Амфифильный сополимерный материал
Иллюстрации
Показать всеИзобретение относится к амфифильному полимерному материалу, который имеет прямую или разветвленную главную цепь полимера и множество боковых цепей. Амфифильный полимерный материал имеет общую формулу (I):
где В представляет собой прямую или разветвленную главную цепь полимера, OR представляет собой гидрофильную боковую цепь, присоединенную к главной цепи, где х обозначает число боковых цепей и находится в интервале от 1 до 5000. Главная цепь содержит чередующиеся мономерные звенья этиленненасыщенного алифатического углеводородного мономера, содержащего по меньшей мере 3 атома углерода, и малеинового ангидрида. Также предложен способ получения полимерного материала вместе с основами, композициями и эмульсиями жевательной резинки, содержащими амфифильные полимерные материалы. Технический результат - снижение липкости или приставания к поверхности композиций, в которые включен полимерный материал. 9 н. и 17 з.п. ф-лы, 3 ил., 7 табл., 10 пр.
Реферат
Настоящее изобретение относится к новому амфифильному сополимерному материалу, который представляет собой сополимер, включающий главную цепь из малеинового ангидрида и этиленненасыщенного мономера и имеющий множество боковых цепей, присоединенных к этой главной цепи. Этот новый материал обеспечивает снижение липкости или приставания к поверхности композиций, в которые он включен, в частности композиций жевательной резинки.
Липкость жевательной резинки создает большую проблему для окружающей среды.
После жевания жевательной резинки обычного состава остается нерастворимая в воде часть, обычно называемая «жвачка». Основным компонентом жвачки является исходная основа жевательной резинки. Хотя жвачку можно, в принципе, легко утилизировать, ее несоответствующая утилизация приводит к ряду проблем для окружающей среды, где наиболее примечательны затраты, необходимые для удаления жвачек из общественных мест.
В WO 2006/016179 раскрыты новые полимерные материалы, которые обладают сниженной липкостью. Показано, что эти новые полимерные материалы снижают липкость композиций жевательной резинки, в которые они включены. Эти полимерные материалы имеют прямую или разветвленную углерод-углеродную главную цепь полимера и множество боковых цепей, присоединенных к главной цепи. Эти боковые цепи образованы из алкилсилилполиоксиалкилена или полиоксиалкилена, например, связанные с главной цепью посредством привитых звеньев малеиновой кислоты/ангидрида.
Сополимеры малеинового ангидрида вместе с этиленненасыщенным мономером хорошо известны в данной области техники и имеются в продаже. Например, поли(этилен-чер-малеиновый ангидрид) и поли(изобутилен-чер-малеиновый ангидрид) можно приобрести по каталогу фирмы Sigma-Aldrich.
Поли(этиленгликоль) сшивали с главной цепью некоторых полимеров поли(мономер-чер-малеиновый ангидрид). Например, Eckert et al. в Macromolecules (1996), 29, 560-567 описывают частичное прививание поли(стирол-чер-малеинового ангидрида) монометоксиполи(этиленгликолем). Полученный в результате продукт подвергали сшиванию с образованием микросфер гидрогеля. В ЕР 0945501 описаны сополимеры стирола и ангидрида, привитые полиэтиленгликолем. Подобным образом, Liming et al. в Chinese Journal of Polymer Science (1995), 13(3), 264-272 сообщают о прививании поли(этиленгликоль)-монометилового эфира на главную цепь поли(винилметиловый эфир-чер-малеинового ангидрида). В US 2006/0057209 описаны сополимеры на ангидридной основе и способы функционализации этих полимеров. В одном примере поли(стирол-со-малеиновый ангидрид) подвергают взаимодействию с аминосодержащим нуклеофилом, который может представлять собой, например, амино-функционализированное производное ПЭГ. Полимеры наносят в виде покрытия на поверхность в целях модификации гидрофильности поверхности.
Известны способы получения композиций, содержащих привитые сополимеры на ангидридной основе, без использования растворителя. Например, в ЕР 0945473 описан такой способ, который включает смешивание этиленненасыщенного мономера, ангидридного мономера и либо монофункционального полигликоля, имеющего гидроксильную или аминную концевую группу, либо полифункционального полигликоля, и свободнорадикального инициатора с образованием смеси. Смесь нагревают с образованием смеси привитых сополимерных материалов полигликоля и этиленненасыщенного мономера, включающей привитый сополимерный продукт, который может быть полезен в качестве грязеотталкивающего агента в препаратах детергентов.
Способ по настоящему изобретению отличается от решения, описанного в ЕР 0945473, тем, что способ в последнем документе приводит в результате к множеству различных продуктов. Способ, используемый в данном изобретении, позволяет избежать этой проблемы за счет взаимодействия предварительно образованной главной цепи полимера с предшественниками боковых цепей.
Желательно получение новых дополнительных полимерных материалов, которые обладают сниженной липкостью, и синтез которых является дешевым и эффективным.
В соответствии с первым аспектом изобретения предложен амфифильный полимерный материал общей формулы (I):
где B представляет собой прямую или разветвленную главную цепь полимера, которая представляет собой сополимер по меньшей мере одного этиленненасыщенного алифатического углеводородного мономера, содержащего по меньшей мере три атома углерода, и малеинового ангидрида, и каждый OR представляет собой гидрофильную боковую цепь, присоединенную к главной цепи, где x обозначает число боковых цепей и находится в интервале от 1 до 5000.
В соответствии со вторым аспектом изобретения предложен способ получения амфифильного полимерного материала в соответствии с первым аспектом изобретения, где исходный сополимерный материал по меньшей мере одного этиленненасыщенного алифатического углеводородного мономера и малеинового ангидрида подвергают взаимодействию с предшественниками боковых цепей общей формулы (III), HO-R, с получением амфифильного полимерного материала общей формулы (I).
В соответствии с третьим аспектом изобретения предложен амфифильный полимерный материал, который имеет прямую или разветвленную главную цепь полимера и множество гидрофильных боковых цепей, присоединенных к главной цепи, где главная цепь представляет собой терполимер малеинового ангидрида, этилена и дополнительного этиленненасыщенного мономера.
В соответствии с четвертым аспектом изобретения предложен способ получения амфифильного полимерного материала, который включает прямую или разветвленную главную цепь терполимера, которая находится в пределах объема третьего аспекта изобретения.
В соответствии с пятым аспектом изобретения предложена основа жевательной резинки, которая включает амфифильный полимерный материал, имеющий прямую или разветвленную главную цепь полимера и множество гидрофильных боковых цепей, присоединенных к главной цепи, где главная цепь представляет собой сополимер по меньшей мере одного этиленненасыщенного мономера и малеинового ангидрида.
В соответствии с шестым аспектом изобретения предложена композиция жевательной резинки, содержащая амфифильный полимерный материал, как определено в пятом аспекте изобретения, и один или более чем один подсластитель или корригент.
В соответствии с седьмым аспектом изобретения предложена эмульсия, содержащая амфифильный полимерный материал, как определено в первом и третьем аспектах изобретения.
Главная цепь полимерного материала согласно изобретению является гибкой и обеспечивает больше точек присоединения для боковых цепей, чем полимеры в WO 2006/016179, которые не имеют малеинового ангидрида в главной цепи. Новый полимерный материал может иметь разнообразие различных главных цепей полимера с варьирующими различными химическими функциональными группами и варьирующими долями малеинового ангидрида. Следовательно, возможно контролировать степень преобразования боковых цепей более точно, чем в полимерах по WO 2006/016179. Это дает возможность лучше контролировать физические свойства нового полимерного материала. Сомономеры этилена в главной цепи терполимера способствуют повышению химической стабильности главной цепи.
Под "амфифильным" авторы изобретения подразумевают, что полимерный материал имеет отдельные гидрофильные и гидрофобные участки. "Гидрофильный" обычно означает участок, который внутримолекулярно взаимодействует с водой и другими полярными молекулами. "Гидрофобный" обычно означает участок, который взаимодействует преимущественно с маслами или жирами вероятнее, чем с водной средой. Обычно указанное отделение обеспечивают боковые цепи и главная цепь (где боковые цепи являются гидрофильными, а главная цепь гидрофобной). Степень гидрофобности главной цепи можно варьировать путем изменения доли малеинового ангидрида в главной цепи или природы сомономера. Боковые цепи и главная цепь могут быть ионными или неионными.
"Предшественники боковых цепей" представляют собой исходные вещества боковых цепей, которые становятся боковыми цепями в полимерном материале. "Исходный сополимерный материал" представляет собой сополимер малеинового ангидрида с одним или более чем одним другим мономером, который взаимодействует с предшественниками боковых цепей и становится главной цепью в полимерном материале. Подобным образом, "исходный терполимерный материал" представляет собой терполимер малеинового ангидрида, этилена и дополнительного этиленненасыщенного мономера, который взаимодействует с предшественниками боковых цепей с образованием главной цепи в полимерном материале. Терполимер представляет собой сополимер, образованный в результате полимеризации трех различных мономеров. Следовательно, термин "терполимер" находится в пределах объема термина "сополимер". Авторы изобретения используют термин "сополимер" в связи с первым аспектом изобретения, а термин "терполимер" - в связи с третьим аспектом изобретения. Однако первый аспект изобретения также охватывает терполимеры. Должно быть понятно, что в исходном материале находится много цепей сополимера/терполимера. Подобным образом, в полимерном материале должно быть много главных цепей полимера, присоединенных к боковым цепям.
Боковые цепи в полимерном материале обычно присоединены к главной цепи полимера посредством звеньев, образованных из малеинового ангидрида.
Когда говорят о малеиновом ангидриде в главной цепи, имеют в виду звенья, образованные из малеинового ангидрида, который присутствует в сополимере или терполимере. В полимерном материале "главная цепь" включает звенья, образованные из малеинового ангидрида, вместе со звеньями, образованными из других мономеров, полимеризованных с образованием главной цепи полимерного материала. "Боковые цепи" включают остаточную структуру предшественников боковых цепей после того, как они провзаимодействовали с исходным сополимерным или терполимерным материалом.
Когда главная цепь представляет собой сополимер, полимерный материал общей формулы (I) включает от 1 до 5000 боковых цепей на главную цепь, предпочтительно от 1 до 1000, более предпочтительно от 1 до 500 или от 1 до 300, еще более предпочтительно от 1 до 150, от 1 до 100 или от 1 до 50. Понятно, что желаемое число боковых цепей, которые прививают на главную цепь, должно зависеть от молекулярной массы главной цепи и от желаемых свойств полученного в результате полимерного материала. В некоторых формах осуществления не все звенья, образованные из малеинового ангидрида в главной цепи, присоединены к боковым цепям. Каждое звено, образованное из малеинового ангидрида, может быть присоединено либо к одной, либо к двум боковым цепям.
Когда главная цепь полимерного материала представляет собой терполимер, к этой главной цепи присоединено множество гидрофильных боковых цепей. Обычно к каждой главной цепи присоединено от 1 до 5000 боковых цепей, предпочтительно от 1 до 1000, от 1 до 500 или от 1 до 300, еще более предпочтительно от 1 до 150, от 1 до 100 или от 1 до 50.
Боковые цепи амфифильного полимерного материала обычно являются гидрофильными. В полимерном материале общей формулы (I) каждая боковая цепь представлена формулой OR. В амфифильном полимерном материале, который имеет терполимерную главную цепь, боковые цепи могут быть связаны с главной цепью либо через атом азота, либо через атом кислорода. Соответственно, амфифильный полимерный материал может быть представлен общей формулой (IV)
где B1 представляет собой прямую или разветвленную главную цепь полимера, и каждый YR1 представляет собой гидрофильную боковую цепь, присоединенную к главной цепи, где Y представляет собой атом кислорода (O), или NR5, где R5 представляет собой H или C1-4 алкил, и x1 обозначает число боковых цепей и находится в интервале от 1 до 5000.
Y предпочтительно представляет собой кислородный радикал, O.
Не связываясь с теорией, когда материал включают в композицию, такую как резиновая основа, гидрофильные боковые цепи существенно снижают подвижность резиновой основы в сухом состоянии, что делает выброшенную жвачку тверже при высыхании, и ее легче удалить с поверхности. Кроме того, гидрофильные боковые цепи могут дать возможность слюне действовать в качестве пластификатора эластомера при жевании, что делает резинку более легко пережевываемой.
Гидрофильные боковые цепи придают поверхностно-активные свойства полимерному материалу. В резиновой основе полимерный материал с гидрофильными боковыми цепями становится поверхностно обогащенным во время жевания, образуя гидрофильное покрытие, которое не связывается с гидрофобными поверхностями, такими как асфальты и скользкие камни для мостовой. В присутствии воды полимерный материал легче удалить с наиболее распространенных поверхностей.
Гидрофильные боковые цепи полимерного материала предпочтительно образованы из поли(этиленоксида) (ПЭО), поливинилового спирта, поли(стиролсульфоната) натрия, полиглицидила, белков/полипептидов, полисахарида (например, сахаров и крахмалов) или полиакриловой кислоты); наиболее предпочтительно из поли(этиленоксида). Боковые цепи до присоединения к главной цепи могут иметь концевые гидроксильные группы для образования сложноэфирных связей с мономерами малеинового ангидрида. Поли(этиленоксид) сильно связывается с простыми анионными сурфактантами, такими как используют в шампунях для волос и моющих жидкостях, с получением электролита. В присутствии таких анионных сурфактантов и воды полимерный материал отталкивается многими обычными анионными поверхностями, включая оксидные поверхности, хлопчатобумажная ткань и волосы. Это преимущественно дает возможность удаления резиновой основы, включающей новые полимеры с прививками, содержащими значительный процент поли(этиленоксид), промыванием мыльной водой.
Обычно добавляют достаточное количество предшественников боковых цепей, так чтобы их доля была достаточной для прививания двух боковых цепей на каждое звено малеинового ангидрида. Предпочтительно подвергают взаимодействию достаточное количество предшественников боковых цепей, чтобы гарантировать, что 1-100 мас.% звеньев малеинового ангидрида было преобразовано боковыми цепями, даже более предпочтительно 2-50%, в большинстве случаев 2-30%. Однако в некоторых формах осуществления изобретения добавляют достаточное количество предшественников боковых цепей, чтобы 100% звеньев малеинового ангидрида в главной цепи было дериватизировано. В другой форме осуществления можно добавлять достаточное количество предшественников боковых цепей, чтобы два или между одним и двумя предшественниками боковых цепей взаимодействовало с каждым звеном малеинового ангидрида.
В полимерном материале предпочтительно боковые цепи OR или OR1 предпочтительно имеют формулу II
где каждый из Y и Z независимо представляет собой алкиленовую группу, имеющую от 2 до 4 атомов углерода, и R3 представляет собой H или необязательно замещенную алкильную группу, имеющую 1-12 атомов углерода, или другую полимерную цепь, связанную через ацильную группу;
и каждое из a и b независимо представляет собой целое число от 1-200, при условии, что сумма a+b имеет значение в интервале 1-250.
Два мономера YO и ZO могут быть полимеризованы с образованием блоксополимера (например, путем последовательного присоединения мономера к системе) или альтернативно могут образовать статистический, случайный или чередующийся сополимер. Другие формы осуществления могут иметь боковые цепи, включающие третий мономер.
Сумма a+b предпочтительно находится в интервале 5-200, более предпочтительно от 20-120.
Обычно в соединении формулы II обе алкиленовые группы Y и Z представляют собой -CH2-CH2. В одной форме осуществления в группе II группа R3 представляет собой H.
В другой форме осуществления R3 альтернативно представляет собой -CH3 или другую низшую алкильную (вплоть до 4 атомов углерода) группу.
В первом аспекте данного изобретения главная цепь полимера представляет собой сополимер по меньшей мере одного этиленненасыщенного алифатического углеводородного мономера, содержащего по меньшей мере три атома углерода, и малеинового ангидрида. Сополимер обычно представляет собой биполимер, то есть включает два различных мономера (малеиновый ангидрид и один этиленненасыщенный мономер). Углеводородный мономер включает только атомы углерода и водорода. Наиболее предпочтительно этиленненасыщенный мономер выбран из изобутилена, 1,3-бутадиена, изопрена и октадецена. Предпочтительно этиленненасыщенный алифатический углеводородный мономер имеет 3-5 атомов углерода. Такой полимерный материал обычно обладает большей степенью гидрофильности, чем полимерный материал с углеводородным мономером, содержащим более чем 5 атомов углерода в главной цепи.
Альтернативно этиленненасыщенный мономер включает 7 или большее количество атомов углерода. Например, он может иметь 8-30 атомов углерода. Повышенное число атомов углерода в таких полимерных материалах придают главной цепи большую степень гидрофобности, что делает материал более пригодным для определенных применений. Обычно сополимер содержит 1-75 мас.% малеинового ангидрида, предпочтительно 1-50% или 5-50%, еще более предпочтительно 10-50%.
В третьем аспекте данного изобретения главная цепь полимера представляет собой терполимер малеинового ангидрида, этилена и дополнительного этиленненасыщенного мономера. Дополнительный этиленненасыщенный мономер обозначен как "дополнительный", чтобы отличить его от этилена (также "этиленненасыщенного мономера").
Обычно дополнительный этиленненасыщенный мономер представляет собой алкилакрилат, например, метил-, этил-, пропил- или бутилакрилат.
В другой форме осуществления дополнительный этиленненасыщенный мономер представляет собой алкенилацетат, предпочтительно винилацетат. Альтернативно он может представлять собой виниловый эфир.
Особенно предпочтительные терполимерные главные цепи полимера представляют собой сополимеры этилена, бутилакрилата и малеинового ангидрида и сополимеры этилена, винилацетата и малеинового ангидрида.
Сополимер этиленненасыщенного мономера и малеинового ангидрида может представлять собой случайный, статистический, чередующийся или блоксополимер, например, блоксополимеры A-B или A-B-A. В одной форме осуществления сополимер представляет собой чередующийся сополимер. В другой форме осуществления сополимер представляет собой случайный (или статистический) сополимер. Подобным образом, терполимер C-D-E может представлять собой случайный полимер или блоксополимер (где C представляет собой этилен, D представляет собой малеиновый ангидрид и E представляет собой дополнительный этиленненасыщенный мономер):
.
Обычно C присутствует в интервале 25-95 мас.%. D обычно присутствует в интервале 1-50 мас.%. E обычно присутствует в интервале 5-70 мас.%.
Терполимерный исходный материал, описанный в данном изобретении, обычно содержит 1-50 мас.% звеньев, образованных из малеинового ангидрида, более предпочтительно 1-30%, даже более предпочтительно 1-15 мас.% звеньев, образованных из малеинового ангидрида.
Перед взаимодействием с предшественниками боковых цепей молекулярная масса исходного материала сополимера/терполимера обычно находится в интервале 1000-1000000, более предпочтительно в интервале 2000-100000. Каждый предшественник боковой цепи обычно имеет молекулярную массу 200-100000, более предпочтительно 450-100000, предпочтительно 500-50000, наиболее предпочтительно 1000-10000.
При способе получения полимерного материала согласно первому аспекту данного изобретения предшественники боковой цепи оканчиваются гидроксильными группами, HO-R. При способе получения амфифильного полимерного материала общей формулы (IV) B1-(YR1)x1 исходный материал терполимера малеинового ангидрида, этилена и дополнительного этиленненасыщенного мономера подвергают взаимодействию с предшественниками боковых цепей общей формулы (V), H-YR1, с получением амфифильного полимерного материала общей формулы (IV). Таким образом, в данной форме осуществления предшественники боковых цепей могут оканчиваться либо гидроксильными, либо аминогруппами. Материалы с гидроксильными функциональными группами обычно широко признаны как безопасные для потребления в умеренных количествах в пищевой промышленности. Однако, обычно предшественники боковых цепей, оканчивающиеся аминогруппами, легче взаимодействуют с предшественниками главной цепи, что дает возможность взаимодействия большего количества предшественников боковых цепей с каждым предшественником главной цепи.
Пригодные предшественники боковых цепей, которые представляют собой полиэфирные амины, имеются в продаже; ряд моно- и дифункционализированных аминных полимеров этиленоксида (ЭО) и пропиленоксида (ПО) продаются под торговым названием Jeffamine фирмой Huntsman. Взаимодействие между полимерами, функционализированными амином, с одним звеном малеинового ангидрида, например, может образовать любую из трех различных структур:
Структура, обозначенная С, может быть образована в результате внутримолекулярного взаимодействия А, сопровождающегося удалением H2O, и более вероятно осуществляется с помощью катализа (например, путем добавления кислоты). Как моно-, так и ди-, три-, тетрафункциональные аминные полимеры можно использовать в изобретении, некоторые из них имеются в продаже от Hunstman. В зависимости от условий реакции использование гидрофильных дифункциональных аминных предшественников боковых цепей может привести в результате к амфифильному полимерному материалу, который является сшитым или с удлиненной цепью. Альтернативно моно- и дифункциональные предшественники боковых цепей можно комбинировать для модификации свойств полученного в результате полимерного материала до требуемых свойств. Структура и свойства Jeffamine М-1000 и М-2070 особенно предпочтительны для предшественников боковых цепей:
[x=6; y=35, где R представляет собой смесь H для (ЭО), либо CH3 для (ПО) звеньев].
Jeffamine М-1000 представляет собой моноаминополиэфир с отношением ЭО:ПО 19:3 и молекулярной массой примерно 1000, М-2070 представляет собой моноаминополиэфир с отношением ЭО:ПО 31:10 и молекулярной массой примерно 2000. Вследствие относительно высоких долей этиленоксидных звеньев в этих полимерах их рассматривают как гидрофильные материалы. Обнаружено, что как М-1000, так и М-2070 эффективно взаимодействуют с PIP-gr-MA.
Предшественники боковых цепей обычно оканчиваются спиртовым звеном на одном конце и группой алкилокси на другом. MeO-PEO-OH является примером предпочтительного предшественника боковой цепи. В способе образования полимерного материала такие боковые цепи взаимодействуют со звеньями, образованными малеиновым ангидридом, посредством алкоголиза ангидрида с получением эфира карбоновой кислоты и карбоновой кислоты.
Взаимодействие малеинового ангидрида со спиртом представляет собой реакцию алкоголиза, результатом которой является образование эфира и карбоновой кислоты. Эта реакция также известна как этерификация. Эта реакция является относительно быстрой и не требует катализатора, хотя можно использовать кислотные или основные катализаторы.
Чистая реакция может быть представлена, как показано ниже. Px и PY представляют собой остаток сополимера/терполимера, и ROH представляет собой репрезентативный предшественник боковой цепи.
При способе два предшественника боковой цепи, представленные ROH, могут взаимодействовать при одном и том же мономере малеинового ангидрида с получением соединения общей формулы
Альтернативно взаимодействует один предшественник боковой цепи на мономер малеинового ангидрида. Это оставляет звено, образованное из малеинового ангидрида, со свободной группой карбоновой кислоты, которая может быть преобразована в производное на более поздней стадии в способе. Эта группа может быть также депротонирована с получением ионной главной цепи в полимерном материале.
Предшественники боковых цепей нет необходимости подвергать непосредственному взаимодействию со звеньями, образованными из малеинового ангидрида, в главной цепи. Например, можно проводить предварительную стадию, где линкер повергают взаимодействию со звеньями, образованными из малеинового ангидрида. Линкер может представлять собой, например, короткоцепочечный углеводород, функционализированный при любом конце пригодными реакционными группами, такими как спирт, способными к взаимодействию с малеиновым ангидридом, и галогенид, способный к взаимодействию, катализируемому основанием, с гидроксильной группой ПЭГ. Затем предшественники боковых цепей подвергают взаимодействию с линкером на последующей стадии реакции. Реакцию можно проводить в растворе или с одним из реагентов, например ПЭГ, в качестве растворителя.
При способе согласно данному изобретению предшественники боковых цепей могут иметь гидроксильные группы на каждом из их концов, и каждый конец взаимодействует со звеном, образованным из малеинового ангидрида, в различных главных цепях с образованием сшитого полимерного материала.
После взаимодействия предшественников боковых цепей с сополимерным или терполимерным исходным материалом какие-либо не прореагировавшие звенья, образованные из малеинового ангидрида, в главной цепи можно подвергать размыканию кольца. Это можно осуществить путем гидролиза или с использованием основания. Полученный в результате продукт может быть ионизируемым. Эта дополнительная стадия реакции обладает особой пользой, когда в главной цепи присутствует большая доля малеинового ангидрида, например, в чередующемся сополимере.
Поскольку способы по данному изобретению пригодны для получения новых полимерных материалов согласно изобретению, каждый из предпочтительных признаков полимерного материала, обсужденных выше, в равной степени применим к полимерному материалу, полученному данным способом.
Альтернативные способы получения амфифильного полимерного материала включают способ, при котором предшественники боковых цепей подвергают взаимодействию с мономерами малеинового ангидрида, которые затем полимеризуют с этиленненасыщенными мономерами на последующей стадии с образованием полимерного материала.
Исходный материал полимера можно приобрести у соответствующей химической фирмы-поставщика, такой как фирма Sigma-Aldrich. Например, обе фирмы, Sigma-Aldrich и Kuraray Co. Ltd, поставляют поли(изобутилен-чер-малеиновый ангидрид), Kuraray Co. Ltd, под торговым названием ISOBAM.
Что касается поли(малеиновый ангидрид-чер-октадецен), Chevron Philips Chemical Company LLC изготавливает ряд материалов в ассортименте их полиангидридных смол РА18, которые являются пригодными.
Сополимеры поли(этилен-со-бутилакрилат-со-малеиновый ангидрид) могут быть получены от Arkema и продаются под торговым названием Lotader (например, марок 2210, 3210, 4210 и 3410). Сополимеры, в которых бутилакрилат заменен другими алкилакрилатами (включая метилакрилат [марок 3430, 4404 и 4503] и этилакрилат [марок 6200, 8200, 3300, ТХ 8030, 7500, 5500, 4700 и 4720), также доступны и также продаются в ассортименте Lotader.
Ряд материалов Orevac (марок 9309, 9314, 9307 Y, 9318, 9304, 9305) являются пригодными терполимерами этилена, винилацетата и малеинового ангидрида.
Подобным образом, пригодные предшественники боковых цепей, такие как монометоксиполи(этиленгликоль) (МПЭГ) поливиниловый спирт) и полиакриловая кислота) можно, например, приобрести от фирмы Sigma-Aldrich.
Предшественники боковых цепей подвергают взаимодействия с сополимерным/терполимерным исходным материалом, как подробно описано в Примерах. Для этой реакции сополимерный/терполимерный исходный материал и предшественники боковых цепей обычно растворяют в подходящем растворителе. Часто подходящей является, например, смесь ДМФ (диметилформамида) и толуола. Затем смесь нагревают, предпочтительно до температуры образования флегмы (от ~110 до 120°С) в инертной атмосфере в течение примерно 24 часов. Предпочтительно инертную атмосферу обеспечивают инертным газом, таким как азот или аргон. Воду можно удалять из реакционной смеси, используя перегонку, например, используя азеотропную перегонку. Это не является необходимым, когда сополимерный/терполимерный исходный материал и предшественники боковых цепей являются безводными. Полученный в результате полимерный материал охлаждают, а затем отделяют от раствора растворителя. Осаждение, фильтрование и высушивание являются типичными стадиями выделения.
Альтернативно сополимерный/терполимерный исходный материал и предшественники боковых цепей можно подвергать взаимодействию в отсутствие растворителя, например, реакции можно осуществлять путем перемешивания расплавленной смеси сополимерного/терполимерного исходного материала и предшественников боковых цепей вместе при соответствующей температуре (то есть наиболее предпочтительно при 100-200°C). В другой форме осуществления процесс можно проводить путем добавления сополимерного/терполимерного исходного материала и предшественников боковых цепей вместе или индивидуально в горячий экструдер; а затем проводить процесс путем реакционной экструзии. Обычно предпочтительно проводить эти реакции в атмосфере инертного газа (например, азота) или в вакууме для предотвращения разложения полимеров.
Реакционная смесь в конце реакции обычно содержит не прореагировавшие исходные материалы, которые могут включать свободный предшественник боковой цепи и предшественник главной цепи. Может присутствовать некоторое остаточное количество катализатора, если он использован в реакции. Эта реакция обычно не образует побочных продуктов. Амфифильный полимерный материал не нуждается в очистке из реакционной смеси, поскольку может быть предпочтительным наличие свободных предшественников боковых цепей в конечной композиции. Свободный предшественник боковой цепи может взаимодействовать с амфифильным полимерным материалом и посредством этого улучшать его свойства.
Наиболее предпочтительно амфифильный полимерный материал включают в композицию жевательной резинки, как определено в шестом аспекте данного изобретения. В данном аспекте амфифильный полимерный материал имеет прямую или разветвленную главную цепь полимера и множество гидрофильных боковых цепей, присоединенных к главной цепи. Главная цепь представляет собой сополимер по меньшей мере одного этиленненасыщенного мономера и малеинового ангидрида. Термин сополимер охватывает как биполимеры, так и терполимеры. Предпочтительно мономер представляет собой углеводородный мономер. Под термином "этиленненасыщенный полимеризуемый углеводородный мономер" авторы изобретения подразумевают полимеризуемый углеводород, содержащий по меньшей мере одну углерод-углеродную двойную связь, который способен полимеризоваться с образованием прямоцепочечного или разветвленного углеводородного полимера, имеющего углерод-углеродную главную цепь полимера. Согласно одной предпочтительной форме осуществления этиленненасыщенный полимеризуемый углеводородный мономер содержит 4 или 5 атомов углерода и представляет собой, например, изобутилен (2-метилпропен). Этиленненасыщенный мономер может альтернативно представлять собой конъюгированный диеновый углеводородный мономер, в частности, содержащий 4 или 5 атомов углерода, такой как 1,3-бутадиен или изопрен. Главная цепь может представлять собой терполимер, как описано в третьем аспекте данного изобретения. Этиленненасыщенный мономер может альтернативно представлять собой 1-октадецен.
В данном аспекте изобретения этиленненасыщенный мономер может быть ароматическим и/или содержать атомы, иные, чем водород и углерод. Пригодные этиленненасыщенные мономеры включают стирол и винилметиловый эфир.
Боковые цепи обычно являются гидрофильными. Предшественники боковых цепей, которые взаимодействуют с сополимерным/терполимерным исходным материалом, могут оканчиваться либо гидроксильными, либо аминными группами. Особенно предпочтительный амфифильный полимерный материал имеет общую формулу B2-(Y2R2)x2, где B2 представляет собой прямую или разветвленную главную цепь полимера, которая представляет собой сополимер по меньшей мере одного этиленненасыщенного мономера и малеинового ангидрида или терполимер, как описано выше, Y2 представляет собой O или NR5 и x2 представляет собой число боковых цепей и находится в интервале от 1 до 1000. R5 представляет собой H или C1-4 алкил, и каждый Y2R2 представляет собой гидрофильную боковую цепь.
Типичный исходный сополимерный материал содержит от 1 до 50 мас.% малеинового ангидрида.
Предпочтительно полимерный материал является таким, как определено в первом или третьем аспекте данного изобретения.
Вследствие самой их природы композиции жевательной резинки являются липкими. Композиции жевательной резинки обычно содержат часть водорастворимого наполнителя, нерастворимую в воде основу жевательной резинки и корригенты. Резиновая основа обычно содержит смесь эластомеров, виниловых полимеров, эластомерных пластификаторов (или растворителей), эмульгаторов, наполнителей и смягчителей (пластификаторов). Известно, что все эластомеры, воски, эластомерные пластификаторы и виниловые полимеры вносят вклад в липкость резиновой основы.
Амфифильный полимерный материал может быть включен в основу жевательной резинки, изготавливаемой в соответствии со стандартными технологиями, известными в данной области техники, которые дополнительно описаны в WO 2006/016179. Амфифильный полимерный материал можно альтернативно включать в композицию жевательной резинки независимо от резиновой основы. В предпочтительной форме осуществления изобретения амфифильный полимерный материал находится как в резиновой основе, так и в композиции жевательной резинки.
Включение полимерного материала в резиновую основу в дополнение или вместо части или всего воска, эластомерного материала и/или эластомерного растворителя уменьшает липкость резиновой основы и дает возможность значительно легче удалить жвачку с поверхностей. Резиновые основы можно, таким образом, выгодно удалять путем промывания водой или в слабом растворе детергента. Кроме того, в противоположность резиновым основам предшествующего уровня техники, твердость резиновой основы изменена за счет сольватации (пластификации) полимерного материала вероятнее, чем только за счет повышения температуры во рту. Ингредиенты резиновой основы можно варьировать в соответствии с данным изобретением, чтобы получить разнообразие резиновых основ и композиций для соответствия широкому ряду поверхностей и условий окружающей среды в природе.
Конечно, все соединения резиновой основы должны быть приемлемыми для потребления человеком, например, они должны иметь пищевую или фармацевтическую категорию.
Обычно полимерный материал составляет 3-90 мас.% основы жевательной резинки, предпочтительно 3-15 мас.%. Полимерный материал может действовать в качестве заменителя для части или для всех ингредиентов в резиновой основе, которые вносят вклад в липкость.
Основа жевательной резинки может содержать от 0 до 6 мас.% воска. Примеры восков, которые могут присутствовать в резиновой основе, включают микрокристаллический воск, натуральный воск, нефтяной воск, парафиновый воск и их смеси. Воски обычно способствуют отвердеванию резиновых основ и улучшению срока хранения и текстуры, а также обеспечению регуляции скорости высвобождения корри