Применение катионных сополимеров на основе содержащих аминогруппы акрилатов и солей n-винилимидазолия в косметических препаратах для волос

Иллюстрации

Показать все

Изобретение относится к применению катионных полимеров, которые могут быть получены радикальной сополимеризацией следующих мономеров: а) от 60 до 99% мол. по меньшей мере одного 1-винилимидазола, b) от 1 до 40% мол. по меньшей мере одного способного к радикальной полимеризации и кватернизации мономера, выбранного из N,N-диметиламиноэтилметакрилата, N-[3-(диметиламино)-пропил]метакриламида и их смесей, с) от 0 до 30% мол. N-виниллактама, где суммарное количество мономеров а)-с) составляет 100%, в косметических препаратах для волос или кожи. 2 н. и 7 з.п. ф-лы, 12 табл., 46 пр.

Реферат

Изобретение относится к применению катионных полимеров, которые могут быть получены радикальной сополимеризацией а) от 60 до 99% мол. по меньшей мере одного 1-винилимидазола, b) от 1 до 40% мол. по меньшей мере одного способного к радикальной полимеризации и кватернизации мономера b1) или метакриловой кислоты b2) и с) от 0 до 30% мол. по меньшей мере одного другого способного к радикальной полимеризации мономера, отличающегося от мономеров а) и b), в косметических препаратах для волос, прежде всего в качестве кондиционирующего средства в шампунях.

Кроме того, настоящее изобретение относится к шампуням и другим содержащим катионный полимер средствам для ухода за волосами. Таким образом, изобретение относится к композициям для мытья головы и/или ухода за волосами.

Помимо шампуней изобретение прежде всего относится к другим средствам для ухода за волосами, выбранным из группы, включающей средства для предварительной обработки волос, ополаскиватели и кондиционеры, бальзамы, лечебные средства, лечебные ополаскиватели, туалетную воду, используемые для укладки волос помады, бриолины, лосьоны и гели, распыляемые жидкости, средства для горячей обработки волос и лечебные пены.

Средства для ухода за волосами в первую очередь предназначены для улучшения способности волос к сухому и мокрому расчесыванию, а также для придания волосам оптимальных органолептических свойств, блеска, внешнего вида и антистатических свойств.

Шампунь должен быть способен вспениваться и эффективно мыть голову, обладать мягкостью, совместимостью, практичностью и удобством в обращении, а, кроме того, должен способствовать уходу за волосами или устранению проблем, обусловленных состоянием волос и кожи головы. Указанные дополнительные эффекты и безусловно высокая эффективность мытья головы являются характерными особенностями современных шампуней.

Качество мытья головы шампунем, способность шампуня к вспениванию, его совместимость с кожей и способность к загущению, а также устойчивость отдельных ингредиентов шампуня к гидролизу сильно зависят от показателя pH. Ингредиенты шампуня должны оптимальным образом проявлять указанные свойства в нейтральных и слабо кислых средах, которым соответствует диапазон значений показателя pH от 5 до 7, однако они не должны в сколь-нибудь заметной степени утрачивать эти свойства и вне указанного диапазона pH. Во избежание снижения эффективности, а также расслоения шампуня его ингредиенты должны обладать химической стабильностью и совместимостью со всеми остальными компонентами.

При достаточно высокой эффективности шампунь не должен вызывать чрезмерного обезжиривания и вместе с тем должен обладать адекватным мягким действием. Важно, чтобы моющий эффект и другие необходимые свойства входящих в состав шампуня поверхностно-активных веществ проявлялись как в жесткой, так и в мягкой воде. Шампунь должен быть хорошо совместим с кожей и слизистыми оболочками, в связи с чем в обычных условиях применения он не должен обладать агрессивным действием. Высокая эффективность мытья головы не должна быть напрямую связана с сильным вспениванием шампуня. Тем не менее объем и качество пены являются важными критериями для оценки того или иного шампуня потребителями и безусловно должны удовлетворять предъявляемым к этим характеристикам требованиям.

Наряду с моющим действием шампуни благодаря присутствию в них кондиционирующих средств (кондиционеров) выполняют также функцию кондиционирования. Кондиционирующими средствами являются вспомогательные вещества, которые остаются на волосах после ополаскивания. Кондиционеры улучшают способность волос к расчесыванию, а также их гриф и блеск. Однако использование кондиционеров для обработки тонких волос или их передозировка могут приводить к утяжелению волос. Подобный эффект означает, что при составлении содержащих кондиционирующие средства рецептур всегда следует соблюдать оптимальный баланс между эффектом кондиционирования и эффектом утяжеления волос. Наряду с этим при практическом использовании кондиционирующих средств всегда следует следить за тем, чтобы регулярное применение соответствующего изделия не приводило к систематическому увеличению количества остающегося на волосах кондиционера. Определенные проблемы часто возникают в случае производства изделий, которые обладают сложным комплексом свойств. Подобный комплекс свойств зачастую бывает обусловлен использованием в составе одного препарата множества различных ингредиентов, с одним или несколькими из которых может отсутствовать совместимость.

Используемыми в составе шампуней кондиционирующими средствами прежде всего являются силиконы и катионные полимеры.

Недостаток использования силиконов обусловлен отсутствием растворимости большинства из них в воде и необходимостью стабилизации содержащих их шампуней диспергаторами. Однако присутствие подобных добавок в шампунях зачастую бывает нежелательным. Кроме того, следствием присутствия силиконов иногда оказывается эффект их накапливания на волосах при многократном применении содержащего силикон шампуня и неприятного ощущения утяжеления волос.

Многие катионные полимеры, используемые в шампунях в качестве средств кондиционирования, например, такие как катионные производные целлюлозы, образуют с содержащимися в шампуне анионными поверхностно-активными веществами полимерные комплексы, которые в случае высокой плотности заряда не растворяются в воде. В связи с этим обычно используют растворимые в препаратах катионные полимеры, которые обладают пониженной плотностью заряда.

Однако катионные полимеры с высокой плотностью заряда характеризуются более высоким сродством к волосам, в связи с чем в шампунях желательно использовать именно такие полимеры. В то же время, как указано выше, комплексы, которые катионные полимеры с высокой плотностью заряда образуют с поверхностно-активными веществами, не растворяются в препаратах. Поэтому препараты приходится стабилизировать введением вспомогательных диспергирующих веществ.

В частности, в международной заявке WO 94/06403 описано применение в препаратах шампуня обладающих высокой плотностью заряда сополимеров на основе N-винилпирролидона и солей 3-метил-1-винилимидазолия в комбинации с другими нерастворимыми в воде средствами кондиционирования. Для стабилизации подобных препаратов используют соответствующий диспергатор.

Из международной заявки WO 94/06409 и патента США US 5580494 известны рецептуры шампуня на основе используемого в качестве детергента альфа-олефинсульфоната и используемого в качестве кондиционирующего средства катионного полимера с высокой плотностью заряда, например, сополимеров N-винилпирролидона с солями 3-метил-1-винилимидазолия. В этом случае с целью стабилизации препаратов также приходится добавлять вспомогательное диспергирующее вещество.

В соответствии с европейской заявкой на патент ЕР-А 246580 в качестве средств кондиционирования волос используют продукты сополимеризации кватернизованного винилимидазола с некоторыми другими мономерами. Однако соответствующие сополимеры обладают недостатком, состоящим в том, что в случае низкого содержания в них кватернизованного винилимидазола в присутствии анионных поверхностно-активных веществ образуются дисперсии, которые обладают низкой эффективностью, в то время как в случае высокого содержания указанного мономера дисперсии характеризуются отсутствием стабильности.

В европейской заявке на патент ЕР-А 911018 описано применение катионных продуктов сополимеризации, которые могут быть получены радикальной сополимеризацией:

(a) от 60 до 99% мол., предпочтительно от 65 до 95% мол., особенно предпочтительно от 70 до 90% мол. при необходимости замещенного или кватернизованного 1-винилимидазола,

(b) от 1 до 40% мол., предпочтительно от 5 до 35% мол., особенно предпочтительно от 10 до 30% мол. кислоты, содержащей способную к полимеризации двойную связь, или соответствующих солей, и

(c) от 0 до 30% мол., предпочтительно от 0 до 20% мол., особенно предпочтительно от 0 до 10% мол. другого способного к радикальной полимеризации мономера,

и последующей кватернизацией полимера, осуществляемой в случае использования в качестве мономера(-ов) (а) некватернизованного 1-винилимидазола, в качестве действующих веществ в косметических препаратах для ухода за волосами, прежде всего в качестве кондиционирующих средств в шампунях.

Итак, существует потребность в хорошо совместимых шампунях и средствах для ухода за волосами, придающих волосам оптимальные органолептические свойства, такие как эластичность, приятный гриф и объем, и вместе с тем характеризующихся отсутствием нежелательного повышения жирности и/или клейкости волос, сопровождающего оптимальный кондиционирующий и моющий эффект.

Поскольку множество компонентов, присутствующих в известных из уровня техники средствах, в некоторых случаях обусловливает раздражение кожи, аллергические реакции или другие проявления несовместимости, шампуни и средства для ухода за волосами, обладающие указанными в предыдущем абзаце свойствами, должны содержать минимально возможное количество добавок. Потребность в препаратах с минимально возможным количеством различных ингредиентов прежде всего относится к сфере производства детских шампуней и средств для ухода за волосами.

В основу настоящего изобретения была положена задача предложить катионные полимеры с высокой плотностью заряда, позволяющие формировать рецептуры стабильных шампуней, содержащих анионные поверхностно-активные вещества, без использования дополнительных диспергирующих средств.

Указанная задача согласно изобретению решается благодаря применению в косметических препаратах для волос катионных полимеров, которые могут быть получены радикальной сополимеризацией следующих мономеров:

а) от 60 до 99% мол. по меньшей мере одного 1-винилимидазола со степенью кватернизации по меньшей мере 60% мол. общей формулы (I):

,

в которой R1 до R3 независимо друг от друга означают водород, алкил с 1-4 атомами углерода или фенил,

b) от 1 до 40% мол. по меньшей мере одного способного к радикальной полимеризации мономера, выбранного из группы, включающей:

b1) при необходимости кватернизованные соединения общей формулы (II):

,

в которой

R14 и R15 независимо друг от друга выбраны из группы, включающей водород, неразветвленный или разветвленный алкил с 1-8 атомами углерода, метокси, этокси, 2-гидроксиэтокси, 2-метоксиэтокси и 2-этоксиэтил,

R17 означает водород или метил,

R18 означает при необходимости замещенный алкилом алкилен или гидроксиалкилен с 1-24 атомами углерода, предпочтительно С2Н4, С3Н6, С4Н8, СН2-СН(ОН)-СН2,

g означает 0 или 1,

Z означает азот при g=1 или кислород при g=0,

R25 и R26 соответственно независимо друг от друга выбраны из группы, включающей водород, неразветвленный или разветвленный алкил с 1-40 атомами углерода, формил, неразветвленный или разветвленный ацил с 1-10 атомами углерода, N,N-диметиламиноэтил, 2-гидроксиэтил, 2-метоксиэтил, 2-этоксиэтил, гидроксипропил, метоксипропил, этоксипропил и бензил,

b2) метакриловую кислоту и

b3) смеси b1) c b2), и

с) от 0 до 30% мол. по меньшей мере одного другого способного к радикальной полимеризации мономера, отличающегося от мономеров а) и b),

при условии, что если мономером b) является метакриловая кислота b2), то количество мономера с) составляет более 0% мол., причем суммарное количество мономеров а)-с) составляет 100% мол.

а) Мономеры а) (1-винилимидазолы)

В качестве мономера а) предпочтительно используют N-винилимидазолы общей формулы (I):

,

в которой заместители R1-R3 соответственно означают водород, алкил с 1-4 атомами углерода или фенил.

Примеры соединений общей формулы (I) приведены в нижеследующей таблице:

R1 R2 R3
H H H
Me H H
H Me H
H H Me
Me Me H
H Me Me
Me H Me
Ph H H
H Ph H
H H Ph
Ph Me H
Ph H Me
Me Ph H
H Ph Me
H Me Ph
Me H Ph
Me означает метил,Ph означает фенил

Особенно предпочтительным мономером а) является N-винилимидазол, то есть соединение формулы (I), в которой все остатки R1-R3 одинаковые и означают водород.

Максимальное количество звеньев мономера а) (рассчитанного как некватернизованный мономер) в сополимерах составляет 99% мол., предпочтительно 90% мол., особенно предпочтительно 85% мол. и по меньшей мере 60% мол., предпочтительно по меньшей мере 65% мол., особенно предпочтительно по меньшей мере 70% мол. в пересчете на суммарное количество содержащихся в сополимере мономерных звеньев а)-с).

По меньшей мере 60% мол. 1-винилимидазола используют для полимеризации в качестве мономера а) в кватернизованной форме. Полученные полимеры по завершении полимеризации при необходимости подвергают дополнительной кватернизации. При этом завершению полимеризации соответствует превращение в полимер по меньшей мере 90% масс., предпочтительно по меньшей мере 95% масс. и прежде всего по меньшей мере 99% масс. используемых мономеров а)-с).

Степень кватернизации (% мол. кватернизованных групп от всех способных к кватернизации групп) составляет по меньшей мере 60%, предпочтительно по меньшей мере 70%, особенно предпочтительно по меньшей мере 80% и прежде всего по меньшей мере 90%. Еще более предпочтительной является кватернизация всех способных к кватернизации групп, которой соответствует степень кватернизации, составляющая 100% мол. в пересчете на способные к кватернизации группы. Агент кватернизации, очевидно, можно использовать также в избытке.

Для кватернизации мономеров а) или получаемых полимеров пригодны, например, алкилгалогениды с 1-24 атомами углерода в алкильной группе, например, метилхлорид, метилбромид, метилйодид, этилхлорид, этилбромид, пропилхлорид, гексилхлорид, додецилхлорид, лаурилхлорид, пропилбромид, гексилбромид, додецилбромид, лаурилбромид и бензилгалогениды, прежде всего бензилхлорид и бензилбромид. Для кватернизации длинноцепными алкильными остатками предпочтительным является использование соответствующих алкилбромидов, таких как гексилбромид, додецилбромид или лаурилбромид.

Другими пригодными агентами кватернизации являются диалкилсульфаты, прежде всего диметилсульфат или диэтилсульфат.

Кватернизацию мономеров а) можно осуществлять также алкиленоксидами, такими как этиленоксид или пропиленоксид, в присутствии кислот.

Предпочтительными агентами кватернизации являются метилхлорид, диметилсульфат или диэтилсульфат, особенно предпочтительными агентами кватернизации являются метилхлорид и диметилсульфат.

Кватернизацию мономеров или полимеров указанными выше агентами осуществляют обычными известными специалистам методами.

b) Мономеры группы b)

Предпочтительными мономерами b1) являются сложные эфиры на основе (мет)акриловой кислоты и аминоспиртов, атом азота которых замещен одной или двумя алкильными группами с 1-24 атомами углерода. Особенно предпочтительные мономеры b1) выбирают из группы, включающей N-метиламиноэтил(мет)акрилат, N-этиламиноэтил(мет)акрилат, N-(н-пропил)аминоэтил(мет)акрилат, N-(н-бутил)аминоэтил(мет)акрилат, N-(трет-бутил)аминоэтил(мет)акрилат, N,N-диметиламинометил(мет)акрилат, N,N-диметиламиноэтил(мет)акрилат, N,N-диэтиламиноэтил(мет)акрилат, N,N-диметиламинопропил(мет)акрилат, N,N-диэтиламинопропил(мет)акрилат и N,N-диметиламиноциклогексил(мет)акрилат.

Особенно предпочтительным мономером b1) является N,N-диметиламино-этилметакрилат.

Используемыми в качестве мономеров b1) амидами могут являться незамещенные соединения, а также соединения, замещенные N-алкилом, N-алкиламино, N,N-диалкилом или N,N-диалкиламино, алкильные группы в которых являются неразветвленными алкилами с 1-40 атомами углерода, разветвленными алкилами с 3-40 атомами углерода или карбоциклическими алкилами с 3-40 атомами углерода.

Другими предпочтительными мономерами b1) являются амиды на основе (мет)акриловой кислоты и диаминов, атом азота которых замещен одной или двумя алкильными группами с 1-24 атомами углерода. Особенно предпочтительные амиды подобного типа выбирают из группы, включающей N-[2-(диметиламино)этил]акриламид, N-[2-(диметиламино)этил]метакриламид, N-[3-(диметиламино)пропил]акриламид, N-[3-(диметиламино)-пропил]метакриламид, N-[4-(диметиламино)бутил]акриламид, N-[4-(диметиламино)бутил]метакриламид, N-[2-(диэтиламино)этил]акриламид, N-[4-(диметиламино)циклогексил]акриламид, N-[4-(диметиламино)циклогексил]метакриламид, N-[8-(диметиламино)октил]метакриламид, N-[12-(диметиламино)додецил]метакриламид, N-[3-(диэтиламино)пропил]метакриламид и N-[3-(диэтиламино)пропил]акриламид. Особенно предпочтительным мономером b1) является N-[3-(диметиламино)пропил]метакриламид.

В качестве мономера b) можно использовать также метакриловую кислоту b2) при условии, что количество мономера с) в этом случае составляет более 0% мол. и предпочтительно по меньшей мере одним мономером с) является способное к радикальной полимеризации, однократно этиленненасыщенное соединение.

В качестве мономера b) можно использовать также смесь мономеров b1) и b2).

Максимальное количество звеньев мономера b) в сополимерах составляет 40% мол., предпочтительно 35% мол., особенно предпочтительно 30% мол. и по меньшей мере 1% мол., предпочтительно по меньшей мере 5% мол., особенно предпочтительно по меньшей мере 10% мол. и прежде всего по меньшей мере 12% мол. в пересчете на суммарное количество содержащихся в сополимере звеньев мономеров а)-с).

Мономер b1) можно использовать для полимеризации в кватернизованной форме, однако предпочтительным является его использование в преимущественно некватернизованной форме. Под преимущественно некватернизованной формой подразумевают, что в кватернизованной форме находится не более 20% мол., предпочтительно не более 10% мол., особенно предпочтительно не более 5% мол. и прежде всего не более 1% мол. мономера b1). В наиболее предпочтительном варианте используют некватернизованный мономер b1).

Мономер с)

Пригодными мономерами с) являются любые способные к радикальной полимеризации мономеры, которые отличаются от мономеров а) и b) и могут сополимеризоваться с ними. Пригодными мономерами с) являются, например, N-виниллактамы, такие как N-винилпиперидон, N-винилпирролидон или N-винилкапролактам, а также N-винилацетамид, N-метил-N-винилацетамид, акриламид, метакриламид, N,N-диметилакриламид, N-метилолметакриламид, N-винилформамид, N-винилоксазолидон, N-винилтриазол, гидроксиалкил(мет)акрилаты, например, гидроксиэтил(мет)-акрилат и гидроксипропил(мет)акрилаты, или алкилэтиленгликоль(мет)-акрилаты с 1-50 структурными единицами этиленгликоля в молекуле.

Кроме того, пригодными мономерами с) являются сложные алкиловые эфиры акриловой или метакриловой кислоты с 1-24 атомами углерода, прежде всего с 1-10 атомами углерода в алкильной группе, например, такие как метилакрилат, метилметакрилат, этилакрилат, этилметакрилат, трет-бутилакрилат, трет-бутилметакрилат, изобутилакрилат или н-бутилакрилат, а также акриламиды, такие как N-трет-бутилакриламид или N-трет-октилакриламид. В качестве мономера с) можно использовать также сложные виниловые эфиры карбоновых кислот, например, винилацетат или винилпропионат.

Мономер с) предпочтительно выбирают из группы, включающей соединения общей формулы (III):

,

в которой

R1 означает группу формулы CH2=CR4-, причем R4 означает водород или алкил с 1-4 атомами углерода, и

R2 и R3 независимо друг от друга означают водород, алкил, циклоалкил, гетероциклоалкил, арил или гетарил, или

R2 и R3 совместно с атомом азота, с которым они соединены, образуют азотсодержащий гетероцикл с числом членов от 5 до 8, или

R2 означает группу формулы CH2=CR4- и

R1 и R3 независимо друг от друга означают водород, алкил, циклоалкил, гетероциклоалкил, арил или гетарил, или

R1 и R3 совместно с амидной группой, с которой они соединены, образуют лактам с числом кольцевых атомов от 5 до 8.

Используемый согласно изобретению полимер в качестве мономера с) предпочтительно дополнительно содержит по меньшей мере один N-виниллактам. В качестве N-виниллактама с) пригодны незамещенные N-виниллактамы и производные N-виниллактама, которые могут содержать, например, один или несколько алкильных заместителей с 1-6 атомами углерода, таких как метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, трет-бутил и так далее. К подобным соединениям относятся, например, N-винилпирролидон, N-винилпиперидон, N-винилкапролактам, N-винил-5-метил-2-пирролидон, N-винил-5-этил-2-пирролидон, N-винил-6-метил-2-пиперидон, N-винил-6-этил-2-пиперидон, N-винил-7-метил-2-капролактам, N-винил-7-этил-2-капролактам, а также их смеси.

Пригодный для предлагаемого в изобретении применения полимер предпочтительно содержит мономерные звенья с), причем R2 в формуле (III) означает СН2=СН-, a R1 и R3 совместно с амидной группой, с которой соединены эти заместители, образуют лактам с пятью кольцевыми атомами.

В качестве мономера с) особенно предпочтительно используют N-винилпирролидон, N-винилкапролактам, N-винилформамид, (мет)акриламид или их смеси, причем наиболее предпочтительными мономерами с) являются N-винилпирролидон и метакриламид.

В качестве мономеров а), b) и с), очевидно, можно использовать также смеси соответствующих мономеров, то есть, например, в качестве мономера с) можно использовать смесь N-винилпирролидона с N-винилкапролактамом.

Использование мономера с) для получения полимеров, пригодных для предлагаемого в изобретении применения, не является обязательным, за исключением случаев, если в качестве мономера b) используют метакриловую кислоту.

В случае использования мономера с) максимальное количество его звеньев в сополимерах составляет 30% мол., предпочтительно 20% мол., особенно предпочтительно 15% мол., прежде всего 10% мол. и предпочтительно по меньшей мере 0,1% мол., особенно предпочтительно по меньшей мере 1% мол., прежде всего по меньшей мере 3% мол. и наиболее предпочтительно 5% мол. в пересчете на суммарное количество содержащихся в сополимере звеньев мономеров а)-с).

Полимеризация

Для получения полимеров смесь указанных выше компонентов а)-с) может быть подвергнута полимеризации как с помощью образующих радикалы инициаторов, так и под действием высокоэнергетического излучения, под которым подразумевают высокоэнергетические электроны.

В качестве инициаторов радикальной полимеризации можно использовать обычные пероксо- и/или азосоединения, например, пероксидисульфаты щелочных металлов или аммония, диацетилпероксид, дибензоилпероксид, сукцинилпероксид, ди-трет-бутилпероксид, трет-бутилпербензоат, трет-бутилперпивалат, трет-бутилперокси-2-этилгексаноат, трет-бутилпермалеинат, гидропероксид кумола, диизопропилпероксидикарбамат, бис(о-толуоил)пероксид, дидеканоилпероксид, диоктаноилпероксид, дилауроилпероксид, трет-бутилперизобутират, трет-бутилперацетат, ди-трет-амилпероксид, трет-бутилгидропероксид, азобисизобутиронитрил, азобис(2-амидонопропан)дигидрохлорид или 2-2'-азобис(2-метил-бутиронитрил). Кроме того, пригодны смеси инициаторов или окислительно-восстановительные системы инициаторов, например, такие как аскорбиновая кислота/железо(II)сульфат/пероксодисульфат натрия, трет-бутилгидропероксид/бисульфит натрия или трет-бутилгидропероксид/гидроксиметансульфинат натрия.

В качестве инициаторов радикальной полимеризации предпочтительно используют органические пероксиды.

Полимеризацию можно осуществлять также под действием ультрафиолетового излучения при необходимости в присутствии УФ-инициаторов. Полимеризацию под действием УФ-излучения осуществляют в присутствии обычно используемых для этого фотоинициаторов, соответственно сенсибилизаторов. Речь при этом идет, например, о таких соединениях, как бензоин, простые эфиры бензоина, α-метилбензоин или α-фенилбензоин. Можно использовать также так называемые триплетные сенсибилизаторы, такие как бензилдикетали. В качестве источника УФ-излучения наряду с высокоэнергетическими УФ-лампами, такими как угольные дуговые, парортутные или ксеноновые лампы, можно использовать также, например, низкоэнергетические источники УФ-излучения, такие как люминесцентные лампы с высокой синей составляющей.

Инициатор, соответственно смеси инициаторов, используют в количестве от 0,01 до 10% масс., предпочтительно от 0,1 до 8% масс. в пересчете на используемый мономер.

Полимеризацию осуществляют в температурном интервале от 30 до 200°С, предпочтительно от 40 до 140°С, особенно предпочтительно от 50 до 110°С. Полимеризацию обычно осуществляют при атмосферном давлении, хотя она может протекать также при пониженном или повышенном давлении, предпочтительно при давлении от 1 до 5 бар.

Полимеризацию можно осуществлять, например, в растворе или массе, в форме эмульсионной полимеризации, инверсионной эмульсионной полимеризации, суспензионной полимеризации, инверсионной суспензионной полимеризации или полимеризации с осаждением полимера, причем возможные методы полимеризации не ограничены приведенным выше перечнем.

Полимеризацию можно осуществлять также в полунепрерывном режиме, в соответствии с которым сначала загружают часть, например, около 10% подлежащей полимеризации смеси компонентов и инициатор, затем смесь компонентов нагревают до температуры полимеризации и после стартования полимеризации по мере ее дальнейшего протекания вводят остаток подлежащей полимеризации смеси компонентов.

Указанную выше полимеризацию предпочтительно осуществляют также в растворителе. Пригодными растворителями являются, например, вода, спирты, такие как метанол, этанол, н-пропанол, изопропанол, н-бутанол, втор-бутанол, трет-бутанол, н-гексанол и циклогексанол, гликоли, такие как этиленгликоль, пропиленгликоль и бутиленгликоль, простые метиловые или этиловые эфиры двухатомных спиртов, диэтиленгликоль, триэтиленгликоль, глицерин, диоксан, бутилацетат, этилацетат и толуол, причем особенно предпочтительными растворителями являются вода, спирты и их смеси. В качестве растворителя прежде всего используют воду или смесь воды с этанолом.

Регуляторы молекулярной массы

Радикальную полимеризацию смеси мономеров можно осуществлять в присутствии по меньшей мере одного регулятора молекулярной массы. Регулятор молекулярной массы предпочтительно используют в количестве от 0,0005 до 5% масс., особенно предпочтительно от 0,001 до 2,5% масс., прежде всего от 0,01 до 1,5% масс. в пересчете на общую массу мономеров а)-с).

Регуляторами молекулярной массы в общем случае называют соединения с высокими константами передачи цепи. Подобные соединения ускоряют реакции передачи цепи, а следовательно, обеспечивают снижение степени полимеризации образующихся полимеров, не оказывая влияния на общую скорость полимеризации.

В зависимости от числа содержащихся в молекуле регулятора функциональных групп различают монофункциональные, бифункциональные и многофункциональные регуляторы молекулярной массы, которые могут обусловливать протекание одной или более реакций передачи цепи. Пригодные регуляторы молекулярной массы подробно описаны, например, К.С.Berger, G.Brandrup в справочнике J.Brandrup, E.H.Immergut, Polymer Handbook, 3-е издание, издательство John Wiley & Sons, Нью-Йорк, 1989, с.II/81-II/141.

Пригодными регуляторами молекулярной массы являются альдегиды, например, такие как формальдегид, ацетальдегид, пропионовый альдегид, н-масляный альдегид или изомасляный альдегид.

Кроме того, в качестве регуляторов молекулярной массы можно использовать муравьиную кислоту, соли или сложные эфиры муравьиной кислоты, такие как формиат аммония, 2,5-дифенил-1-гексен, сульфат гидроксиламмония и фосфат гидроксиламмония.

Другими пригодными регуляторами молекулярной массы являются галогенсодержащие соединения, например, алкилгалогениды, такие как тетрахлорметан, хлороформ, бромтрихлорметан, бромоформ и аллилбромид, а также бензильные соединения, такие как бензилхлорид или бензилбромид.

Другими пригодными регуляторами молекулярной массы являются аллильные соединения, например, такие как аллиловый спирт, функционализованные простые аллиловые эфиры, такие как аллилэтоксилаты, алкилаллиловые или глицеринмоноаллиловые эфиры.

Предпочтительными регуляторами молекулярной массы являются соединения, содержащие связанную серу.

Содержащими связанную серу соединениями, например, являются неорганические гидросульфиты, бисульфиты и дитиониты или органические сульфиды, дисульфиды, полисульфиды, сульфоксиды и сульфоны. К подобным соединениям относятся ди-н-бутилсульфид, ди-н-октилсульфид, дифенилсульфид, тиодигликоль, этилтиоэтанол, диизопропилдисульфид, ди-н-бутилдисульфид, ди-н-гексилдисульфид, диацетилдисульфид, диэтанолсульфид, ди-трет-бутилтрисульфид, диметилсульфоксид, диалкилсульфид, диалкилдисульфид и/или диарилсульфид.

Особенно предпочтительными регуляторами молекулярной массы являются содержащие связанную серу органические соединения.

Соединениями, предпочтительно используемыми в качестве регуляторов молекулярной массы, являются тиолы (соединения, содержащие серу в виде SH-групп, называемые также меркаптанами). Предпочтительными регуляторами молекулярной массы являются монофункциональные, бифункциональные и многофункциональные меркаптаны, меркаптоспирты и/или меркаптокарбоновые кислоты.

Примерами подобных соединений являются аллилтиогликоляты, этилтиогликолят, цистеин, 2-меркаптоэтанол, 1,3-меркаптопропанол, 3-меркаптопропан-1,2-диол, 1,4-меркаптобутанол, меркаптоуксусная кислота, 3-меркаптопропионовая кислота, меркаптоянтарная кислота, тиоглицерин, тиоуксусная кислота, тиокарбамид и алкилмеркаптаны, такие как н-бутилмеркаптан, н-гексилмеркаптан или н-додецилмеркаптан.

Особенно предпочтительными тиолами являются цистеин, 2-меркаптоэтанол, 1,3-меркаптопропанол, 3-меркаптопропан-1,2-диол, тиоглицерин и тиокарбамид.

Примерами бифункциональных регуляторов молекулярной массы, которые содержат два связанных атома серы, являются бифункциональные тиолы, например, такие как димеркаптопропансульфокислота (натриевая соль), димеркаптоянтарная кислота, димеркапто-1-пропанол, димеркаптоэтан, димеркаптопропан, димеркаптобутан, димеркаптопентан, димеркаптогексан, этиленгликольбистиогликоляты и бутандиолбистиогликолят.

Примерами многофункциональных регуляторов молекулярной массы являются соединения, содержащие более двух связанных атомов серы. Речь при этом идет, например, о трифункциональных и/или тетрафункциональных меркаптанах.

Предпочтительными трифункциональными регуляторами молекулярной массы являются трифункциональные меркаптаны, например, такие как триметилолпропантрис(2-меркаптоэтанат), триметилолпропантрис(3-меркаптопропионат), триметилолпропантрис(4-меркаптобутанат), триметилолпропантрис(5-меркаптопентанат), триметилолпропантрис(6-меркаптогексанат), триметилолпропантрис(2-меркаптоацетат), глицерилтиогликолят, глицерилтиопропионат, глицерилтиоэтилат, глицерилтиобутанат, 1,1,1-пропантриилтрис(меркаптоацетат), 1,1,1-пропантриилтрис(меркаптоэтанат), 1,1,1-пропантриилтрис(меркаптопропионат), 1,1,1-пропантриилтрис(меркаптобутанат), 2-гидроксиметил-2-метил-1,3-пропандиолтрис-(меркаптоацетат), 2-гидроксиметил-2-метил-1,3-пропандиолтрис(меркаптоэтанат), 2-гидроксиметил-2-метил-1,3-пропандиолтрис(меркаптопропионат) и 2-гидроксиметил-2-метил-1,3-пропандиолтрис(меркаптобутанат).

Особенно предпочтительными трифункциональными регуляторами молекулярной массы являются глицерилтиогликолят, триметилолпропантрис(2-меркаптоацетат) и 2-гидроксиметил-2-метил-1,3-пропандиолтрис(меркаптоацетат).

Предпочтительными тетрафункциональными меркаптанами являются пентаэритриттетракис(2-меркаптоацетат), пентаэритриттетракис(2-меркаптоэтанат), пентаэритриттетракис(3-меркаптопропионат), пентаэритриттетракис(4-меркаптобутанат), пентаэритриттетракис(5-меркаптопентанат) и пентаэритриттетракис(6-меркаптогексанат).

Другими пригодными многофункциональными регуляторами молекулярной массы являются кремнийсодержащие соединения формулы:

,

в которой

n означает число от 0 до 2,

R1 означает алкильную группу с 1-16 атомами углерода или фенильную группу,

R2 означает алкильную группу с 1-18 атомами углерода, циклогексильную или фенильную группу,

Z означает алкильную группу с 1-18 атомами углерода, алкиленовую группу с 2-18 атомами углерода или алкинильную группу с 2-18 атомами углерода, в которых не являющиеся соседями атомы углерода могут быть замещены атомами кислорода или галогена, или означает группу формулы:

или ,

в которой

R3/R3 означает алкильную группу с 1-12 атомами углерода и

R4 означает алкильную группу с 1-18 атомами углерода.

Указанные регуляторы молекулярной массы можно использовать по отдельности или в комбинации друг с другом.

Сшивающие агенты

В одном из вариантов осуществления изобретения для получения полимеров, пригодных для предлагаемого в изобретении применения, используют сшивающий агент. Термин «сшивающий агент» известен специалистам. Сшивающий агент предпочтительно выбирают из группы, включающей пригодные для осуществления радикальной сополимеризации соединения по меньшей мере с двумя несопряженными этиленненасыщенными двойными связями в молекуле.

Пригодными сшивающими агентами с) являются, например, сложные эфиры акриловой кислоты, сложные эфиры метакриловой кислоты, аллиловые или виниловые эфиры по меньшей мере двухатомных спиртов. Гидроксильные группы соответствующих спиртов могут быть преобразованы в группы простых или сложных эфиров полностью или частично, однако сшивающие агенты содержат по меньшей мере две этиленненасыщенные группы.

Примерами спиртов, лежащих в основе указанных выше эфиров, являются двухатомные спирты, такие как 1,2-этандиол, 1,2-пропандиол, 1,3-пропандиол, 1,2-бутандиол, 1,3-бутандиол, 2,3-бутандиол, 1,4-бутандиол, бут-2-ен-1,4-диол, 1,2-пентандиол, 1,5-пентандиол, 1,2-гександиол, 1,6-гександиол, 1,10-декандиол, 1,2-додекандиол, 1,12-додекандиол, неопентилгликоль, 3-метилпентан-1,5-диол, 2,5-диметил-1,3-гександиол, 2,2,4-триметил-1,3-пентандиол, 1,2-циклогександиол, 1,4-циклогександиол, 1,4-бис(гидроксиметил)циклогексан, сложный моноэфир неопентилгликоля и гидроксипивалиновой кислоты, 2,2-бис(4-гидроксифенил)пропан, 2,2-бис[4-(2-гидрокси пропил)фенил]пропан, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль, дипропиленгликоль, трипропиленгликоль, тетрапропиленгликоль, 3-тиопентан-1,5-диол, а также полиэтиленгликоли, полипропиленгликоли и политетрагидрофураны с молекулярной массой соответственно от 200 до 10000.

Помимо гомополимеров этиленоксида, соответственно пропиленоксида, можно использовать также блок-сополимеры этиленоксида или пропиленоксида или сополимеры, содержащие мономерные звенья этиленоксида и пропиленоксида.

Примерами спиртов с числом гидроксильных групп более двух, лежащих в основе указанных выше эфиров, являются триметилолпропан, глицерин, пентаэритрит, 1,2,5-пентантриол, 1,2,6-гексантриол, триэтоксициануровая кислота, сорбитан, а также сахара, такие как сахароза, глюкоза и манноза. Предпочтительными многоатомными спиртами являются также дисахариды и трисахариды.

Многоатомные спирты, очевидно, можно использовать также в виде соответствующих этоксилатов или пропоксилататов, полученн