 1990. - С.79], алифатические эфиры никотиновой кислоты [Зеленов В.И. Развитие теории и технологии флотации золото- и серебросодержащих руд / Комплексная переработка минерального сырья. - М.: Наука - 1992. - С.58], оксиэтилированные добавки к ксантогенату [Черных Ю.И., Соложенкин П.М., Зинченко З.А. Интенсификация флотации серебросодержащих руд / Научные основы построения оптимальных схем обогащения минерального сырья. М.: Наука, 1990, с.141].
Известно применение смеси дитиофосфата и меркаптобензотиазола: Aero 400 (Cyanamid), Hostaflot M-91 (Clariant) [Mining chemicals handbook. American Cyanamid Company - 1986. - No 26. - P.-67; Матвеева Т.Н., Громова H.K. Особенности действия меркаптобензотиазола и дитиофосфата при флотации Pt- и Au-содержащих минералов // Информационный горно-аналитический бюллетень. - М.: МГГУ. - 2009. № ОВ14. Обогащение полезных ископаемых - 1. С.62-71.], используемых при флотации сульфидных и благородных минералов. Недостатком данного способа является недостаточно высокая собирательная активность сочетания собирателей, что приводит к потерям сростков сульфидов цветных металлов и самородных благородных металлов с пиритом.
За прототип принято сочетание бутилового ксантогената и меркаптобензотиазола [Сорокин М.М. Флотационные методы обогащения. Химические основы флотации. - М.: МИСиС. - 2011. - С.200], которое используется для извлечения труднофлотируемых минералов с целью повышения флотационного извлечения сульфидов меди и благородных минералов. Недостатком данного способа является достаточно высокая флотационная активность сочетания по отношению к пириту, массовая доля которого в колчеданных лежалых хвостах значительная.
Эффективность использования прототипа и известных способов флотации зависит от минерального и фазового состава исходного сырья, и в особенности от массовой доли пирита. При высоком содержании пирита, более 20% (например: руды месторождений Уральского региона), представленного различными модификациями (в том числе метаколлоидной, коломорфной и др. структурами), он активно флотируется вместе с другими сульфидными минералами цветных металлов, снижая качество концентрата и извлечение минералов основных цветных металлов. Собиратель в прототипе обладает высокими собирательными свойствами ко всем флотируемым сульфидным минералам, в том числе и к пириту, и пирротину.
Целью заявленного изобретения является снижение флотируемости пирита и других сульфидов железа, повышение флотоактивности минералов цветных металлов, частиц самородного золота, его открытых сростков с сульфидами.
Поставленная цель достигается в применении установленного оптимального соотношения известного собирателя - бутилового ксантогената и более селективного, по отношению к пириту, нового модифицированного дитиофосфата.
Сущность заявленного изобретения заключается в следующем: сульфидную медно-пиритную золотосодержащую или другую минеральную смесь измельчают в известковой среде при pH~7,5-9,0, классифицируют по готовому классу 74 мкм; пульпу с крупностью частиц 65-85% класса минус 74 мкм кондиционируют последовательно вначале с модифицированным дитиофосфатом в течение 3-5 минут, затем с ксантогенатом в течение 1 мин и флотируют при соотношении расходов модифицированного дитиофосфата и ксантогената от 1:3 до 3:1 при значениях pH среды выше 8-9. Модифицированный дитиофосфат получают путем введения в его раствор до 10% (по массе) тиомочевины ((NH2)2CO) или ее производных.
В изобретении достигается следующий технологический результат: модифицированный дитиофосфат сорбируется поверхностью зерен сульфидных минералов: сульфидами меди, сфалерита, минеральными формами золота и в меньшей степени пиритом, представленным шламистыми корродированными тонкодисперсными зернами скрытокристаллического строения. Дитиофосфат, как более слабый собиратель, сорбируется на активных участках поверхности зерен сульфидных минералов, золота и частично пирита. Тиомочевина и ее производные селективно образуют координационные соединения с активными центрами золота и другими катионами тяжелых цветных металлов поверхности, что приводит к образованию смешанного гидрофобного слоя дитиофосфата на сульфидах цветных металлов и самородных частицах золота, серебра. В последующем при подаче в процесс более сильного собирателя и легко окисляемого собирателя - бутилового ксантогената, его закрепление на активных участках пирита снижается и пирит хуже флотируется. Необходимость модифицирования дитиофосфата раствором ксантогената тиомочевины и ее производных обусловлена тем, что для повышения флотируемости свободных самородных зерен золота и его открытых сростков с халькопиритом, самородным золотом и серебром дитиофосфату необходим более длительный контакт с поверхностью, чем с ксантогенатом, а тиомочевина и ее производные обладают известным комплексообразующим действием по отношению к золоту, серебру и меди. Кроме того присутствие тиомочевины и ее производных за счет окислительно-восстановительных реакций снижает концентрацию катионов Fe3+ в поверхностном слое пирита, что еще в большей степени уменьшает вероятность образования соединений дитиофосфата с Fe3+ в поверхностном слое сульфидных минералов железа. Растворение золота и серебра при используемых концентрациях тиомочевины не происходит. Продолжительность кондиционирования пульпы с модифицированным дитиофосфатом зависит от содержания в руде пирита, его различных модификаций и ассоциаций с золотом, определяется экспериментально и составляет 3-5 мин, после чего в пульпу добавляют раствор ксантогената в количествах, необходимых для полной флотации сульфидов меди, сфалерита, оставшихся частиц свободного золота, его сростков с пиритом и халькопиритом. Установленное соотношение расходов модифицированного дитиофосфата и ксантогената зависит от минерального сырья, и в особенности от содержания пирита и находится в пределах от 1:3 до 3:1.
Существенным отличием заявленного изобретения и его преимуществом в сравнении с прототипом и известными другими техническими решениями является то, что в предложенном способе в операцию кондиционирования пульпы вначале вводят селективный собиратель - дитиофосфат, модифицированный тиомочевиной или ее производными, после чего через 3-5 мин добавляют основную часть ксантогената и затем в щелочной известковой среде из медно-пиритной руды флотируют сульфиды меди, минералы цинка, самородное золото, а также открытые сростки золота с пиритом и халькопиритом.
При установленном оптимальном соотношении расходов модифицированного дитиофосфата и ксантогената получают более высокие технологические результаты по извлечению и качественный коллективный концентрат по содержанию меди, цинка, золота и серебра или меди. Таким образом, введение в пульпу модифицированного дитиофосфата перед подачей основной массы ксантогената позволяет обеспечить селективную сорбцию на минералах вначале более слабой собирательной смеси, адсорбционный слой которой в дальнейшем ограничивает сорбцию более сильного собирателя - ксантогената, который сорбируется только на свободных от модифицированного собирателя участках поверхности, а следовательно снижает флотируемость в первую очередь пирита, уменьшает его содержание в коллективном концентрате и улучшает условия для флотации из колчеданного минерального сырья основных рудных сульфидных минералов меди, цинка, минеральных форм золота и серебра. Сопоставительный анализ признаков заявленного изобретения с признаками прототипа и аналогов свидетельствует о соответствии заявленного технологического изобретения критерию «Новизна».
Признаки отличительной части формулы изобретения обеспечивают решение функциональных задач заявленных материалов.
Поставленная задача решается тем, что предлагаемый способ флотационного обогащения включает кондиционирование измельченной руды с дитиофосфатами или другими сульфгидрильными собирателями в известковой среде и последующую флотацию сульфидных минералов цветных металлов и минеральных ассоциаций благородных металлов и отличается тем, что с целью снижения флотируемости пирита и повышения извлечения цветных и благородных металлов в раствор дитиофосфата перед подачей его в процессе флотации предварительно вводят в качестве модифицирующего компонента до 10% (по массе) раствор тиомочевины или ее производных; после чего пульпу последовательно кондиционируют с модифицированным дитиофосфатом в течение 3-5 минут, затем добавляют основное количество ксантогената, кондиционируют в течение 1 мин и флотируют сульфидные минералы и золото при соотношении расходов модифицированного дитиофосфата и ксантогената от 1:3 до 3:1 соответственно.
Использование модифицированного дитиофосфата позволяет в первой стадии кондиционирования создать условия для селективной сорбции собирателей на поверхности флотируемых минералов меди, цинка, благородных металлов и снизить в последующем с подачей основной части ксантогената его сорбцию на пирите. Регулируемое соотношение расходов модифицированного дитиофосфата и ксантогената от 1:3 до 3:1 позволяет в зависимости от содержания пирита получать высокие показатели по извлечению металлов и качеству концентратов. Исследованиями последовательной селективной сорбции модифицированного дитиофосфата и ксантогената на сульфидных минералах и золотой пластине различными методами показано, что предварительная обработка вначале модифицированным дитиофосфатом, а затем ксантогенатом снижает сорбцию последнего на пирите и уменьшает его флотируемость в коллективный концентрат. Для проверки работоспособности предложенного способа выполнены технологические исследования на реальных минеральных материалах: на пробах лежалых колчеданных золотосодержащих хвостов и пиритных хвостов, в которых содержание пирита значительно отличается, а также пробе медных шлаков.
Конкретные примеры реализации способа
Пример 1
Колчеданные золотосодержащие лежалые хвосты измельчают в известковой среде; после классификации по крупности 74 мкм кондиционируют при продолжительности 5 мин и pH=8,5 с дитиофосфатом, модифицированным раствором тиомочевины или ее производных в количестве до 10% (по массе) от расхода дитиофосфата, затем добавляют основное количество ксантогената 60 г/т, 20 г/т вспенивателя Т-80 и после кондиционирования с ним в течение 1 мин флотируют в коллективный концентрат сульфиды меди и различные формы золота при продолжительности флотации 10 мин при pH>8,5. Расход модифицированного дитиофосфата в опытах составил 40 г/т. После перечистных операций получают качественный коллективный концентрат при высоком извлечении золота (табл.1).
Таблица 1 | ||||||
Результаты коллективной флотации колчеданной золотосодержащей пробы лежалых хвостов | ||||||
Наименование продуктов | Выход, % | Массовая доля, г/т | Содержание, г/т | Извлечение, % | ||
Cu | Au | Cu | Au | |||
Предлагаемый способ | Коллективный концентрат | 7,1 | 7,78 | 10,27 | 83,7 | 65,1 |
Хвосты | 92,9 | 0,12 | 0,42 | 16,3 | 34,9 | |
Лежалые хвосты | 100,0 | 0,66 | 1,12 | 100,0 | 100,0 | |
Прототип | Коллективный концентрат | 14,0 | 3,74 | 5,43 | 84,5 | 62,3 |
Хвосты | 86,0 | 0,11 | 0,53 | 15,5 | 37,7 | |
Лежалые хвосты | 100,0 | 0,62 | 1,22 | 100,0 | 100,0 |
Пример 2
Пиритные хвосты измельчают в известковой среде, после классификации пульпу кондиционируют в течение 3 мин при pH=9,0 с дитиофосфатом, модифицированным раствором тиомочевины или ее производных в количестве до 10% (по массе) от расхода дитиофосфата, затем добавляют остальное количество ксантогената до 10 г/т и после кондиционирования с ним в течение 1 мин добавляют вспениватель ОПСБ и флотируют сульфиды в коллективный концентрат при продолжительности флотации 8 мин при pH≤9; расход модифицированного дитиофосфата в опытах составил 20 г/т. После перечистных операций получают качественный коллективный концентрат при высоком извлечении металлов (табл.2).
Таблица 2 | ||||||
Результаты флотации пиритных хвостов | ||||||
Наименование продуктов | Выход, % | Массовая доля, г/т | Содержание, г/т | Извлечение, % | ||
Cu | Au | Cu | Au | |||
Предлагаемый способ | Коллективный концентрат | 4,9 | 14,60 | 8,70 | 72,5 | 49,2 |
Хвосты | 95,1 | 0,17 | 0,47 | 27,5 | 50,8 | |
Лежалые хвосты | 100,0 | 0,59 | 0,87 | 100,0 | 100,0 | |
Прототип | Коллективный концентрат | 6,8 | 8,32 | 4,60 | 92,7 | 36,8 |
Хвосты | 93,2 | 0,05 | 0,58 | 7,3 | 63,2 | |
Лежалые хвосты | 100,0 | 0,61 | 0,85 | 100,0 | 100,0 |
Пример 3
Медные шлаки измельчают в известковой среде, после классификации по крупности 74 мкм пульпу кондиционируют в течение 3 мин при pH=9 с дитиофосфатом, модифицированным раствором тиомочевины или ее производных в количестве до 10% (по массе) от расхода дитиофосфата, затем добавляют остальное количество ксантогената до 10 г/т и после кондиционирования с ним в течение 2 мин добавляют вспениватель Т-80 и флотируют сульфиды в коллективный концентрат при продолжительности флотации 6 мин при pH≤9; расход модифицированного дитиофосфата в опытах составил 30 г/т. Ниже приведены результаты открытых опытов флотации (таблица 3).
Таблица 3 | ||||||
Результаты флотации медных шлаков | ||||||
Наименование продуктов | Выход, % | Массовая доля, г/т | Содержание, г/т | Извлечение, % | ||
Cu | Au | Cu | Au | |||
Предлагаемый способ | Концентрат | 21,2 | 5,80 | 2,82 | 83,0 | 65,0 |
Хвосты | 78,8 | 0,32 | 0,41 | 17,0 | 35,0 | |
Исходные шлаки | 100,0 | 1,48 | 0,92 | 100,0 | 100,0 | |
Прототип | Концентрат | 21,0 | 4,75 | 2,72 | 77,8 | 60,0 |
Хвосты | 79,0 | 0,36 | 0,48 | 22,2 | 40,0 | |
Исходные шлаки | 100,0 | 1,28 | 0,95 | 100,0 | 100,0 |
Приведенные технологические результаты показывают, что использование отличительных признаков изобретения позволяет в сравнении с прототипом получить более высокие показатели разделения. В примере 1 содержание меди и золота в коллективном концентрате выше на 4,04% и на 4,84 г/т соответственно при росте извлечения золота на 2,8%. В примере 2 содержание меди и золота выше на 6,28% и 4,10 г/т при росте извлечения золота на 12,4%. В примерах 1 и 2 наблюдается уменьшение выхода коллективного концентрата в 2,0 и 1,4 раза соответственно. В примере 3 содержание меди и золота выше в медном концентрате на 1,05% и 0,10 г/т при одновременном росте извлечения на 5,2 и 5,0% соответственно.
Способ флотационного обогащения сульфидных руд цветных и благородных металлов, включающий кондиционирование измельченной руды с раствором дитиофосфата в известковой среде и флотацию, отличающийся тем, что для снижения флотируемости пирита и повышения извлечения металлов перед кондиционированием в раствор дитиофосфата вводят в качестве модифицирующего компонента до 10 мас.% раствора тиомочевины ((NH2)2CO) или ее производных, после чего пульпу последовательно кондиционируют с модифицированным дитиофосфатом при рН 8,5-9,0 при продолжительности 3-5 мин, а затем с ксантогенатом при рН более 9,0 в течение 1 мин и флотируют сульфиды цветных металлов и минеральные формы благородных металлов при соотношении расходов модифицированного дитиофосфата и ксантогената от 1:3 до 3:1 соответственно.