Синхронная связь на основе tdm в сценариях с доминирующими помехами

Иллюстрации

Показать все

Изобретение относится к системам связи. Технический результат заключается в сохранении системных ресурсов. Заявлен способ беспроводной связи, содержащий этапы, на которых: определяют субкадры, в которых ретрансляционная станция слушает макробазовую станцию; и передают в режиме многоадресной/широковещательной одночастотной сети (multicast/broadcast single frequency network, MBSFN) ретрансляционной станцией в субкадрах, в которых ретрансляционная станция слушает макробазовую станцию, причем опорный сигнал передается в меньших символьных интервалах в субкадре в MBSFN режиме, чем в обычном режиме. 2 н. и 9 з.п. ф-лы, 12 ил.

Реферат

Настоящая заявка притязает на приоритет предварительной заявки на патент США, серийный номер 61080025, озаглавленной "ENABLING COMMUNICATIONS IN THE PRESENCE OF DOMINANT INTERFERER", поданной 11 июля 2008, переданной правопреемнику настоящей заявки и тем самым прямо включенной здесь посредством ссылки.

Область техники, к которой относится изобретение

Настоящее раскрытие в целом относится к связи и более конкретно к технологиям для поддержки связи в беспроводной сети связи.

Уровень техники

Беспроводные сети связи широко развертываются для предоставления различных услуг связи, таких как речь, видео, пакетные данные, обмен сообщениями, широковещание и т.п. Эти беспроводные сети могут быть сетями с многостанционным доступом, способными поддерживать связь со многими пользователями посредством совместного использования доступных системных ресурсов.

Примеры таких сетей многостанционного доступа включают сети многостанционного доступа с кодовым разделением каналов (CDMA), сети многостанционного доступа с временным разделением каналов (TDMA), сети многостанционного доступа с частотным разделением каналов (FDMA), сети многостанционного доступа с ортогональным частотным разделением каналов (OFDMA) и сети многостанционного доступа с частотным разделением каналов с одной несущей (Single-Carrier FDMA, SC-FDMA).

Беспроводная сеть связи может включать несколько базовых станций, которые могут поддерживать связь с несколькими единицами пользовательского оборудования (user equipments, UE). Пользовательское оборудование (UE) может связываться с базовой станцией посредством нисходящей линии и восходящей линии. Нисходящей линией (или прямой линией) называется линия связи от базовой станции к пользовательскому оборудованию (UE), и восходящей линией (или обратной линией) называется линия связи от пользовательского оборудования (UE) к базовой станции.

Базовая станция может передавать данные и управляющую информацию по нисходящей линии к пользовательскому оборудованию (UE) и/или может принимать данные и управляющую информацию по восходящей линии от пользовательского оборудования (UE). По нисходящей линии передача от базовой станции может подвергаться воздействию помех из-за передач от соседних базовых станций. По восходящей линии передача от пользовательского оборудования (UE) может вызывать помехи передачам от других единиц пользовательского оборудования (UE), связывающихся с соседними базовыми станциями. Помехи могут ухудшать характеристики как нисходящей линии, так и восходящей линии.

Сущность изобретения

Технологии для поддержки связи в сценарии доминирующих помех и для поддержки работы ретранслятора в неоднородной сети рассматриваются здесь. Неоднородная сеть может включать базовые станции с различными уровнями мощности передачи. В сценарии доминирующих помех пользовательское оборудование (UE) может связываться с первой базовой станцией и может подвергаться воздействию интенсивных помех от и/или может создавать интенсивные помехи второй базовой станции. Первая и вторая базовые станции могут быть различных типов и/или могут иметь различные уровни мощности передачи.

В одном аспекте связь в сценарии доминирующих помех может поддерживаться посредством резервирования субкадров для более слабой базовой станции, подвергающейся воздействию интенсивных помех от базовой станции с интенсивными помехами. Узел eNB может классифицироваться как "слабый" узел eNB или "сильный" узел eNB на основе принятой мощности узла eNB на пользовательском оборудовании (UE) (а не на основе уровня мощности передачи узла eNB). Пользовательское оборудование (UE) может затем связываться с более слабой базовой станцией в принимаемых субкадрах в присутствии базовой станции с интенсивными помехами.

В другом аспекте помехи из-за опорного сигнала в неоднородной сети могут быть смягчены. Первая станция (например, базовая станция) вызывающая интенсивные помехи или подвергающаяся воздействию интенсивных помех от второй станции (например, пользовательского оборудования (UE) или другой базовой станции) в неоднородной сети может быть идентифицирована. В одной разработке помехи из-за первого опорного сигнала от первой станции могут быть смягчены посредством устранения помехи на второй станции (например, пользовательском оборудовании (UE)). В другой разработке помехи первому опорному сигналу могут быть смягчены посредством выбора других ресурсов для передачи второго опорного сигнала второй станцией (например, другой базовой станцией) для предотвращения коллизии с первым опорным сигналом.

В еще одном аспекте ретранслятор может работать для достижения хороших характеристик. Ретранслятор может определять субкадры, в которых он слушает макробазовую станцию и может передавать в режиме многоадресной/вещательной одночастотной сети (multicast/broadcast single frequency network, MBSFN) в этих субкадрах. Ретранслятор может также определять субкадры, в которых он передает единицам пользовательского оборудования (UE) и может передавать в обычном режиме в этих субкадрах. Ретранслятор может передавать опорный сигнал в меньших символьных интервалах в субкадре в режиме MBSFN, чем в обычном режиме. Ретранслятор может также передавать меньше управляющих мультиплексированных во времени (time division multiplexed, TDM) символов в субкадре в режиме MBSFN, чем в обычном режиме.

В еще одном аспекте первая станция может передавать больше TDM управляющих символов, чем доминирующий источник помех для того, чтобы улучшить прием TDM управляющих символов пользовательским оборудованием (UE). Первая станция (например, пикобазовая станция, ретранслятор, и т.п.) может идентифицировать станцию с интенсивными помехами к первой станции. Первая станция может определять первое число TDM управляющих символов, передаваемых станцией с интенсивными помехами в субкадре. Первая станция может передавать второе (например, максимальное) число TDM управляющих символов в субкадре, при этом второе число TDM управляющих символов больше, чем первое число TDM управляющих символов.

Различные аспекты и функции раскрытия рассматриваются более подробно ниже.

Краткое описание чертежей

Фиг.1 показывает беспроводную сеть связи.

Фиг.2 показывает примерную структуру кадра.

Фиг.3 показывает два примерных формата обычного субкадра.

Фиг.4 показывает два примерных формата субкадра MBSFN.

Фиг.5 показывает примерную временную шкалу передачи для различных базовых станций.

Фиг.6 и 7 показывают процесс и устройство соответственно для смягчения помех в беспроводной сети связи.

Фиг.8 и 9 показывают процесс и устройство соответственно для работы ретранслятора.

Фиг.10 и 11 показывают процесс и устройство соответственно для передачи управляющей информации в беспроводной сети связи.

Фиг.12 показывает блок-схему базовой станции или ретрансляционной станции и пользовательского оборудования (UE).

Подробное описание

Технологии, рассматриваемые здесь, могут использоваться для различных беспроводных сетей связи, таких как CDMA, TDMA, FDMA, OFDMA, SC-FDMA, и других сетей. Термины "сеть" и "система" часто используются взаимозаменяемо. Сеть CDMA может осуществлять такую радио технологию, как UTRA (Universal Terrestrial Radio Access), cdma2000 и т.п. Технология UTRA включает широкополосный множественный доступ с кодовым разделением (Wideband CDMA, WCDMA) и другие варианты CDMA. Технология cdma2000 покрывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может осуществлять такую радио технологию, как GSM (Global System for Mobile Communications). Сеть OFDMA может осуществлять такую радио технологию, как E-UTRA (Evolved UTRA), UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM® и т.п. Технологии UTRA и E-UTRA являются частью системы UMTS (Universal Mobile Telecommunication System). Технологии 3GPP LTE (Long Term Evolution) и LTE-A (LTE-Advanced) являются новыми релизами технологии UMTS, которые используют технологию E-UTRA. Технологии UTRA, E-UTRA, UMTS, LTE, LTE-A и GSM рассматриваются в документах от организации, называемой "Партнерским проектом по системам 3-го поколения (3rd Generation Partnership Project, 3GPP)". Технологии cdma2000 и UMB рассматриваются в документах от организации, называемой "Партнерским проектом 2 по системам 3-го поколения (3rd Generation Partnership Project 2, 3GPP2)". Технологии, рассматриваемые здесь, могут использоваться для беспроводных сетей и радио технологий, упомянутых выше, а также в других беспроводных сетях и радио технологиях. Для ясности, конкретные аспекты технологии рассматриваются ниже для LTE, и терминология LTE используется в основном в описании ниже.

Фиг.1 показывает беспроводную сеть 100 связи, которая может быть сетью LTE или некоторой другой беспроводной сетью. Беспроводная сеть 100 может включать несколько усовершенствованных Узлов В (evolved Node B, eNB) 110, 112, 114 и 116 и другие сетевые объекты. Узел (eNB) может быть станцией, которая связывается с пользовательским оборудованием (UE) и может также называться базовой станцией, Node B, точкой доступа и т.п. Каждый узел eNB может предоставлять покрытие связи для конкретной географической области. В стандарте 3GPP термин "ячейка" может относиться к области покрытия узла eNB и/или подсистемы узлов eNB, обслуживающих эту область покрытия, в зависимости от контекста, в котором этот термин используется.

Узел eNB может предоставлять покрытие связи для макроячейки, пикоячейки, фемтоячейки и/или других типов ячеек. Макроячейка может покрывать относительно большую географическую область (например, несколько километров в радиусе) и может позволять неограниченный доступ единицам пользовательского оборудования (UE) с подпиской на обслуживание. Пикоячейка может покрывать относительно небольшую географическую область и может позволять неограниченный доступ пользовательскому оборудованию (UE) с подпиской на обслуживание. Фемтоячейка может покрывать относительно небольшую географическую область (например, дом) и может позволять ограниченный доступ пользовательскому оборудованию (UE), ассоциирующемуся с фемтоячейкой (например, пользовательское оборудование (UE) в закрытой абонентской группе (Closed Subscriber Group, CSG), пользовательского оборудования (UE) для пользователей в доме и т.п.). Узел eNB для макроячейки может называться макроузлом eNB. Узел eNB для пикоячейки может называться пикоузлом eNB. Узел eNB для фемтоячейки может называться фемтоузлом eNB или домашним узлом eNB. В примере, показанном на фиг.1, узел eNB 110 может быть макроузлом eNB для макроячейки 102, узел eNB 112 может быть пикоузлом eNB для пикоячейки 104, и узлы eNB 114 и 116 могут быть фемтоузлами eNB для фемтоячеек 106 и 108 соответственно. Узел eNB может поддерживать одну или много (например, три) ячеек.

Беспроводная сеть 100 может также включать ретрансляционные станции. Ретрансляционная станция является станцией, которая принимает передачу данных и/или другой информации от восходящей станции (например, узла eNB или пользовательского оборудования (UE)) и передает передачу данных и/или другой информации к нисходящей станции (например, пользовательскому оборудованию (UE) или узла eNB). Ретрансляционная станция может также быть пользовательским оборудованием (UE), которое ретранслирует передачи для другого пользовательского оборудования (UE). В примере, показанном на фиг.1, ретрансляционная станция 118 может связываться с макробазовой станцией (eNB) 110 и пользовательским оборудованием (UE) 128 для облегчения связи между узлом eNB 110 и пользовательским оборудованием (UE) 128. Ретрансляционная станция может также называться ретрансляционным узлом eNB, ретранслятором т.п.

Беспроводная сеть 100 может быть неоднородной сетью, которая включает узлы eNB различных типов, например макроузлы eNB, пикоузлы eNB, фемтоузлы eNB, ретрансляторы и т.п. Эти различные типы узлов eNB могут иметь различные уровни мощности передачи, различные области покрытия и разное влияние на помехи в беспроводной сети 100. Например, макроузлы eNB могут иметь высокий уровень мощности передачи (например, 20 Вт), в то время как пикоузлы eNB, фемтоузлы eNB и ретрансляторы могут иметь низкий уровень мощности передачи (например, 1 Вт).

Беспроводная сеть 100 может поддерживать синхронную работу. Для синхронной работы узлы eNB могут иметь похожую кадровую синхронизацию, и передачи от различных узлов eNB могут быть примерно выровнены во времени. Синхронная работа может поддерживать конкретные функции передачи, как рассматривается ниже.

Сетевой контроллер 130 может связываться с набором узлов eNB и может предоставлять координирование и управление для этих узлов eNB. Сетевой контроллер 130 может связываться с узлами eNB через транспортную сеть. Узлы eNB могут также связываться друг с другом, например, напрямую или ненапрямую через беспроводную или проводную транзитную сеть.

Пользовательское оборудование (UE) 122, 124 и 128 может быть распределено по всей беспроводной сети 100, и каждая единица пользовательского оборудования (UE) может быть стационарной или подвижной. Пользовательское оборудование (UE) может также называться терминалом, мобильной станцией, абонентским блоком, станцией и т.п. Пользовательское оборудование (UE) может быть сотовым телефоном, персональным цифровым помощником (personal digital assistant, PDA), беспроводным модемом, устройством беспроводной связи, ручным устройством, портативным компьютером, бесшнуровым телефоном, беспроводной станцией WLL (wireless local loop) и т.п. Пользовательское оборудование (UE) может связываться с макроузлами eNB, пикоузлами eNB, фемтоузлами eNB, ретрансляторами и т.п. На фиг.1 сплошная линия с двойными стрелками указывает требуемые передачи между пользовательским оборудованием (UE) и обслуживающим узлом eNB, который является узлом eNB, назначаемой для обслуживания пользовательского оборудования (UE) по нисходящей линии и/или восходящей линии. Пунктирная линия с двойными стрелками указывает мешающие передачи между пользовательским оборудованием (UE) и узлом eNB.

Технология LTE использует технологию мультиплексирования с ортогональным частотным разделением (orthogonal frequency division multiplexing, OFDM) на нисходящей линии и технологию мультиплексирования с частотным разделением с одной несущей (single-carrier frequency division multiplexing, SC-FDM) на восходящей линии. Технологии OFDM и SC-FDM разбивают полосу системы на многие (K) ортогональные поднесущие, которые также обычно называются тональными сигналами и т.п. Каждая поднесущая может модулироваться данными. В общем, символы модуляции передаются в частотной области с помощью технологии OFDM и во временной области с помощью технологии SC-FDM. Разнесение между соседними поднесущими может быть фиксированным, и общее число поднесущих (K) может зависеть от полосы система. Например, K может быть равным 128, 256, 512, 1024 или 2048 для полосы системы 1,25, 2,5, 5, 10 или 20 МГц соответственно. Полоса системы может также делиться на субполосы. Например, субполоса может покрывать 1.08 МГц, и может быть 1, 2, 4, 8 или 16 субполос для полосы системы 1,25, 2,5, 5, 10 или 20 МГц соответственно.

Фиг.2 показывает структуру кадра, используемую в технологии LTE. Временная шкала передачи для нисходящей линии может делиться на единицы радиокадров.

Каждый радиокадр может иметь заранее заданную длительность (например, 10 миллисекунд (мс)) и может делиться на 10 субкадров с индексами от 0 до 9. Каждый субкадр может включать два слота. Каждый радиокадр может, таким образом, включать 20 слотов с индексами от 0 до 19. Каждый слот может включать L символьных интервалов, например L=7 символьных интервалов для обычного циклического префикса (как показано на фиг.2) или L=6 символьных интервалов для расширенного циклического префикса. 2L символьным интервалам в каждом субкадре могут быть назначены индексы от 0 до 2L-1.

Доступные частотно-временные ресурсы могут делиться на ресурсные блоки. Каждый ресурсный блок может покрывать N поднесущих (например, 12 поднесущих) в одном слоте и может включать несколько ресурсных элементов. Каждый ресурсный элемент может покрывать одну поднесущую на одном символьном интервале и может использоваться для передачи одного символа модуляции, который может иметь действительное или комплексное значение. Узел eNB может передавать один OFDM-символ на каждом символьном интервале. Каждый OFDM-символ может включать символы модуляции на поднесущих, использующихся для передачи, и нулевые символы с нулевыми значениями сигнала на оставшихся поднесущих.

В технологии LTE узел eNB может передавать первичный синхросигнал (primary synchronization signal, PSS) и вторичный синхросигнал (secondary synchronization signal, SSS) в центре 1.08 МГц полосы системы для каждой ячейки в базовой станции (eNB). Первичный и вторичный синхросигналы могут передаваться на символьных интервалах 6 и 5 соответственно в каждом из субкадров 0 и 5 каждого радиокадра с обычным циклическим префиксом, как показано на фиг.2. Синхросигналы могут использоваться единицами пользовательского оборудования (UE) для поиска и сбора данных о ячейках. Узел eNB может передавать физический широковещательный канал (Physical Broadcast Channel, PBCH) на символьных интервалах с 0 по 3 в слоте 1 субкадра 0 в конкретных радиокадрах. Канал PBCH может передавать конкретную системную информацию.

Узел eNB может передавать канал PCFICH (Physical Control Format Indicator Channel) в первом символьном интервале каждого субкадра, как показано на фиг.2. Канал PCFICH может передавать число (M) символьных интервалов, используемых для каналов управления в субкадре, где M может быть равно 1, 2 или 3 и может меняться от субкадра к субкадру. Число M может также быть также равно 4 для небольшой полосы системы, например меньше чем с 10 ресурсными блоками. Узел eNB может передавать канал PHICH (Physical HARQ Indicator Channel) и физический нисходящий канал управления (Physical Downlink Control Channel, PDCCH) в первых M символьных интервалах каждого субкадра (не показано на Фиг.2). Канал PHICH может передавать информацию для поддержки гибридной автоматической повторной передачи (hybrid automatic retransmit, HARQ). Канал PDCCH может передавать информацию по распределению ресурсов для единиц пользовательского оборудования (UE) и управляющую информацию для нисходящих каналов. Первые M OFDM-символов субкадра могут также называться TDM управляющими символами. TDM управляющий символ может быть OFDM-символом, передающим управляющую информацию. Узел eNB может передавать физический нисходящий общий канал (Physical Downlink Shared Channel, PDSCH) в оставшихся символьных интервалах каждого субкадра. Канал PDSCH может передавать данные для единиц пользовательского оборудования (UE), планируемых для передачи данных по нисходящей линии. Различные сигналы и каналы в системе LTE рассматриваются в документе TS 36.211 стандарта 3GPP, озаглавленном "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation", который находится в открытом доступе.

Технология LTE поддерживает передачу одноадресной информации конкретным единицам пользовательского оборудования (UE). Технология LTE также поддерживает передачу широковещательной информации всем единицам пользовательского оборудования (UE) и многоадресной информации группе единиц пользовательского оборудования (UE). Многоадресная/ широковещательная передача может также называться MBSFN передачей. Субкадр, используемый для передачи одноадресной информации, может называться регулярным субкадром. Субкадр, используемый для передачи многоадресной и/или широковещательной информации, может называться MBSFN субкадром.

Фиг.3 показывает два примерных формата 310 и 320 обычного субкадра, которые могут использоваться для передачи одноадресной информации конкретным единицам пользовательского оборудования (UE) по нисходящей линии. Для нормального циклического префикса в LTE слот слева включает семь символьных интервалов от 0 до 6 и слот справа включает семь символьных интервалов от 7 до 13.

Формат 310 субкадра может использоваться узлом eNB, оборудованным двумя антеннами. Опорный сигнал для конкретной соты может передаваться в символьных интервалах 0, 4, 7 и 11 и может использоваться единицами пользовательского оборудования (UE) для оценивания параметров канала. Опорным сигналом является априорно известный передатчику и приемнику сигнал и может также называться пилотным сигналом. Опорным сигналом для конкретной ячейки является опорный сигнал, который является конкретным для ячейки, например генерируемый с одной или более символьными последовательностями, определяемыми на основе идентификатора (identity, ID) ячейки. Для простоты опорный сигнал для конкретной соты может называться просто опорным сигналом. На Фиг.3 для данного ресурсного элемента с пометкой R1 опорный символ может передаваться по этому ресурсному элементу от антенны i и символы не могут передаваться по этому ресурсному элементу от других антенн. Формат 320 субкадра может использоваться узлом eNB оборудованным четырьмя антеннами. Опорный сигнал может передаваться в символьных интервалах 0, 1, 4, 7, 8 и 11.

В примере, показанном на фиг.3, три TDM управляющих символа передаются в частотной области в регулярном субкадре с M=3. Канал PCFICH может передаваться в символьном интервале 0, и каналы PDCCH и PHICH могут передаваться в символьных интервалов с 0 по 2. Канал PDSCH может передаваться в оставшихся символьных интервалах с 3 по 13 субкадра.

Фиг.4 показывает два примерных формата 410 и 420 субкадра MBSFN, которые могут использоваться для передачи широковещательной/многоадресной информации единицам пользовательского оборудования (UE) по нисходящей линии. Формат субкадра 410 может использоваться базовой станцией (eNB), оборудованной двумя антеннами. Опорный сигнал может передаваться в символьном интервале 0. Для примера, показанного на Фиг.4, M=1 и один TDM управляющий символ может передаваться в MBSFN субкадре. Формат 420 субкадра может использоваться узлом eNB, оборудованным четырьмя антеннами. Опорный сигнал может передаваться в символьных интервалах 0 и 1. Для примера, показанного на фиг.4, M=2 и два TDM управляющих символа могут передаваться в MBSFN субкадре.

В целом, канал PCFICH может передаваться в символьном интервале 0 MBSFN субкадра, и каналы PDCCH и PHICH могут передаваться в символьных интервалах с 0 по M-1. Широковещательная/многоадресная информация может передаваться в символьных интервалах с M по 13 MBSFN субкадра. Альтернативно, передачи не могут передаваться в символьных интервалах с M по 13.

Фиг.3 и 4 показывают некоторые форматы субкадров, которые могут использоваться для нисходящей линии. Другие форматы субкадров могут также использоваться, например, более чем для двух антенн на узле eNB.

Узел eNB или ретранслятор могут работать в обычном режиме, MBSFN режиме и/или других режимах работы. Узел eNB или ретранслятор могут переключать режим от субкадра к субкадру или на более низкой скорости. В обычном режиме узел eNB или ретранслятор могут передавать, используя регулярный формат субкадра, например, как показано на фиг.3. Обычный режим может ассоциироваться с конкретными характеристиками, такими как конфигурируемое число TDM управляющих символов, опорный сигнал, отправляемый от каждой антенны в двух или более символьных интервалах субкадра и т.п. В MBSFN режиме узел eNB или ретранслятор может передавать, используя MBSFN формат субкадра, например, как показано на фиг.4. MBSFN режим может ассоциироваться с конкретными характеристиками, такими как минимальное число TDM управляющих символов, опорный сигнал, отправляемый от каждой антенны на одном символьном интервале субкадра, и т.п. Узел eNB или ретранслятор может передавать управляющую информацию и опорный сигнал в меньших символьных интервалах в MBSFN режиме, чем в обычном режиме, например, как показано на фиг.3 и 4. Узел eNB или ретранслятор может также передавать меньше TDM управляющих символов в MBSFN режиме, чем в обычном режиме. MBSFN режим, таким образом, может быть желательным при определенных сценариях работы, как рассматривается ниже.

Пользовательское оборудование (UE) может находиться в пределах покрытия нескольких узлов eNB. Один из этих узлов eNB может быть выбран для обслуживания пользовательского оборудования (UE). Обслуживающий узел eNB может быть выбран на основе различных критериев, таких как принимаемая мощность, потери в тракте, отношение сигнал-шум (signal-to-noise ratio, SNR) и т.п.

Пользовательское оборудование (UE) может работать в сценарии доминирующих помех, в котором пользовательское оборудование (UE) может подвергаться воздействию интенсивных помех от одного или более узлов eNB с помехами. Сценарий доминирующих помех может произойти из-за ограниченной ассоциации. Например, на фиг.1 пользовательское оборудование (UE) 124 может находиться близко к фемтоузлу eNB 114 и может обеспечивать высокую принимаемую мощность для узла eNB 114. Однако пользовательское оборудование (UE) 124 может не иметь доступ к фемтоузлу eNB 114 из-за ограниченной ассоциации и может затем подключиться к макроузлу eNB 110 с более низкой принимаемой мощностью (как показано на фиг.1) или к фемтоузлу eNB 116 также с более низкой принимаемой мощностью (не показан на фиг.1). Пользовательское оборудование (UE) 124 может тогда подвергаться воздействию интенсивных помех от фемтоузла eNB 114 по нисходящей линии и может также создавать интенсивные помехи узлу eNB 114 по восходящей линии.

Сценарий доминирующих помех может также произойти из-за увеличения расстояния, что является сценарием, в котором пользовательское оборудование (UE) соединяется с узлом eNB с более низкими потерями в тракте и, возможно, более низким SNR среди всех узлов eNB, обнаруженных пользовательским оборудованием (UE). Например, на фиг.1, пользовательское оборудование (UE) 122 может обнаружить макроузел eNB 110 и пикоузел eNB 112 и может иметь более низкую принимаемую мощность для пикоузла eNB 112, чем для макроузла eNB 110. Тем не менее, может быть желательно для пользовательского оборудования (UE) 122 соединиться с пикоузлом eNB 112, если потери в тракте для пикоузла eNB 112 ниже, чем потери в тракте для макроузла eNB 110. Это может привести к меньшим помехам беспроводной сети для данной скорости данных для пользовательского оборудования (UE) 122.

В одном аспекте связь в сценарии доминирующих помех может поддерживаться посредством резервирования субкадров для более слабого узла eNB, подвергающегося воздействию интенсивных помех от сильного мешающего узла eNB. Пользовательское оборудование (UE) может затем связываться с более слабым узлом eNB в принимаемых субкадрах в присутствии сильно мешающего узла eNB. Узел eNB может классифицироваться как "слабый" узел eNB или "сильный" узел eNB на основе принятой мощности узла eNB на пользовательском оборудовании (UE) (а не на основе на уровне мощности передачи узла eNB). Кроме того, различные узлы eNB могут передавать их синхросигналы так, что помехи от доминирующего источника помех могут быть предотвращены.

В одной разработке узлы eNB и ретрансляторы может размещаться в различных группах. Каждая группа может включать узлы eNB и/или ретрансляторы, которые не являются доминирующими источниками помех друг для друга. Например, одна группа может включать макроузлы eNB, другая группа может включать пикоузлы eNB и ретрансляторы, и одна или более групп могут включать фемтоузлы eNB. Ретрансляторы могут иметь похожий уровень мощности передачи, как пикоузлы eNB и, таким образом, могут группироваться с пикоузлами eNB. Фемтоузлы eNB могут делиться на многие группы, если они являются доминирующими источниками помех друг для друга. Имея каждую группу, которая включает узлы eNB, не являющиеся доминирующими источниками помех друг другу, outage сценарии могут быть предотвращены и преимущества расширения расстояния могут быть реализованы.

В одной разработке различные группы узлов eNB могут ассоциироваться с различными смещениями субкадров. Синхронизация узлов eNB в различных группах может быть смещена друг от друга на целое число субкадров. Например, когда макроузлы eNB в первой группе передают субкадр 0, пикоузлы eNB во второй группе могут передавать субкадр 1, фемтоузлы eNB в третьей группе могут передавать субкадр 2 и т.д. Использование смещения субкадров может позволять узлам eNB и ретрансляторам в различных группах передавать их синхросигналы так, что единицы пользовательского оборудования (UE) могут детектировать эти сигналы.

Фиг.5 показывает примерную временную шкалу передачи для четырех групп узлов eNB и ретранслятора. Первая группа может включать макроузел eNB 110, который может иметь свой субкадр 0, начинающийся в момент времени T0. Вторая группа может включать пикоузел eNB 112 и ретранслятор 118, которые могут иметь их субкадр 0, начинающийся на один субкадр после времени T0. Третья группа может включать фемтоузел eNB 114, который может иметь свой субкадр 0, начинающийся на два субкадра после времени T0. Четвертая группа может включать фемтоузел eNB 116, который может иметь свой субкадр 0, начинающийся на три субкадра после T0. В целом, любое число групп может быть сформировано и каждая группа может включать любое число узлов eNB и/или ретрансляторов.

В одной разработке сильный мешающий узел eNB может резервировать или очищать некоторые субкадры для более слабого узла eNB, чтобы позволить более слабому узлу eNB связываться с ее единицами пользовательского оборудования (UE). Мешающий узел eNB может передавать как можно меньше в принимаемых субкадрах для уменьшения помех более слабого узла eNB.

В одной разработке мешающий узел eNB может конфигурировать зарезервированные субкадры как MBSFN субкадры. Мешающий узел eNB может передавать только канал PCFICH with M=1 и опорный сигнал в первом символьном интервале каждого зарезервированного субкадра и может ничего не передавать в оставшихся символьных интервалах субкадра, например, как показано на фиг.4. В другой разработке мешающий узел eNB может работать в режиме 1-Tx с одной передающей антенной или в режиме 2-Tx с двумя передающими антеннами. Мешающий узел eNB может передавать канал PCFICH с M=1 и опорный сигнал в каждом зарезервированном субкадре, например, как показано на фиг.3. В еще одной разработке мешающий узел eNB может передавать опорный сигнал, но может избегать передачу канала PCFICH в принимаемых субкадрах для уменьшения помехи более слабого узла eNB. Для рассмотренных выше разработок мешающий узел eNB может избегать передачи других управляющих каналов, таких как каналы PHICH и PDCCH, а также данных в каждом зарезервированном субкадре. В еще одной разработке мешающий узел eNB может ничего не передавать в каждом зарезервированном субкадре с тем, чтобы избежать воздействия любых помех более слабого узла eNB. Мешающий узел eNB может также передавать в принимаемых субкадрах другими способами. Мешающий узел eNB может передавать наименьшее число символов модуляции, требуемое стандартом LTE в каждом зарезервированном субкадре.

В примере, показанном на фиг.5, макроузел eNB 110 резервирует субкадры 1 и 6 для пикоузла eNB 112 и передает один TDM управляющий символ с M=1 для канала PCFICH в каждом зарезервированном субкадре. Фемтоузел eNB 114 (femto eNB A) резервирует субкадры 3 и 8 для макроузла eNB 110, резервирует субкадры 4 и 9 для пикоузла eNB 112 и резервирует субкадр 1 для фемтоузла eNB 116 (femto eNB B). Фемтоузел eNB 114 передает один TDM управляющий символ с M=1 для канала PCFICH в каждом зарезервированном субкадре. Фемтоузел eNB 116 резервирует субкадры 2 и 7 для макроузла eNB 110, резервирует субкадры 3 и 8 для пикоузла eNB 112 и резервирует субкадр 9 для фемтоузла eNB 114. Фемтоузел eNB 116 передает один TDM управляющий символ с M=1 для канала PCFICH в каждом зарезервированном субкадре. Как показано на фиг.5, субкадры, зарезервированные для макроузла eNB 110 фемтоузлами eNB 114 и 116, выравниваются во времени и позволяют макроузлу eNB передавать в его субкадрах 0 и 5 с небольшими помехами от фемтоузлов eNB. Субкадры, зарезервированные для пикоузла eNB 112 макроузлом eNB 110 и фемтоузлами eNB 114 и 116, выравниваются во времени и позволяют пикоузлу eNB передавать в его субкадрах 0 и 5 с небольшими помехами от макрои фемтоузлов eNB.

Ссылаясь обратно на фиг.2, каждый узел eNB может передавать свои синхросигналы в субкадрах 0 и 5 и может также передавать канал PBCH в субкадре 0. Пользовательское оборудование (UE) может искать синхросигналы, когда обнаруживает узлы eNB, и может принимать канал PBCH от каждого обнаруженного узла eNB для связи с узлом eNB. Чтобы позволить единицам пользовательского оборудования (UE) обнаружить слабый узел eNB, сильный мешающий узел eNB может резервировать или очищать субкадры, в которых синхросигналы и канал PBCH передаются более слабому узлу eNB. Это очищение может быть сделано для всех субкадров или только некоторых субкадров, в которых синхросигналы и канал PBCH передаются более слабому узлу eNB. Очищение должно быть сделано так, чтобы единицы пользовательского оборудования (UE) могли определить более слабый узел eNB в разумные сроки.

Ссылаясь на пример, показанный на фиг.5, субкадры 0 и 5 макроузла eNB 110 очищаются фемтоузлами eNB 114 и 116 для предотвращения помех синхросигналам и каналу PBCH от макроузла eNB. Субкадры 0 и 5 пикоузла eNB 112 очищаются макроузлом eNB 110 и фемтоузлами eNB 114 и 116 для предотвращения помех синхросигналам и каналу PBCH от пикоузла eNB. Субкадр 0 фемтоузла eNB 114 очищается фемтоузлом eNB 116, и субкадр 0 фемтоузла eNB 116 очищается фемтоузлом eNB 114.

В одной разработке узлы eNB могут связываться через транзитную сеть для установления резервирования/очистки субкадров. В другой разработке пользовательское оборудование (UE), желая связываться со слабым узлом eNB, может запросить мешающий узел eNB зарезервировать некоторые субкадры для более слабого узла eNB. В еще одной разработке назначенный сетевой объект может решить зарезервировать субкадры для узлов eNB, например, на основе запросов данных, отправленных единицам пользовательского оборудования (UE) различным узлами eNB и/или отчетов от узлов eNB. Для всех разработок субкадры могут быть зарезервированы на основе различных критериев, таких как загрузка на узле eNB, число узлов eNB в окрестности, число единиц пользовательского оборудования (UE) в пределах покрытия каждого узла eNB, отчеты об измерениях пилотных сигналов от единиц пользовательского оборудования (UE) и т.п. Например, макроузел eNB может резервировать субкадр, чтобы позволить многим пикоузлам eNB и/или фемтоузлам eNB связываться с их единицами пользовательского оборудования (UE), что может обеспечивать выигрыш деления ячеек.

Каждый узел eNB может передавать свой опорный сигнал по набору поднесущих, определяемому на основе идентификатора (ID) ячейки. В одной разработке пространство идентификаторов (ID) ячеек сильных мешающих узлов eNB (таких, как макроузлы) и слабых узлов eNB (таких, как пикоузлы) может определяться так, что опорные сигналы этих узлов eNB передаются по различным поднесущим и не мешают друг другу. Некоторые узлы eNB (такие, как фемтоузлы и ретрансляторы) могут конфигурироваться самостоятельно. Эти узлы eNB могут выбирать их идентификаторы (ID) ячеек так, чтобы их опорные сигналы не мешали опорным сигналам сильных соседних узлов eNB.

Пользовательское оборудование (UE) может связываться со слабым узлом eNB в зарезервированном субкадре и может подвергаться воздействию интенсивных помех из-за канала PCFICH, опорного сигнала и, возможно, других передач от сильного мешающего узла eNB. В одной разработке пользовательское оборудование (UE) может отбрасывать каждый TDM управляющий символ с интенсивными помехами от мешающего узла eNB и может обрабатывать оставшиеся TDM управляющие символы. В другой разработке пользовательское оборудование (UE) может отбрасывать принятые символы на поднесущих с интенсивными помехами и может обрабатывать оставшиеся принятые символы. Пользовательское оборудование (UE) может также обрабатывать принятые символы и TDM управляющие символы другими способами.

Пользовательское оборудование (UE) может получать оценивание параметров канала для более слабой базовой станции (eNB) на основе опорного сигнала, передаваемого более слабым узлом eNB. Опорный сигнал более слабого узла eNB может передаваться по различным поднесущим и может не перекрываться с опорным сигналом сильного мешающего узла eNB. В этом случае пользовательское оборудование (UE) может получать оценивание параметров канала для более слабого узла eNB на основе опорного сигнала от этого узла eNB. Если опорный сигнал более слабого узла eNB мешает опорному сигналу мешающего узла eNB, тогда пользовательское оборудование (UE) может выполнять оценивание параметров канала с подавлением помех. Пользовательское оборудование (UE) может оценивать помехи из-за опорного сигнала от мешающего узла eNB на основе известных опорных символов, передаваемых этим узлом eNB, и известных поднесущих, по которым опорный сигнал передается. Пользовательское оборудование (UE) может вычитать оцененные помехи из принятого сигнала на пользовательском оборудовании (UE) для удаления помех из-за мешающей базовой станции (eNB) и может затем получать оценивани