Устройство и способ выделения твердой фракции из образца текучей среды

Иллюстрации

Показать все

Изобретение относится к области биотехнологии. Предложено устройство для выделения твердой фракции из образца текучей среды. Устройство включает пористый фильтр (2), разделяющий фильтрационный блок (1) на верхнюю предфильтрационную камеру (3), в которую помещают образец текучей среды (4), из которого необходимо выделить клетки, и нижнюю послефильтрационную камеру (5), в которую помещают текучую среду, способную передавать акустическую стоячую волну. Акустический элемент (8) соединен с возможностью съема с подложкой (7), которая расположена внизу нижней камеры (5). Подложка резонирует в ответ на генерирующий акустическую волну элемент (8) и генерирует стоячую волну с частотой в диапазоне 300-700 Гц, проходящую через две жидкие фазы и фильтр для возмущения образца (4). Циклический процесс вакуумной вытяжки (9) вызывает движение образца (4) вниз через фильтр (2). Текучие среды, находящиеся в пред- и послефильтрационной камерах, последовательно перемещаются через фильтр в противоположных направлениях. При этом диаметр пор фильтра равен 2-4 мкм. Фильтр соединен с держателем, выполненным с возможностью вызывать вибрацию фильтра в вертикальном или боковом направлении, или с обеспечением сочетания этих направлений. Также предложен способ выделения твердой фракции из образца текучей среды с применением указанного устройства. Изобретения позволяют минимизировать засорение фильтра и выделять в один этап клетки определенной популяции из гетерогенной смеси клеток. 2 н. и 22 з.п. ф-лы, 1 пр., 15 ил.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая заявка подана с испрашиванием приоритета по предварительной заявке UK № 0704180.9, поданной 2 марта 2007, предварительной заявке UK № 0722448.8, поданной 15 ноября 2007, и предварительной заявке UK № 0801901.0, поданной 1 февраля 2008, содержание которых полностью включено в настоящую заявку.

Область техники

Данное изобретение относится к выделению твердой фракции из образца текучей среды. В частности, данное изобретение относится к устройству и способам для выделения лечебной клеточной фракции из биологического образца, например образца костного мозга.

Уровень техники

Клетки-предшественники могут дифференцироваться во многих направлениях и, соответственно, потенциально подходят для различных областей лечебной помощи. Полагают, что обогащенная фракция этих клеток, поставляемая к участку больной или поврежденной ткани, может оказывать максимальный лечебный эффект благодаря ускоренному восстановлению тканей. Обычно клетки-предшественники, содержащиеся в гетерогенной смеси нетерапевтических клеток в некоторых тканях и текучих средах млекопитающих являются чрезвычайно редкой популяцией клеток (Caplan, 2005). Имеются публикации, описывающие различные способы и устройства, обеспечивающие захват клеток, включая седиментацию (Takazawa & Tokashiki, 1989), центрифугирование (Apelman и др., 1992; Jaeger, 1992), фильтрацию с помощью вращающихся фильтров (Himmerlflab и др., 1969), а также микрофильтрацию в поперечном потоке (Maiorella и др., 1991). Однако все они имеют ряд недостатков. При седиментации наблюдается низкая скорость осаждения клеток и замедление процесса сепарации. В основе устройств для центрифугирования лежит принцип создания радиальной силы, обеспечивающей выведение клеток из текучей среды и, несмотря на возможность быстрого получения высокого выхода препарата, использование этих устройств обычно связано с высокими затратами. Кроме того, существует потенциальная опасность повреждения или нежелательного изменения, например клеток-предшественников, из-за высоких тангенциальных напряжений. При фильтрации с помощью вращающихся фильтров и фильтров поперечного потока используются мембраны, обеспечивающие фильтрацию взвеси клеток, при этом такие мембраны восприимчивы к засорению, что влечет за собой потерю эксплуатационных качеств. К другим способам сепарации с использованием подобных фильтров относятся фильтрация с контролем сдвига (Vogel и Kroner, 1999), фильтрация с тангенциальным потоком (Radlett, 1972) и динамическая фильтрация. В этом случае скорость и эффективность сепарации зависит от степени загрязнения. Динамическая фильтрация основана на принципе относительного движения между мембраной и корпусом для создания сдвигового потока независимо от потока, проходящего через фильтр (Castilho & Medrohno, 2002). К наиболее распространенным устройствам динамической фильтрации относятся вихревые фильтры и фильтры с вращающимися дисками (Stromberg и др., 1989). Авторы Karumanchi и др. (2002) опубликовали обзор способов сепарации для клеток и биомакромолекул под действием поля, в которых для достижения желаемой сепарации используют электрические, магнитные и акустические явления. Диэлектрофорез представляет собой боковое движение незаряженных частиц, обусловленное воздействием поляризации, создаваемой неоднородными электрическими полями (Docoslis и др., 1997, 1999). Этот способ может использоваться только для среды с очень низкой электрической проводимостью, в противном случае происходит перегрев текучей среды. Способы магнитной сепарации делятся на два типа. Способы первого типа основаны на том, что клетки подлежащие разделению обладают магнитными свойствами (например, красные кровяные тельца, бактерии обладающие свойствами магнитотаксиса), а в способах второго типа немагнитный компонент требуемой смеси должен быть намагничен посредством чувствительного к магнитному полю объекта. В обоих случаях, для выполнения сепарации, текучую среду необходимо подвергнуть воздействию магнитного поля. Магнитная сепарация широко используется для разделения множества клеток, включая обработку костного мозга для обогащения клетками-предшественниками (Roath и др., 1990). Для разделения микроорганизмов и клеток широко применяются акустические сепараторы, причем почти все они основаны на использовании ультразвуковых волн. Удержание клеток с помощью ультразвука достигается благодаря формированию стоячих волн, при котором ультразвуковая волна отражается в направлении, обратном направлению ее распространения. Клетки оказываются захваченными в узловых плоскостях давления стоячей волны. Авторами Kilburn и др., (1989), и в патентном документе W095/001214 впервые сообщалось о возможности использования этих волн для отделения клеток от взвеси. Позже появилось множество других сообщений об использовании этого способа (Coakley и др., 1994; Dobelhoof-Dier, 1994; Gaida и др. 1996; Gorenfio и др., 2003, 2004). Ультразвуковые сепараторы требуют тщательной настройки и обычно обладают ограниченной пропускной способностью, обусловливающей извлечение небольшого объема клеток. Кроме того, данный способ используется для удаления гомогенной популяции клеток из жидкой фазы и, соответственно, не подходит для захвата клеток определенной популяции из гетерогенной смеси.

Настоящим изобретением предлагается устройство и способы для выделения твердой фракции из образца текучей среды. В частности настоящим изобретением предлагается способ выделения фракции клеток из гетерогенной смеси клеток, содержащейся в образце текучей среды. Процедура выделения клеток является одноэтапной, при этом разделение клеток основано на принципе механической фильтрации образца с использованием только физических средств.

Сущность изобретения

В соответствии с одним аспектом настоящего изобретения предлагается устройство для выделения твердой фракции из образца текучей среды, причем данное устройство сдержит фильтрационный блок, содержащий:

генерирующий акустические волны элемент,

по меньшей мере один фильтр, который делит указанный блок на предфильтрационную камеру для вмещения образца текучей среды, и послефильтрационную камеру для вмещения текучей среды, способной передавать акустические волны,

подложку, выполненную с возможностью соединения с послефильтрационной камерой, причем данная подложка способна резонировать при воздействии на нее акустической волны,

в котором

генерирующий акустические волны элемент выполнен с возможностью соединения с указанной подложкой так, что генерирующий акустические волны элемент вызывает резонирование подложки, которая, в свою очередь, передает акустическую стоячую волну как через текучую среду в послефильтрационной камере, так и через образец текучей среды в предфильтрационной камере.

Передача акустической стоячей волны через текучие среды, находящиеся в фильтрационном блоке приводит к возмущению указанных текучих сред в ходе выделения, либо в непрерывном, либо в импульсном режиме. Благодаря такому возмущению минимизируется возможность загрязнения и засорения фильтра.

В вариантах осуществления настоящего изобретения, в которых данное устройство используется для выделения фракции клеток из образца текучей среды, возмущение текучих сред в данном блоке имеет дополнительное преимущество, которое заключается в сведении к минимуму времени контакта клеток с фильтром, или времени пребывания клеток в предфильтрационной камере. Такое решение является желательным, поскольку если клетки находятся в контакте с поверхностью фильтра или достаточно близко к ней, то они стремятся под действием давления окружающей текучей среды проникнуть через поры фильтра. Подобное проникновение клеток через поры возможно в результате их деформации, однако во время такого проникновения клетки могут подвергаться нежелательным напряжениям, например напряжению сдвига, которые могут иметь вредные последствия для клетки. В частности, было показано, что напряжение сдвига оказывает существенное влияние на функционирование белых кровяных клеток (Carter и др., 2003). Таким образом, желательно предотвратить прохождение через фильтр интересующих клеток. В связи с этим, указанный фильтр выполнен таким образом, что допускает прохождение текучей среды и других клеточных фракций и одновременно удерживает интересующие клетки в предфильтрационной камере.

Генерирующий акустические волны элемент представляет собой устройство, которое может генерировать поле акустических волн в ответ на электрический сигнал. Например, в простом громкоговорителе при создании акустической волны электрический сигнал физически прогибает мембрану при определенной амплитуде и частоте. Другие акустические элементы содержат пьезоэлектрические преобразователи, создающие энергию вибрации в ответ на приложенное переменное напряжение, при этом физическая вибрация передается к текучей среде в виде акустического воздействия. Примерами пьезоэлектрических элементов являются керамические диски с электродами из металлической пленки, расположенными на каждой стороне, причем данные тонкие пьезоэлектрические пленки, как правило, выполнены из окиси цинка.

Использование генерирующего акустические волны элемента, соединенного с подложкой, способной к вхождению в резонанс, имеет ряд преимуществ перед использованием одного акустического элемента. Акустический элемент не входит в непосредственный контакт с текучей средой, поскольку данный элемент выполнен таким образом, что лучший резонанс достигается когда он прикреплен к материалу подложки, имеющему большую площадь, чем диффузор самого элемента. Это означает, что при использовании небольшого акустического элемента к текучей среде может быть передано большее количество энергии. В целом, такое решение значительно улучшает эффективность использования энергии и повышает зону обслуживания данным устройством, что является особенно предпочтительным при обработке больших объемов текучей среды. Подходящий акустический элемент можно приобрести в компании NXT Technology Limited (Гонконг), модель №RM-ETN0033K19C-2K01.

В вариантах осуществления данного изобретения генерирующий акустические волны элемент создает акустическую стоячую волну с частотой в диапазоне около 300-700 Гц. Между объемом текучей среды и требуемой оптимальной частотой существует взаимосвязь. Следовательно, согласно предпочтительному варианту осуществления данного изобретения пользователь может рассчитать частоту акустической стоячей волны в зависимости от объема образца текучей среды. Например, для образца объемом около 5-15 мл оптимальная частота акустической стоячей волны составляет около 300-700 Гц.

В конкретном варианте осуществления данного изобретения генерирующий акустические волны элемент представляет собой громкоговоритель с мощностью 0,4 Вт, сопротивлением 4 Ом, размахом амплитуды около 4,2-7,36 В и частотным диапазоном около 300-700 Гц.

В вариантах осуществления данного изобретения подложка расположена, по существу, параллельно фильтру.

В вариантах осуществления данного изобретения подложка расположена у основания фильтрационного блока.

Подложка может представлять собой элемент громкоговорителя, выполненного в соответствии с технологией DML (Distributed Mode Loudspeaker (громкоговоритель с распределенными модами колебаний)). Такой громкоговоритель содержит тонкую пластину, к которой подсоединен возбудитель (например, электродинамический возбудитель, выполненный в соответствии с технологией NXT). Возбудитель содержит постоянный магнит и звуковую катушку. При подаче на звуковую катушку аудиосигнала она начинает совершать колебательное движение в осевом направлении.

В обычных громкоговорителях перемещение катушки приводит к перемещению диффузора, который действует как поршень, вызывая колебания воздуха, тогда как в основе работы громкоговорителей с распределенными модами колебаний лежит иной принцип, основанный на возбуждении в тонкой пластинке множества изгибных резонансных колебаний. В результате в пластинке получают колебание сложной формы, создающее в свою очередь слышимый звук.

В соответствии с заявленным изобретением для осуществления процесса фильтрации в предложенном устройстве необходимо создать резонанс текучей среды, находящейся над подложкой. При этом в текучей среде, находящейся в постфильтрационной камере возникает стоячая волна.

Путем изменения жесткости, диаметра, толщины, массы или плотности подложки можно регулировать резонансную частоту системы. Так, чем жестче подложка, тем выше резонансная частота и, соответственно, чем гибче подложка, тем ниже резонансная частота.

Подложка, используемая совместно с возбудителями, выполненными по технологии NXT, может, представлять собой составной диск, например диск, содержащий центральный лист из пластика, помещенный между двумя слоями из нержавеющей стали. Путем изменения материала центрального листа и толщины оболочек, можно регулировать жесткость подложки, и, следовательно, резонансную частоту системы.

Данная подложка может быть выполнена из любого подходящего материала, способного входить в резонанс в ответ на воздействие генерирующего акустические волны элемента, например из металла, керамического или полимерного материала. Поскольку данная подложка может входить в контакт с используемой в устройстве текучей средой, предпочтительно, ее выполняют из медицинского материала, что уменьшает опасность любого загрязнения токсичным веществом.

Подложка может быть соединена с послефильтрационной камерой любым подходящим способом, например путем приклеивания, сварки, винтового соединения или прессовой посадки. Конкретный способ соединения подложки с послефильтрационной камерой не влияет на технический результат, обеспечиваемый изобретением.

В вариантах осуществления данного изобретения генерирующий акустические волны элемент соединен с подложкой с возможностью съема. Такое соединение достигается различными средствами, известными специалисту в данной области техники, например посредством клейкого вещества. Такое решение особенно предпочтительно при условии использования одноразового фильтрационного блока, так как акустический элемент может быть отсоединен и использован повторно на других блоках.

Перемещение образца текучей среды через фильтр может представлять собой пассивное перемещение под действием гравитационных сил. Согласно альтернативному варианту осуществления, могут применять активное перемещение образца текучей среды через фильтр под воздействием положительного или отрицательного давления. Расход образца текучей среды через фильтр может быть постоянным или переменным.

В вариантах осуществления данного изобретения текучая среда, которая может передавать акустическую волну и помещенная в послефильтрационную камеру, также действует как промывочная текучая среда. В этом варианте имеется нагнетательный насос, который продвигает промывочную текучую среду из послефильтрационной камеры через фильтр к предфильтрационной камере. Одновременно откачивающий насос вытягивает текучую среду из предфильтрационной камеры к послефильтрационной камере. Таким образом, образец текучей среды и промывочная текучая среда последовательно перемещаются в противоположных направлениях через фильтр так, что в результате образец текучей среды перемещается в послефильтрационную камеру, а отделяемая твердая фракция удерживается в предфильтрационной камере.

Последовательное перемещение образца текучей среды и промывочной текучей среды в противоположных направлениях через фильтр предотвращает загрязнение или засорение фильтра, дополнительно увеличивая эффективность процесса отделения. Указанное последовательное перемещение может быть цикличным, при этом одна фаза цикла представляет собой быструю обратную промывку фильтра с использованием промывочной текучей среды, а вторая фаза цикла - пропускание образца текучей среды вниз через фильтр. Данный циклический процесс продолжают для того, чтобы уменьшить объем образца до достаточной величины и одновременно удержать достаточный объем текучей среды выше фильтра так, чтобы фракция частиц находилась в растворе. Обычно объем образца уменьшают приблизительно в 10 раз.

В других вариантах осуществления данного изобретения во время процесса выделения выполняют встряхивание самого фильтра. Данное встряхивание можно получить, например, посредством соединения фильтра с подвижным держателем. Встряхивание может выполняться в вертикальном или боковом направлении, или с обеспечением сочетания этих направлений. В альтернативных вариантах осуществления данного изобретения фильтр может приводиться во вращение.

Другие средства дополнительного возмущения промывочной текучей среды и/или образца текучей среды включают использование вращающегося элемента (например, крыльчатки или вкладыша в текучей среде), вращения стенок камеры, или вращения стенок камеры, в которой стенки выполнены с дефлекторами, или использование активного чипа.

По термином "образец текучей среды" подразумевают любую текучую среду, из которой необходимо выделить твердые компоненты. Образец может быть получен из любого источника, например организма, группы организмов одного и того же вида, или разных видов, из окружающей среды такой, как тело, или вода, или грунт, или из пищевого источника, или промышленного источника. Образец может представлять собой обработанный или необработанный образец. Образец может быть газом или жидкостью. Образец может быть экстрактом, например жидким экстрактом из образца грунта или пищи.

Данное устройство, в частности, подходит для жидкостей, которые обладают вязкостью и повышенной тенденцией к загрязнению фильтра посредством образования пленки или покрытия на его поверхности. Обратная промывка промывочной текучей средой через фильтр и, опционально, возмущение образца текучей среды и/или фильтра значительно уменьшают загрязнение фильтра, а также поддерживают фракцию находящихся в предфильтрационной подкамере частиц в растворе.

Источником данного образца может служить субъект, который может представлять собой любой организм, например животное или человека. Животное может представлять собой любое дикое или домашнее животное. Домашнее животное может быть, например, комнатным животным, таким как собака или кошка.

Данный образец может быть биологическим образцом, например образцом крови, выпота, мочи, спермы, аспирата костного мозга, спинномозговой жидкости, взвеси клеток из ткани, слизи, мокроты или слюны. Данный биологический образец может быть получен от любого животного, а не только от человека.

Термин "образец крови", используемый в данном документе, относится к обработанному или необработанному образцу крови, включая образцы пуповинной крови, аспираты костного мозга, кровь внутренних органов или периферических органов, а также он может быть любого объема и может быть получен от любого субъекта, такого как животное или человек. Предпочтительным субъектом является человек.

Твердая фракция, подлежащая выделению из образца биологической текучей среды, может содержать по меньшей мере одну клеточную фракцию. Предпочтительно данная клеточная фракция содержит лечебную клетку, которая представляет собой любую клетку, которая может оказывать лечебное или целебное воздействие.

Клеточная фракция может содержать по меньшей мере одно белое кровяное тельце или состоять по меньшей мере из одного белого кровяного тельца. "Белое кровяное тельце" представляет собой лейкоцит или клетку кроветворной линии, которая не является ретикулоцитом или тромбоцитом и которая может быть обнаружена в крови животного или человека. Лейкоцит может содержать естественные клетки-киллеры ("NK-клетки") и лимфоциты, например В-лимфоциты ("В-клетки") или Т-лимфоциты ("Т-клетки"). Лейкоциты также могут содержать клетки фагоцитов, такие как моноциты, макрофаги и гранулоциты, включая базофилы, эозинофилы и нейтрофилы. Лейкоциты могут также содержать мастоциты.

Клеточная фракция может содержать по меньшей мере одно красное кровяное тельце или состоять по меньшей мере из одного красного кровяного тельца. "Красное кровяное тельце" представляет собой эритроцит.

Клеточная фракция может содержать по меньшей мере одну неопластическую клетку или состоять по меньшей мере из одной неопластической клетки. Термин "неопластическая клетка" относится к аномальным клеткам, которые обладают свойством неконтролируемого клеточного разрастания и продолжают расти после прекращения стимулирующих воздействий, которые вызывают новый рост. Неопластические клетки имеют тенденцию к частичному или полному отсутствию структурной организации и функциональной координации с нормальной тканью и могут быть доброкачественными или злокачественными.

Клеточная фракция может содержать по меньшей мере одну злокачественную клетку или состоять по меньшей мере из одной злокачественной клетки. Термин "злокачественная клетка" относится к клетке, обладающей свойством локального инвазивного и деструктивного роста и метастазирования. Примеры злокачественной клетки включают такие клетки, как лейкозные клетки, клетки лимфомы, раковые клетки твердых новообразований, клетки твердых метастатических новообразований (например, раковые клетки молочной железы, раковые клетки простаты, раковые клетки легких, раковые клетки толстой кишки) в различных текучих средах тела, включая кровь, костный мозг, асцитические жидкости, мочу, смывы из бронха, причем примеры указанных клеток не исчерпываются данным перечнем.

Клеточная фракция может содержать по меньшей мере одну раковую клетку или состоять по меньшей мере из одной раковой клетки. Термин "раковая клетка" относится к клетке, которая проявляет нерегулируемый рост и, в большинстве случаев, теряет по меньшей мере одно из своих дифференцирующих свойств, например характерную морфологию, немигрирующее поведение, межклеточное взаимодействие и сигнализирующее поведение клетки, экспрессию протеина и паттерн секреции.

Клеточная фракция может содержать по меньшей мере одну стволовую клетку или состоять по меньшей мере из одной стволовой клетки. "Стволовая клетка" представляет собой недифференцированную клетку, которая может давать начало, посредством одного или более циклов деления клеток, по меньшей мере одному типу дифференцированных клеток.

Клеточная фракция может содержать по меньшей мере одну клетку-предшественника или состоять по меньшей мере из одной клетки-предшественника. "Клетка-предшественник" представляет собой коммитированную, но недифференцированную клетку, которая может давать начало, посредством одного или более циклов деления клеток, по меньшей мере одному типу дифференцированных клеток. Обычно стволовая клетка дает начало клетке-предшественнику посредством одного или более циклов деления клеток в ответ на конкретное стимулирующее воздействие или ряд стимулирующих воздействий, а клетка-предшественник дает начало дифференцированным клеткам одного или более типов в ответ на конкретное стимулирующее воздействие или ряд стимулирующих воздействий.

Костный мозг (или medulla ossea) представляет собой мягкую ткань, находящуюся в полой внутренней части костей. Существует два типа костного мозга - красный костный мозг (известный также как миелоидная ткань) и желтый костный мозг. Красные кровяные тельца, тромбоциты и наибольшая часть белых кровяных телец возникают в красном костном мозге, некоторые клетки белых кровяных телец развиваются в желтом костном мозге.

Костный мозг содержит два типа стволовых клеток - кроветворные стволовые клетки и мезенхимные стволовые клетки. Стволовые клетки являются первичными клетками, общими для всех многоклеточных организмов, которые сохраняют способность к собственному обновлению посредством деления клеток и могут дифференцироваться в широком диапазоне конкретных типов клеток. Кроветворные стволовые клетки дают начало трем классам клеток крови, которые обнаруживаются в системе кровообращения - клеткам белых кровяных телец (лейкоцитам), клеткам красных кровяных телец (эритроцитам) и кровяным пластинкам (тромбоцитам). Мезенхимные стволовые клетки упорядочены вокруг центрального синуса в костном мозге и обладают способностью дифференцироваться в остеобласты, хондроциты, миоциты и многие другие типы клеток.

В то время как стволовые клетки эмбриона являются истинными стволовыми клетками, так как они являются тотипотентными или плюрипотентными и демонстрируют неограниченную способность к самообновлению, зрелые стволовые клетки в костном мозге более уместно определить как клетки-предшественники, которые подобно стволовым клеткам обладают способностью к самообновлению и дифференциации, хотя значительно более ограничены. Клетки-предшественники обычно являются унипотентными или мультипотентными, а не плюрипотентными.

Мезенхимные стволовые клетки, или МСК, в классическом случае получаемые из костного мозга, являются мультипотентными стволовыми клетками, которые могут дифференцироваться в различные типы клеток. Типы клеток, в которые дифференцируются МСК, включают остеобласты, хондроциты, миоциты, адипоциты, и нервные клетки.

Плотность костного мозга может изменяться и изменяется от пациента к пациенту, поэтому вязкость костного мозга не одинакова. Более молодые пациенты часто имеют более плотный и вязкий костный мозг, что обусловлено наличием большей трабекулярной ткани в полости кости. Фильтрация такого вязкого костного мозга обычно вызывает загрязнение фильтров в разделительных устройствах.

В вариантах осуществления данного изобретения образец текучей среды представляет собой аспират костного мозга.

В других вариантах осуществления данного изобретения образец текучей среды представляет собой аспират костного мозга, а твердая фракция является клеткой-предшественником.

Термин "ткань", используемый в данном документе, включает четыре основных типа ткани, присутствующей у всех животных - эпителиальную, соединительную, мышечную и нервную ткань.

Примеры соединительной ткани включают ткань кожи, мышечную, хрящевую, костную ткань, ткань сухожилия, связки, ткань суставной капсулы и жировую ткань.

Термин "жировая ткань", используемый в данном документе, обозначает жировую клетчатку и другие источники микрососудистой ткани в теле. Жировая ткань представляет собой сложную ткань, содержащую множественные типы клеток, включая адипоциты, перициты, фибробласты, макрофаги, стволовые клетки и микрососудистые клетки. По существу, жировая ткань представляет собой один из наиболее подходящих источников клеток-предшественников в теле.

Термин "микрососудистые клетки", используемый в данном документе, относится к клеткам, составляющим структуру микроциркуляционного русла, то есть клеткам эндотелия, гладкомышечным клеткам и перицитам.

Жировая ткань может быть получена из "жирового" депо в теле. Подходящие депо содержатся в эпидидимисе, межлопаточном скоплении жировой ткани или инфрапателлярном скоплении жировой ткани (скоплении жировой ткани при болезни Гоффы). Альтернативно, жировая ткань может быть аспиратом жира, полученным при липосакции, что потенциально является наиболее простым способом получения такой ткани.

Если аспират жира может быть введен непосредственно в предлагаемое устройство, то фрагменты жировой ткани требуют предварительной обработки. Фрагменты жировой ткани измельчают и/или ферментируют для освобождения клеточного компонента данной ткани. Затем данный клеточный компонент могут суспендировать в соответствующем носителе и ввести в предлагаемое устройство.

Предусматривается, что липоаспират и/или взвесь клеток, полученная вышеуказанным способом, может подвергаться дополнительной обработке до введения ее в данное устройство. Например, для выделения больших крупинок жира и адипоцитов из фракции стромальных клеток (содержащей стволовые клетки, эндотелиальные клетки и перициты) может применяться гравитационное осаждение и/или центрифугирование.

В вариантах осуществления данного изобретения, в которых выполняется фильтрация биологического образца, фильтрационный блок может быть присоединен к аспиратору так, что данная текучая среда переносится непосредственно от субъекта в фильтрационный блок. Данный фильтрационный блок может использоваться в стерильных условиях, что снижает опасность загрязнения образца в промежутке между его извлечением из тела пациента и введением в фильтрационный блок.

В альтернативных вариантах осуществления данного изобретения твердая фракция может состоять из этиологического агента, например бактерий, грибка, представителя простейших, вируса, паразитирующего организма или приона, который может инфицировать субъект.

Данный образец может быть взвесью клеток, полученных в искусственных условиях (in vitro).

Фильтр, который также можно рассматривать как пленку, может быть изготовлен из любого материала, пригодного для выделения твердой фракции из образца текучей среды способом, описанным в данном изобретении. Данный фильтр может быть выполнен из естественного или синтетического материала или из комбинации этих материалов. К числу подходящих материалов относятся металлы, сплавы металлов, керамика или полимерные материалы, причем данный перечень материалов не носит ограничительного характера. Примерами таких материалов являются поликарбонат PLC (ПКБ), полиэтилентерефталат PET (ПЭТ), полиидид (ПИ), никель и нержавеющая сталь. Данные материалы предпочтительно являются медицинскими материалами. Подходящие трековые фильтры выпускаются компанией it4ip (Бельгия). Подходящие фильтры из никелевой фольги выпускаются компанией Tecan Limited (Великобритания).

В вариантах осуществления настоящего изобретения данный фильтр выполнен, по существу, плоским. То есть, данный фильтр имеет двухмерный профиль, в котором диаметр фильтра превышает его высоту. Подобный профиль увеличивает площадь потенциальной поверхности, которой фильтр взаимодействует с образцом текучей среды, при этом повышается скорость фильтрации. Данный профиль также сводит к минимуму возможность засорения фильтра каким-либо твердым веществом.

Подходящая толщина фильтра может составлять, например, 11, 23 и 50 мкм. Чем тоньше фильтр, тем выше расход текучей среды через него.

Предусматривается, что данный фильтр может быть выполнен с порами одинакового диаметра или с порами разного диаметра и одинаковой геометрической формы. Альтернативно, фильтр может быть выполнен с порами, имеющими одинаковый диаметр и разную геометрическую форму. Альтернативно, фильтр может быть выполнен с порами разного диаметра и разной геометрической формы.

К подходящим геометрическим формам относятся формы, имеющие круглые, эллипсоидные, квадратные, прямоугольные или треугольные боковые поперечные сечения, причем данный перечень форм не носит ограничительного характера.

Поры могут иметь суженную форму. Сужение пор способствует деформации клеток под действием вакуума. В зависимости от размера поры у каждого суженного конца и его ориентации можно произвести отбор предпочтительных клеток на основе их размера. В предпочтительных вариантах осуществления данного изобретения самый узкий конец суженной поры расположен у верхней поверхности фильтра. Такое расположение допускает прохождение через пору меньших клеток, в то время как более крупные клетки удерживаются над фильтром. С другой стороны, по-видимому, это усложняет возврат клеток в послефильтрационной камере через поры во время поступления промывочной текучей среды вверх через фильтр в ходе обратной промывки. Было установлено, что если самый узкий конец поры расположен у нижней поверхности фильтра, то наблюдается тенденция вхождения клеток в пору, в результате чего они деформируются, для того чтобы пройти через самый узкий конец.

В конкретных вариантах осуществления данного изобретения поры имеют диаметр, находящийся в диапазоне приблизительно 1-12 мкм.

В дополнительных вариантах осуществления данного изобретения поры могут иметь цилиндрическую форму.

В других вариантах осуществления данного изобретения, в которых клетки-предшественники отделяют от аспирата костного мозга, подходящий фильтр выполнен из полиэтилентерефталата (ПЭТ), имеет толщину 23 мкм, диаметр пор 3 мкм и плотность пор 400000 пор/см2. Величина оптимального отрицательного давления, создаваемого вакуумным насосом для эффективного «протягивания» текучей среды через фильтр, находится в диапазоне приблизительно от -0,1 до -0,5 psi (-0,007 - -0,035 кг/см2), в частности от -0,2 до -0,3 psi (-0,014 - -0,021 кг/см2). Альтернативно, для эффективного «проталкивания» текучей среды через фильтр может быть создано положительное давление. Величина оптимального положительного давления, создаваемого подобным насосом, находится в диапазоне приблизительно от 0,1 до 0,5 psi (0,007-0,035 кг/см2), в частности от 0,2 до -0,3 psi (0,014-0,021 кг/см2).

Конструкция фильтрационного блока может быть видоизменена с уменьшением соотношения геометрических размеров предфильтрационной камеры для образца текучей среды. Тем самым обеспечивается большая площадь поверхности при фильтрации на единицу объема. В других вариантах осуществления данного изобретения предфильтрационная камера фильтрационного блока разделена на несколько камер, которые могут быть использованы для вмещения партии образцов текучей среды, представленных в виде луночного планшета.

После фильтрации оставшийся образец текучей среды, который содержит выделенную твердую фракцию (которую также называют очищенной, обогащенной или концентрированной), может быть удален из верхней камеры фильтрационного блока посредством всасывания, например с использованием пипетки, и либо сохранен, либо использован. В других вариантах осуществления данного изобретения, в частности в вариантах, в которых оставшийся образец текучей среды содержит фракцию лечебных клеток, он может быть смешан, например, с гидрогелем или костным цементом. В этих вариантах осуществления гидрогель или костный цемент служат в качестве депо клеток.

В соответствии с одним аспектом данного изобретения предлагается способ выделения твердой фракции из образца текучей среды, причем данный способ включает следующие этапы:

i) введение образца текучей среды в устройство по изобретению,

ii) фильтрация образца текучей среды,

iii) удаление выделенной фракции из предфильтрационной камеры.

В соответствии с другим аспектом данного изобретения предлагается способ изоляции или выделения лечебных клеток из образца текучей среды с использованием предлагаемого устройства.

В вариантах осуществления данного изобретения образец текучей среды может быть биологическим образцом таким, как образец крови, выпота, мочи, спермы, аспирата костного мозга, спинномозговой жидкости, взвеси клеток из ткани, слизи, мокроты или слюны.

В вариантах осуществления данного изобретения лечебная клетка представляет собой клетку-предшественник.

В соответствии с другим аспектом данного изобретения предлагается способ изоляции или выделения лечебных клеток из аспирата костного мозга с использованием предлагаемого устройства.

В вариантах осуществления данного изобретения лечебная клетка представляет собой клетку-предшественник.

Данной системой можно управлять вручную. Однако для повышения общей эффективности и точности процесса выделения, в частности, когда данное устройство используется медицинским персоналом в операционной, предпочтительно его автоматизировать. Для этого можно использовать программируемый логический контроллер PLC (ПЛК), который может быть запрограммирован на переключение вакуумного насоса и насоса для обратной промывки на включение и выключение с циклическим чередованием во временной последовательности. Под действием разряжения, создаваемого вакуумным насосом образец текучей среды втягивается вниз через фильтр, а промывочная текучая среда с помощью насоса для обратной промывки п