Биоинженерный коллагеновый конструкт, модифицированный кишечный коллагеновый слой, переработанный тканевый матрикс и способ восстановления или замещения поврежденной ткани

Изобретение относится к области медицины и фармакологии и представляет собой биоинженерный коллагеновый конструкт для восстановления или замещения поврежденной ткани, отличающийся тем, что он включает слой очищенного коллагенового тканевого матрикса, полученного из подслизистой оболочки тонкой кишки, при этом упомянутый очищенный коллагеновый тканевый матрикс является обработанным фармацевтически приемлемым противомикробным агентом и обладает противомикробными свойствами. Изобретение обеспечивает биоинженерный коллагеновый конструкт с улучшенными противомикробными свойствами. 4 н. и 11 з.п. ф-лы, 11 пр., 2 табл.

Реферат

Область техники, к которой относится изобретение

Это изобретение относится к области регенеративной медицины и тканевой инженерии. Изобретение направлено к биоинженерным конструктам, получаемым из переработанного тканевого материала или матрикса, которые происходят из животных источников. Биоинженерные конструкты изобретения получают, используя способы, при которых сохраняется биосовместимость, клеточная совместимость, прочность обрабатываемого тканевого матрикса и ее биореконструируемость. Противомикробные свойства придают биоинженерным конструктам, которые используют для приживления трансплантата, имплантации, восстановления ткани, заживления раны и реконструкции, или применяют с другой целью в организме млекопитающего.

Уровень техники

Область регенеративной медицины и тканевой инженерии сочетает в себе методы инженерии с принципами науки о жизни для понимания структурных и функциональных взаимосвязей в нормальных и патологических тканях млекопитающих. Целью регенеративной медицины и тканевой инженерии является разработка биологических заменителей и доведение их до конечного применения с целью восстановления, поддержания и улучшения тканевых функций.

Коллаген представляет собой основной структурный белок в теле организма, который составляет приблизительно одну третью часть от всех белков организма. Он составляет основную часть органического вещества кожи, сухожилий, костей и зубов и встречается в виде волокнистых включений в большей части других структур тела. К некоторым из свойств коллагена относятся высокая прочность на разрыв, низкая антигенность, отчасти благодаря маскированию потенциальных антигенных детерминант за счет спиральной структуры, и низкая растяжимость, полупроницаемость и растворимость. Более того, коллаген является природным веществом для клеточной адгезии. Эти и другие свойства делают коллаген подходящим материалом для тканевой инженерии и изготовления имплантируемых биосовместимых структур и биореконструируемых протезов.

Способы получения коллагеновой ткани и тканевых стурктур из эксплантируемых тканей млекопитающих и способы конструирования протеза из этих тканей и тканевых структур уже широко исследованы с целью применения их при заживлении ран, хирургическом восстановлении и при замене тканей или органов. Продолжающейся целью исследователей является разработка биоинженерных конструктов, которые можно успешно использовать, с целью повышения стандартов ухода за здоровьем пациентов.

Раскрытие изобретения

Коллагеновые материалы биологического происхождения, такие как подслизистая оболочка кишечника, используют при восстановлении тканей или их замене, эти материалы продолжают разрабатывать и совершенствовать. В настоящее время новым биоинженерным, биореконструируемым конструктам придают противомикробные свойства с целью улучшения их эксплуатационных характеристик при использовании в регенеративной медицине, включая заживление ран, восстановление тканей и их замену. Раскрываются способы механической и химической переработки проксимальной свиной тощей кишки для получения одиночного, бесклеточного слоя кишечного коллагена (СКК), получаемого из кишечной подслизистой оболочки, который может использоваться для формирования слоистых материалов с противомикробными свойствами для заживления, восстановления и замены тканей. При переработке клетки и продукты распада клеток удаляются, в то время как матриксная структура нативной коллагеновой ткани сохраняется. Конечный слой переработанного тканевого матрикса используют для получения однослойных и многослойных листовых, поперечно-сшитых конструктов с желаемыми характеристиками. Исследованы эффективность однослойных продуктов для перевязки ран, листовых многослойных лоскутов для восстановления мягких тканей, а также использование интубируемых конструктов в качестве сосудистого имплантата. Такой тканевый материал, получаемый при переработке кишки, обеспечивает необходимую физическую опору при минимальном образовании спайков и способен интегрироваться в окружающую нативную ткань, становясь инфильтрованным клетками-хозяевами. In vivo биореконструирование не подвергает риску механическую целостность этих конструктов. Внутренние и функциональные свойства имплантата, такие как модуль эластичности, способность поддерживать состоятельность шва и конечная прочность на разрыв, являются важными параметрами, которыми можно манипулировать при специфических требованиях путем варьирования количества слоев и условий перекрестного сшивания. Теперь этим конструктам придают противомикробные свойства с целью контролирования или уменьшения микробной активности в обрабатываемом участке, где используются конструкты.

Целью изобретения является биоинженерный коллагеновый конструкт с противомикробными свойствами, который содержит листовой слой очищенного коллагенового тканевого матрикса, получаемого из источника ткани, такого как подслизистая оболочка тонкой кишки, или переработанный кишечный коллагеновый слой, получаемый из подслизистой оболочки тонкой кишки, обработанной противомикробным агентом. При использовании биоинженерного коллагенового конструкта изобретения в качестве повязки на рану при лечении ран млекопитающего, конструкт наносят на раненую поверхность с целью частичного покрытия раны так, чтобы собственная кожная ткань больного обеспечивалась влажной средой, что способствует восстановлению кожной ткани, тогда как противомикробный агент в конструкте регулирует или снижает микробную активность на ране. Конструкт является биосовместимым, это означает, что конструкт не является цитотоксичным, не вызывает снижение чувствительности кожи и не вызывает первичное раздражение кожи.

В одном варианте осуществления повязка на рану содержит слой переработанного кишечного коллагена, полученного из подслизистой оболочки тонкой кишки, толщина которого составляет примерно от 0,05 до 0,07 мм, и противомикробный агент. За счет листовой геометрии очищенного тканевого матрикса ее можно покрывать слоями, а затем химически связать слои друг с другом с получением многослойного конструкта. Поэтому другим вариантом осуществления является конструкт, содержащий два или более двух слоев очищенного тканевого матрикса, которые уже связаны вместе и обработаны противомикробным агентом. Конструкты изобретения можно выполнить в виде сетки, перфорировать или фенестрировать либо для более лучшего согласования с поверхностной формой раны или для более лучшего дренирования экссудатов раны, либо для обоих целей.

Дополнительной целью в этом аспекте изобретения является обработка раны в случае необходимости ухода или лечения, в частности в том случае, когда необходимы противомикробное вмешательство и защита, при этом к ранам относится любая из следующих видов ран: поверхностные или глубокие раны, пролежени, венозные язвы, диабетические язвы, хронические сосудистые язвы, туннельные раны/раны с нависающими краями, хирургические раны, раны донорского участка при аутотрансплантации, раны пост-Моховской хирургии, раны пост-лазерной хирургии, расхождение краев раны, травматические раны, ссадины, разрывы, ожоги второй степени, кожные разрывы или дренажные раны.

Другой целью изобретения является предоставление хирургического восстанавливающего приспособления, такого как лоскут или сетка, для обработки и восстановления мягких тканей и органов, которое содержит два или более двух слоев, например, от двух до десяти слоев, переработанного кишечного коллагена, полученного из подслизистой оболочки тонкой кишки, эти слои связывают и поперечно сшивают друг с другом для формирования многослойного конструкта, который является биосовместимым и биореконструируемым и который при имплантации на поврежденной или нездоровой мягкой ткани подвергается контролируемой биодеградации, которая происходит с адекватным замещением живыми клетками, так что исходный имплантируемый протез реконструируется за счет живых клеток пациента. Дополнительной целью в этом аспекте изобретения является предоставление способа обработки поврежденной или нездоровой мягкой ткани при необходимости восстановления или противомикробного вмешательства, включающего имплантацию протеза, который содержит два или более двух наложенных друг на друга, химически связанных слоев переработанного кишечного коллагена, полученного из подслизистой оболочки тонкой кишки и обработанные противомикробным агентом, который при имплантации на поврежденной или нездоровой мягкой ткани подвергается контролируемой биодеградации, происходящей с адекватным замещением живыми клетками, так что исходный имплантируемый протез реконструируется за счет живых клеток пациента. Случаи, когда поврежденная или нездоровая мягкая ткань нуждается в восстановлении включают, например, раны, дефекты брюшной и грудной стенки, необходимость усиления мышечного лоскута, ректальный и вагинальный пролапс, реконструкция тазового дна, грыжа, необходимость усиления линии шва и восстановительные процедуры.

Осуществление изобретения

Целью изобретения являются биоинженерные коллагеновые конструкты (например, протезы, имплантат), который содержит листовой слой очищенного коллагенового тканевого матрикса, переработанный тканевый материал, полученный из нативных тканей, например, переработанный кишечный коллагеновый слой, полученный из подслизистой оболочки тонкой кишки, которая обработана противомикробным агентом. Биоинженерным коллагеновым конструктом может являться либо одиночный слой переработанного тканевого матрикса, либо несколько наложенных друг на друга, связанных слоев переработанного тканевого матрикса. В том случае, когда биоинженерный коллагеновый конструкт изобретения используют для лечения раны больного млекопитающего, его наносят на поверхность раны с целью частичного покрытия раны так, чтобы собственная кожная ткань больного обеспечивалась как влажной средой, что способствует восстановлению кожной ткани, так и противомикробной композицией для регулирования или снижения микробной активности в ране и по краям раны. В том случае, когда биоинженерный конструкт используют в качестве хирургического приспособления, его имплантируют на участок имплантации организма млекопитающего так, чтобы он служил для восстановления функции, заживления или замены части тела или тканевой структуры. Противомикробный агент регулирует или снижает микробную активность на ране или участке имплантата посредством предотвращения адгезии или пролиферации бактерий на конструкте. Противомикробные конструкты изобретения являются биосовместимыми, это означает, что конструкт не является цитотоксичным, не вызывает снижение чувствительности кожи и не вызывает первичное раздражение кожи.

Протезы изобретения также являеются "биореконструируемыми", что означает, что они будут подвергаться контролируемой биодеградации, которой сопутствует реконструирование и замена новым эндогенным матриксом, предоставляемым клетками организма-хозяина или больного, с образованием новой ткани. Таким образом, протез этого изобретения при снабжении его противомикробным агентом и при использовании в качестве замещающей ткани, обладает множеством свойств. Во-первых, он функционирует в качестве замены части тела или в качестве покрытия для раны. Во-вторых, когда он функционирует в качестве заменяемой части тела, он выполняет роль реконструируемого шаблона для прорастания внутрь клеток-хозяев. В-третьих, он обеспечивает противомикробный эффект локально в обрабатываемом месте.

Материал протеза в соответствии с настоящим изобретением представляет собой очищенный, переработанный коллагеновый тканевый матрикс, полученный из коллагеновой ткани млекопитающего, который можно связывать сам с собой или с другим переработанным, очищенным тканевым матриксом, и которому можно придать противомикробные свойства для получения протеза для вживления или имплантации на участок тела организма, который нуждается в лечении.

Изобретение включает способы изготовления тканно-инженерных протезов из переработанного тканевого материала, где в способах связывания слоев друг с другом не требуются клеи, швы или скрепки, при этом способность протезов биологически реконструироваться сохраняется. Под терминами "переработанный тканевый матрикс" и "переработанный тканевый материал" подразумевается нативная, нормальная клеточная ткань, которая была извлечена из животного источника, предпочтительно из млекопитающего, и механически очищена от сопутствующих тканей, а также химически очищена от клеток, продуктов распада клеток и представлена частично свободной от неколлагеновых компонентов внеклеточного матрикса. Переработанный тканевый матрикс, в то время как является частично свободным и очищенным от неколлагеновых компонентов, по существу сохраняет свою нативную матриксную структуру, организацию, прочность и форму. Композиции переработанного тканевого материала для получения биоинженерных имплантатов изобретения получают из животных тканей, содержащих коллаген, к таким коллагеновым источникам относятся (но этим перечень не ограничивается): кишечник, дерма, широкая фасция, перикард, твердая мозговая оболочка, плацента и другие плоские или планарно-структурированные ткани, которые содержат коллагеновый тканевый матрикс. Структура и геометрия этих тканевых матриксов позволяет легко очищать их, манипулировать с ними и составлять их таким образом, чтобы можно было получать биоинженерные имплантаты изобретения. Другие подходящие источники тканей с аналогичной плоской структурой, геометрией и матриксным составом могут быть идентифицированы, извлечены и обработаны квалифицированным специалистом из других источников животного происхождения в соответствии с изобретением.

Одной такой переработанной тканевой матриксной композицией для получения биоинженерных имплантатов изобретения является кишечный коллагеновый слой, полученный из подслизистой оболочки тонкой кишки. Подходящими источниками тонкой кишки являются организмы млекопитающих, таких как человек, корова, свинья, овца, собака, коза или лошадь, при этом тонкая кишка свиньи является легкодоступным источником. Протезы изобретения можно получить из переработанного кишечного коллагенового слоя (иногда обозначаемого термином "кишечный коллагеновый слой" или "СКК"), которым является переработанный тканевый материал, полученный из подслизистой оболочки тонкой кишки свиньи. В одном способе для получения этого кишечного коллагенового слоя тонкую кишку извлекают из млекопитающего, а сопутствующие мезентериальные ткани грубо отрезают от кишечника. Подслизистую оболочку отделяют или отслаивают от других слоев тонкой кишки посредством механического сжатия исходного кишечного материала, например, устанавливая его между противостоящими валами, аналогичными тем, что применяются в аппарате для выдавливания колбас, чтобы отделить мышечные слои (мышечную оболочку) и оболочку (слизистую оболочку). Поскольку подслизистая оболочка тонкой кишки тверже и прочнее окружающей ткани, валы выдавливают более мягкие компоненты подслизистой, в результате механически очищая тканевый матрикс. В следующих примерах, свиную тонкую кишку механически очищают с использованием аппарата для очистки кишков, а затем химически очищают путем последовательных растворений, что дает в результате переработанный тканевый матрикс. Такой механически и химически очищенный кишечный коллагеновый слой, полученный из подслизистой оболочки тонкой кишки, в настоящем документе обозначают как "СКК", этот слой является одним из видов переработанных тканевых матриксов или материалов, из которых получают противомикробные конструкции изобретения.

В композиции переработанный СКК тканевый материал - это бесклеточный телопептидный коллаген типа I, который примерно на 93% по массе является сухим, при этом менее 5% от массы сухого остатка составляют гликопротеины, гликозаминокликаны, протеогликаны, липиды, неколлагеновые белки и нуклеиновые кислоты, такие как ДНК и РНК, этот материал в основном свободен от клеток и продуктов распада клеток. Переработанный СКК тканевый материал по большей части сохраняет структуру и прочность своего матрикса. Существенно, что биосовместимость и биореконструируемость тканевого матрикса частично сохраняется в процессе очистки, поскольку она свободна от связывающих детергентных остатков, которые могли бы неблагоприятно повлиять на биореконструируемость коллагена. Кроме того, молекулы коллагена сохраняют свои телопептидные участки, поскольку ткань не подвергают обработке ферментами во время проведения процесса очистки.

Для получения переработанного тканевого матрикса определяют подходящий источник животного происхождения и тканевый источник. Ткань обрабатывают как механически, так и химически, для того чтобы удалить сопутствующие ткани и отделить неколлагеновые компоненты от ткани, получив в результате переработанный тканевый матрикс. В качестве примера, СКК является одним видом переработанного тканевого матрикса, используемого для получения биоинженерных имплантируемых протезов изобретения. В описанных ниже способах проводят обработку ткани для получения переработанного тканевого матрикса и для изготовления биоинженерных имплантируемых протезов, содержащих СКК и противомикробный агент.

Для получения свиного СКК, подслизистую оболочку тонкой кишки свиньи используют в качестве исходного материала для биоинженерного имплантируемого протеза изобретения. После изъятия тонкой кишки свиньи, сопутствующие ткани удаляют, а затем кишечник механически очищают, используя аппарат для очистки кишки, в котором энергично отделяется жировая клетчатка, мышцы и слои слизистой от подслизистой оболочки при использовании комбинации механического воздействия и водной промывки. Механическое воздействие осуществляется набором валов, которые сжимают и выдавливают последовательные слои подслизистой оболочки при пропускании через эти валы цельного кишечника. Подслизистая оболочка тонкой кишки сравнительно прочнее и тверже окружающей ткани, и поэтому валы выдавливают более мягкие компоненты отдельно от подслизистой. Другие средства механической очистки, используемые в данной области техники, которые может определить квалифицированный специалист, включают прочие физические манипуляции, такие как соскабливание, выдавливание, сжатие и растирание. Результат механической очистки таков, что остается исключительно подслизистый слой кишечника - механически очищенный кишечник.

После механической очистки используют процедуру химической очистки для отделения клеточных и матриксных компонентов от механически очищенного кишечника, предпочтительно проводя ее при асептических условиях и при комнатной температуре. Механически очищенный кишечник вырезают в продольном направлении вниз от полости, а затем вырезают в виде отрезков длиной приблизительно от 15 см до 50 см. Материал взвешивают и помещают в контейнеры при соотношении раствора к кишечному материалу примерно 100:1 по объему. В наиболее предпочтительной процедуре химической очистки, например по способу, раскрываемому в патентах США №№5993844 и 6599690 под авторством Abraham (эти ссылки означают, что сведения из упомянутых патентов в полном объеме включены в этот документ) коллагеновую ткань обрабатывают с эффективным количеством хелатирующего агента, такого как тетранатриевая соль этилендиаминтетрауксусной кислоты (ЭДТА) в щелочных условиях, например, посредством добавления гидроксида натрия (NaOH); с последующей обработкой эффективным количеством кислоты, где кислота содержит соль, например соляная кислота (HCl), содержащая хлорид натрия (NaCl); с последующей обработкой эффективным количеством буферного солевого раствора, например, с 1 мМ раствором хлорида натрия (NaCl) с концентрацией фосфатно-солевого буфера (PBS - от англ. phosphate buffered saline) 10 мМ; в конце проводят стадию промывки водой. Каждую стадию обработки предпочтительно проводят с использованием качающейся или вибрирующей платформы для улучшения воздействия химических и промывочных растворов. В результате проведения процессов очистки получается переработанный кишечный коллагеновый слой, или СКК, механически и химически очищенный переработанный тканевый матрикс, полученный из подслизистой оболочки тонкой кишки. После промывки СКК вынимают из очистных контейнеров и умеренно отжимают или промокают тканью для удаления избытка воды. На этой стадии его можно хранить в замороженном виде при -80°С, при 4°С в стерильном фосфатном буфере, либо в сухом виде до изготовления из него протеза. Если хранить в сухом виде, то листы СКК разглаживают на поверхности, например на плоской пластине, предпочтительно на пористой пластине или мембране, такой как поликарбонатная мембрана, а любые лимфатические наросты с очищенной стороны материала удаляют при помощи скальпеля, после этого листы СКК можно поставить сушиться в ламинаре при комнатной температуре и влажности окружающей среды.

СКК представляет собой плоскую, листовую структуру, которую можно использовать как однослойный материал для изготовления различных типов конструктов, используемых в качестве протезов, при этом форма протезов зависит только от предполагаемого назначения. Для получения многослойных протезов изобретения листы СКК ламинируют способом, в котором по-прежнему сохраняется биосовместимость и биореконструируемость переработанного матриксного материала, при этом в данном способе может сохраняться прочность и структурные характеристики материала, необходимые для эффективной эксплуатации его в качестве замещающей ткани. Переработанный тканевый матрикс, полученный из ткани, сохраняет структурную целостность нативного тканевого матрикса, то есть коллагеновая матриксная структура исходной ткани остается в основном незатронутой, а также сохраняет физические свойства так, что при имплантации будут проявляться многие функциональные и присущие ей свойства. При получении многослойных ламинатов СКК, листы СКК наслаивают для контактирования с другими листами. Площадь контакта представляет собой область связывания, где слои контактируют друг с другом, либо слои непосредственно накладываются друг на друга или частично находятся в контакте или перекрываются с образованием более сложных структур. В готовых конструктах область связывания должна быть устойчивой к наложению швов и растяжению при эксплуатации их в клинических условиях, во время имплантации и во время начальной стадии заживления при функционировании конструктов в качестве замещающей части тела. Область связывания также должна поддерживать достаточную прочность до тех пор, пока клетки больного не заполнят и впоследствии не биореконструируют протез с образованием новой ткани.

Переработанный тканевый матрикс используют в качестве однослойного протеза или получают из него многослойный, связанный протез плоской, трубчатой или сложной формы. В том случае, когда протезы изобретения содержат два или более двух слоев переработанного тканевого матрикса, слои связывают посредством химического сшивания с помощью перекрестносшивающего агента (для краткости также называемого здесь сшивающим агентом). При использовании химического сшивания для связывания нескольких слоев переработанного тканевого матрикса друг с другом, степень химического перекрестного сшивания можно варьировать для модулирования скоростей биореконструирования на всем протяжении протеза, т.е. скоростей, с которыми протез рассасывается и/или замещается клетками-хозяевами и тканью организма-хозяина. Другими словами, чем выше степень перекрестного сшивания в протезе, тем с более низкой скоростью протезы будут подвергаться биореконструированию; наоборот, чем ниже степень перекрестного сшивания, тем быстрее протезы будут подвергаться биореконструированию. В соответствии с показаниями к хирургическому вмешательству устанавливается степень и/или скорость биореконструирования, необходимая для протеза. Например, при использовании однослойного конструкта в качестве повязки на рану протез можно химически сшивать или можно не сшивать. Например, при использовании в качестве хирургического восстанавливающего лоскута, или сетки, протез представляет собой многослойный конструкт, который имеет низкую степень перекрестного сшивания с тем, чтобы протез биореконструировался с более высокой скоростью. Например, при использовании в качестве мочепузырного лоскута для поддержания гипермобильного мочевого пузыря с целью предотвращения недержания мочи, протез представляет собой многослойный конструкт, который имеет высокую степень перекрестного сшивания с тем, чтобы он не биореконструировался быстро, т.е. он по существу сохраняет ту же самую форму, которую он имел при имплантации, на протяжении длительного периода времени.

Коллагеновый матрикс или конструкт в том случае, когда имеет форму листа, как правило, имеет две противоположные поверхности большой площади. Для обработки переработанного коллагенового матрикса противомикробным агентом, этот агент наносят посредством введения его в контакт с какой-либо из сторон переработанного коллагенового матрикса, или этот агент связывают с обоими сторонами. В качестве альтернативы, можно достигнуть волокнистых, абсорбционных свойств переработанного коллагенового матрикса, нанося противомикробный агент на внутреннюю часть переработанного коллагенового материала, как в пустоты волокнистого переработанного тканевого матрикса, например, посредством погружения коллагенового матрикса в раствор, содержащий противомикробный агент, которое проникает в матрикс путем абсорбции. Другим способом введения противомикробного агента внутрь многослойного конструкта является первоначальная обработка одиночных слоев переработанной тканевого матрикса, а затем нанесение слоев и связывание их друг с другом. В случае многослойных конфигураций способ включает проведение следующих стадий изготовления: матриксные листы обрабатывают противомикробным агентом, матриксные листы наслаивают для образования составных слоев и сшивают конструкт сшивающим агентом; указанные стадии можно проводить в любом порядке, включая следующие: матриксные листы обрабатывают противомикробным агентом, матриксные листы наслаивают для образования составных слоев с последующим сшиванием посредством сшивающего агента; матриксные листы обрабатывают противомикробным агентом, сшивают посредством сшивающего агента с последующим наслаиванием матриксных листов для образования составных слоев; сшивают посредством сшивающего агента, обрабатывают матриксные листы противомикробным агентом, а затем наслаивают матриксные листы для образования составных слоев; сшивают посредством сшивающего агента, наслаивают матриксные листы для образования составных слоев, а затем обрабатывают матриксные листы противомикробным агентом; наслаивают матриксные листы для образования составных слоев, сшивают посредством сшивающего агента, а затем обрабатывают матриксные листы противомикробным агентом; или, наслаивают матриксные листы для образования составных слоев, обрабатывают матриксные листы противомикробным агентом, а затем сшивают посредством сшивающего агента. В некоторых случаях, сшивание матрикса после покрытия противомикробным агентом может оказаться непрактичным, поскольку некоторые противомикробные агенты могут смываться сшивающим агентом.

Необработанные и обработанные слои можно наслаивать друг на друга в различном порядке чередования для получения протеза с локализованным противомикробным агентом. Способы изготовления таких многослойных конфигураций включают наслаивание листов переработанного тканевого матрикса, которые предварительно были обработаны противомикробным агентом, и необработанных матриксных листов друг на друга для составления многослойного конструкта, и сшивание слоев друг с другом, например, по меньшей мере, два матриксных листа можно наслаивать, сшивать и обрабатывать противомикробным агентом для составления обработанного матриксного конструкта, а затем один или несколько матриксных листов можно наслоить либо на верхнюю или нижнюю поверхность, либо на обе поверхности обработанного матриксного конструкта, а затем полученный конструкт можно сшить для получения объединенного конструкта. В качестве альтернативы, по меньшей мере, два необработанных матриксных листа можно наслоить или перекрестно сшить для получения необработанного матриксного конструкта, а затем один или несколько матриксных листов можно наслоить либо на верхнюю или нижнюю поверхность, либо на обе поверхности необработанного матриксного конструкта, после чего полученный в результате конструкт можно перекрестно сшить для получения комбинированного матриксного конструкта. В другом примере обработанные и необработанные матриксные листы можно наслоить поочередно, а затем перекрестно сшить для составления комбинированного конструкта. В еще одном примере обработанные матриксные листы, которые были предварительно обработаны двумя различными противомикробным агентами можно расположить в чередующемся или в ином порядке для получения комбинированного конструкта. В еще одном примере ориентация обработанных и необработанных листов относительно друг друга, или относительно обработанных или необработанных матриксных конструктов в комбинорованном матриксном конструкте может быть выбрана с учетом такого выгодного качества СКК материала, как многосторонность.

Для обработки только выбранных частей или областей протеза эти части поверхности материала можно обработать противомикробным агентом путем маскирования обрабатываемых частей так, чтобы при маскировании блокировался контакт противомикробным агентом с материалом во время обработки других областей поверхности. Другим способом локализации противомикробного агента на коллагеновом матриксе является частичное погружение коллагенового материала в ванну или резервуар так, чтобы в контакте с противомикробным агентом находилась только часть коллагенового матрикса, а оставшиеся части не вступали в контакт. Еще одним способом локализации противомикробного агента на поверхности материала является распыление, или какое-либо иное продвижение, противомикробного агента на поверхности материала, при котором противоположная поверхность остается необработанной.

Однослойные и многослойные конструкты обрабатывают противомикробным агентом для придания ему противомикробных свойств. По меньшей мере, одно противомикробный агент наносят на конструкты изобретения посредством введения его в контакт с противомикробным агентом целиком или только с некоторой частью. К предпочтительным противомикробным агентам относятся противомикробные агенты на основе серебра и на химической основе. Также в композицию может быть включен антибиотический агент. Для обработки коллагенового материала с целью придания ему широкого спектра противомикробной активности можно использовать комбинацию агентов, например комбинацию противомикробных агентов на основе серебра и на химической основе; противомикробного агента на химической основе и антибиотического агента; противомикробного агента на основе серебра и антибиотического агента; или комбинацию всех трех типов агентов.

Для придания противомикробных свойств протезам, содержащим переработанный тканевый матрикс можно выбрать противомикробные агенты на основе серебра. Серебро можно наносить на коллагеновые конструкты в нескольких формах. Противомикробные агенты на основе серебра содержат серебро или соединения, содержащие серебро, эти соединения обладают некоторой степенью антимикробной активности и совместимы как с коллагеновым конструктом, так и с организмом больного. Чистое серебро, которое также называют элементарным или благородным серебром, химически сравнительно неактивно и не взаимодействует с водой или кислородом при обычных температурах, а также не растворяется в разбавленных кислотах и основаниях.

Можно также использовать ионы серебра. Предполагается, что в ионной форме серебро еще не придает устойчивость к микробам и маловероятно, чтобы оно действовало также как и другие противомикробные агенты. Не стремясь связать это с какой-либо теорией, серебро в этой ионной форме эффективно действует против бактерий, дрожжей и грибков, а также против внеклеточных вирусов за счет прямого воздействия на дыхание и транспорт клеток и клеточной оболочки, а также за счет прямого влияния на клеточное размножение. Также можно использовать серебро в других формах, включая (но этим перечень не ограничивается): оксид серебра; нитрат серебра; сульфадиазин серебра (сульфадиазин серебра (I) содержит нерастворимое полимерное соединение, которое медленно высвобождает ионы серебра при использовании его в качестве противомикробного и противогрибкового агента, это соединение можно использовать локально при лечении сильных ожогов с целью предотвращения бактериальной инфекции), имидазолят серебра, Arglaes® от Giltech Limited, Великобритания (арглэис, также условно обозначаемый как AgKaPO4), коллоидное серебро, серебряные кристаллы, например нанокристаллы серебра, которые также называют "нанокристаллическим серебром", - все эти средства относятся к альтернативному способу доставки и замедленного высвобождения катиона серебра и его радикалов к раненному участку или участку имплантации.

Композиции нанокристаллического серебра ("наносеребра") изготавливают согласно нескольким различным способам. В одном способе - импульсном плазменном методе - получают нанокристаллы с организованной структурой кристаллической решетки и без неупорядоченности атомов, размеры частиц распределены в узком диапазоне и имеется высокая степень однородности их морфологии. В импульсном плазменном процессе используют в качестве сырья два проводящих стержня. Стержни загружают в реакционную камеру, которая контролируемо заполняется газом, наиболее вероятно, инертным газом, таким как аргон, при атмосферном давлении. Стержни соединяют с очень мощным, импульсным источником электропитания (разрядником). Наноматериал синтезируют посредством быстрого электрического разряда от источника импульсной мощности вдоль стержней, используемых как сырье. Мощный разряд удаляет сырой материал, создавая высокотемпературную, металлсодержащую плазму высокого давления. Благодаря использованию уникальной газодинамики плазма быстро расширяется в окружающий газ, создавая гомогенную газофазную суспензию наночастиц. Получаемые наночастицы непрерывно собирают при помощи системы с замкнутым контуром. Нагнетательный вентилятор рециркулирует контролируемые газы, перенося частицы к системе сбора. В этом способе получают нанокристаллические частицы серебра диаметром от 10 нм до 100 нм в зависимости от параметров процесса. Как правило, для использования в изобретении выбирают частицы с размером от 15 нм до 40 нм или от 20 нм до 25 нм.

К другим способам изготовления наносеребряных композиций относятся те, что описаны в патенте США №6719987 (Барелл). В этих способах получают кристаллы, кристаллическая решетка которых характеризуется неупорядоченностью атомов. В процессе Барелл осаждаемый материал получают в паровой фазе, например посредством испарения или распыления, и переносят в большой объем, в котором регулируется температура. Атомы материала сталкиваются с атомами атмосферы рабочего газа, теряют энергию и быстро конденсируются из газовой фазы на холодной подложке, например на так называемом пальце, охлаждаемом жидким азотом. Неупорядоченность атомов создается при условиях, которые ограничивают диффузию так, чтобы в материале поддерживалась достаточная неупорядоченность атомов. В случае с серебром осаждение проводят при пониженных температурах подложки,