Способ антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования
Изобретение относится к способам антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования, эксплуатируемых в атмосферных условиях, путем нанесения на поверхность лакокрасочного покрытия. Предложен способ антикоррозионной защиты, заключающийся в том, что на металлическую поверхность наносят грунтовочный слой, с последующим высыханием «до отлипа», затем покрывной слой с последующей сушкой до полного отверждения. Грунтовочный и покрывной слои выполнены из состава, содержащего (масс.%): силикон-эпоксидную смолу (32,0-52,0), нанодисперсный фторопласт (2,0-4,0), аминосилановый отвердитель (8,0-12,8), целевые добавки (1,84-2,32), пигменты и наполнители (3,4-21,6), остальное - органические растворители. Технический результат - достижение срока антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования более 15 лет в атмосферных условиях умеренного и холодного климатов с одновременным повышением экономичности окрасочных работ за счет применения одного и того же лакокрасочного материала в качестве грунтовочного и покрывного слоя, уменьшения количества слоев и общей толщины лакокрасочного покрытия. 2 табл.
Реферат
Изобретение относится к способам антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования, эксплуатируемых в атмосферных условиях, путем нанесения на поверхность лакокрасочного покрытия. Задача изобретения заключается в повышении эффективности антикоррозионной защиты в течение длительного срока с сохранением срока службы лакокрасочного покрытия. Способ заключается в том, что на металлическую поверхность наносят грунтовочный слой, с последующим высыханием «до отлипа», затем покрывной слой с последующей сушкой до полного отверждения. Грунтовочный и покрывной слои выполнены из состава, содержащего следующие компоненты при их соотношении, в масс.%: 32,0-52,0 силикон эпоксидной смолы, 2,0-4,0 нанодисперсного фторопласта, 8,0-12,8 аминосиланового отвердителя, 1,84-2,32 целевых добавок, 3,4-21,6 пигментов и наполнителей, остальное - органические растворители.
Технический результат - достижение срока антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования более 15 лет в атмосферных условиях умеренного и холодного климатов с одновременным повышением экономичности окрасочных работ за счет применения одного и того же лакокрасочного материала в качестве грунтовочного и покрывного слоя, уменьшения количества слоев и общей толщины лакокрасочного покрытия.
Известен метод формирования антикоррозионного покрытия с высокой атмосферостойкостью, включающий нанесение на металлическую поверхность грунтовочного покрытия на эпоксидной основе, промежуточного слоя на силиконовой основе и фторсодержащего покрывного слоя [патент JP 11000616].
Известны также способы обработки металлических конструкций, заключающиеся в нанесении многослойного цинксодержащего покрытия [RU 2148603] путем последовательного нанесения по меньшей мере двух слоев цинк- и алюмосодержащего этилсиликатного покрытия и одного слоя алюмосодержащего материала в этилсиликате, одно- и многослойного покрытия типа грунта [RU 2177019] на основе полиуретанового лака и высокодисперсного порошка цинка.
Известно также, что наружный фторполимерный слой лакокрасочного покрытия обладает более высокой атмосферостойкостью по сравнению с полиуретановым слоем [Деградация в тропическом климате полиуретанового и фторполимерного наружного слоя в покрытии. Degradation of polyurethane and flyoropolymer coatings in tropical environment. Tru Nguven, Nhi Tanabe Hiroyuki, Nagai Masanori. Corros. and Prot. 2005. C.323-328]. Однако низкая поверхностная энергия фторопластов является причиной низкой адгезии покрытий к окрашиваемой поверхности и требует специальной подготовки поверхности и специальных грунтовочных составов [Колесниченко В.В., Курдюкова И.Б., Логинова Н.И. Фторполимерные покрытия. Вопросы материаловедения. 2003. №3, с.76-80].
Наиболее близким к заявляемому изобретению и принятым в качестве прототипа является способ антикоррозионной защиты металлических конструкций мостов, включающий нанесение цинксодержащего грунтовочного слоя, промежуточного и покрывного слоев на основе однокомпонентных полиуретанов [патент RU 2210581]. Срок службы антикоррозионного покрытия составляет 15 лет при толщине 220-250 мкм.
Наиболее современными пленкообразующими для антикоррозионных окрасочных систем в настоящее время являются гибридные силикон-эпоксидные системы [Инновации в области разработки и производства антикоррозионных лакокрасочных систем. Neue Silicon-Epoxi Hibrid-Bindemittel als Chance fur die Lackindustrie. Hallack Markus. Welt Farben. 2004. №4, c.14-17]. Например, фирмой AMERON INT CORP, США разработана двухслойная система из цинксодержащей грунтовки и 1 слоя силикон-эпоксидной эмали взамен трехслойного покрытия, состоящего их цинксодержащей грунтовки, эпоксидной промежуточной грунтовки и полиуретановой покрывной эмали [патент MX РА 04007418]. Аналогичная система антикоррозионной защиты разработана фирмой Degussa, Германия [New Resin Hybrid Technology for the Coatings Formulator By Nick Wood, Manager of Technical ervices/Degussa, Tego Coating & Ink Additives, Hopewell, VA; Dr. Udo Schiemann, R&D Chemist and Markus Hallack, Head of R&D/Degussa, Tego Coating & Ink Additives, Essen, Germany April 1, 2005]. Недостатком этой системы является то, что продукты коррозии при протекторной защите содержат водорастворимые оксиды и гидроксиды тяжелого металла, способные загрязнять окружающую среду.
Задачей предлагаемого изобретения является совмещение преимуществ силикон-эпоксидных и фторполимерных покрытий путем модификации силикон-эпоксидной смолы нанодисперсным фторопластом и получение двухслойного покрытия из силикон-эпоксидной грунт-эмали, модифицированной нанодисперсным фторполимером, для долговременной антикоррозионной защиты металлических поверхностей.
Поставленная задача достигается тем, что при диспергировании нанодисперсного фторопласта в силикон-эпоксидной смоле образуется однородная гомогенная дисперсия. Частицы фторопласта, за счет малых размеров, «запираются» и физически удерживаются в пространственной сетке силикон-эпоксидной смолы при ее отверждении в присутствии аминосиланового отвердителя, тем самым повышая водоотталкивающие свойства, химическую инертность без снижения адгезии лакокрасочного покрытия.
В качестве силикон-эпоксидной смолы используют смолу марки Silikopon EF [ЕР 1174467], отверждаемую аминосиланами марки Dynasylan АМЕО, фирмы EVONIC Industries, Германия.
В качестве наноразмерного фторопласта используют политэтрафторэтилен с размером частиц от 200 до 900 нм марки «Флуралит», специально обработанный по одному из методов патента RU 2326128 и изготовленный ООО «Флуралит Синтез» (Россия).
Для придания цветности лакокрасочной пленки используют неорганические и органические пигменты: диоксид титана, технический углерод, железоксидные, фталоцианиновые и другие неорганические и органические пигменты. В качестве наполнителей используют микротальк или микробарит.
Кроме того, используют целевые добавки: диспергатор, деаэратор, структурирующие добавки, добавки для розлива и ингибиторы коррозии.
В качестве диспергаторов используют диспергаторы типа Tego Dispers 650 или Tego Dispers 685, в качестве деаэраторов - деаэраторы типа Tego Airex 900, Tego Airex 980, или Tego Airex 955, в качестве структурирующей добавки - типа Aerosil R 972 или Aerosil R 850, в качестве добавки для розлива Tego Flow ATF2 фирмы «EVONIK Industries» (Германия). В качестве ингибитора коррозии используют ингибитор типа PERKACIT фирмы Flexsys (Франция).
В качестве растворителя используют бутилацетат, ксилол или смесевые растворители, содержащие бутилацетат.
Новизна технического решения определяется подбором компонентов в оптимальных количествах, обеспечивающих эффект синергизма, возникающий при формировании пространственной сетки отвержденной силикон-эпоксидной смолы в присутствии наноразмерных частиц фторполимера, что приводит к повышению антикоррозионных свойств лакокрасочного покрытия. Получение лакокрасочного покрытия из модифицированного фторполимером силикон-эпоксидного лакокрасочного материала позволяет исключить применение цинкнаполненного грунтовочного слоя в технологии окраски, сократить количество слоев и толщину лакокрасочного покрытия, обеспечить долговечность антикоррозионной защиты.
Примером осуществления данного изобретения может служить способ получения состава грунт-эмали и грунт-эмалевого лакокрасочного покрытия, осуществляемый заявителем.
В емкость бисерной мельницы в рецептурном количестве загружают нанодисперсный фторопласт, структурирующую добавку, 50 массовых % рецептурного количества силикон-эпоксидной смолы и диспергатор, деаэратор и ведут диспергирование до степени перетира менее 1 мкм по прибору «Клин» в течение ≥7 часов (при нанесении лакокрасочного покрытия на стекло в проходящем свете пленка должна быть прозрачной, не содержащей включения). Затем загружают пигменты, наполнители, целевые добавки и ведут диспергирование до достижения степени перетира по прибору «Клин» не более 30 мкм. Перетертую смесь подают в смеситель и далее добавляют растворитель и оставшиеся 50 массовых % рецептурного количества силикон-эпоксидной смолы. Перемешивают смесь в течение 20-30 мин.
Для сравнения свойств лакокрасочного покрытия были изготовлены составы грунт-эмали по заявляемому изобретению. Перед применением в грунт-эмаль добавляют расчетное количество аминосиланового отвердителя. Срок жизнеспособности готовой грунт-эмали не более 4 ч. Составы грунт-эмали наносили на тщательно очищенные от жировых загрязнений пластины из стали 08кп размером 150×70×1 мкм. Метод нанесения - пневматическое распыление. Составы грунт-эмали наносили в 2 слоя. Сушку первого грунтовочного слоя состава производили «до отлипа» при 20±2°С в течение 4 ч. Затем наносили второй покрывной слой состава и высушивали до полного отверждения при 20±2°С в течение 8 ч. Толщина сухой пленки лакокрасочного покрытия - 180-200 мкм. Перед испытанием полученные покрытия выдерживали при температуре 15-30°С и влажности воздуха не более 80% в течение 14 суток.
Примеры грунт-эмалевого покрытия по изобретению приведены в таблице 1.
Для сравнения свойства немодифицированного и модифицированного фторопластом силикон-эпоксидного грунт-эмалевого покрытия оценивали по величине поверхностной энергии (краевому углу смачивания) и адгезии лакокрасочного покрытия к окрашиваемой поверхности. Краевой угол смачивания определялся методом лежачей капли, адгезия - методом решетчатых надрезов по ГОСТ 15140-78, раздел 2.
Для прогнозирования долговечности антикоррозионной защиты определяли стойкость грунт-эмалевого покрытия к воздействию переменной температуры, повышенной влажности, солнечного излучения и сернистого газа по ГОСТ 9.401-91, метод 6. Прогнозируемый срок службы лакокрасочного покрытия в умеренном и холодном климате по заявляемому изобретению определяли в соответствии с приложением 10 ГОСТ 9.401-91. Примеры грунт-эмалевого покрытия по изобретению приведены в таблице 2.
Таблица 1 | |||||
Наименование ингредиентов | Немодифицированная силикон-эпоксидная грунт-эмаль, серая | Модифицированная силикон-эпоксидная грунт-эмаль | |||
1, серая | 2, красная | 3, белая | 4, черная | ||
Количественный состав (содержание ингредиентов), масс.% | |||||
Силикон-эпоксидная смола Silikopon EF | 48,0 | 48,0 | 32,0 | 44,4 | 52,0 |
Нанодисперсный фторопласт «Флуралит» с дисперсностью 200-900 нм | 0 | 2,0 | 3,2 | 1,0 | 5,0 |
Пигменты и наполнители: | 16,0 | 12,8 | 21,6 | 14,4 | 3,4 |
- диоксид титана, технический углерод, микротальк | |||||
- алый 5С (ТУ 6-36-5800146-586-89), желтый светостойкий (ГОСТ 5591-77), микротальк | |||||
- диоксид титана, микротальк | |||||
- технический углерод, микробаррит | |||||
Целевые добавки | 1,84 | 1,84 | 2,56 | 2,24 | 2,32 |
Отвердитель аминосилановый | 12,0 | 12,0 | 8,0 | 11,0 | 12,8 |
Растворитель: | Остальное | ||||
- бутилацетат | |||||
Показатели, используемые для характеристики состава | |||||
Краевой угол смачивания, ° | 72 | 96-98 | 98-100 | 78-80 | 98-100 |
Адгезия, баллы (по ГОСТ 15140-78, раздел 2) | 1 | 1 | 1 | 1 | 1-2 |
Таблица 2 | |||
Характеристика антикоррозионного покрытия | Прототип - покрытие по способу по патенту RU 2210581 | Покрытие, изготовленное по предлагаемому способу | |
Пример №1 | Пример №2 | ||
Наличие тяжелых металлов (цинк) | Да | Нет | Нет |
Количество слоев | 3 | 2 | 2 |
Толщина покрытия, мкм | 220-240 | 180-200 | 180-200 |
Продолжительность ускоренных испытаний на стойкость к воздействию переменной температуры, повышенной влажности, солнечного излучения и сернистого газа, циклы (по ГОСТ 9.401-91, метод 6) | - | 150 | 150 |
Прогнозируемый срок службы в холодном и умеренном климате, лет (по ГОСТ 9.401-91, приложение 10) | 15 | Более 15 | Более 15 |
Предлагаемый способ получения грунт-эмалевого покрытия по сравнению с прототипом имеет лучшие экономические, экологические и антикоррозионные свойства, в связи с тем, что позволяет получить антикоррозионное покрытие с более высоким сроком службы с меньшим расходом лакокрасочного материала. Лакокрасочный материал не содержит тяжелых металлов, способных загрязнять окружающую среду, как при получении лакокрасочного покрытия, так и при его эксплуатации.
Способ антикоррозионной защиты металлических конструкций и крупногабаритного промышленного оборудования, включающий нанесение грунтовочного слоя с последующим высыханием до «отлипа», затем покрывного слоя с последующей сушкой до полного отверждения, отличающийся тем, что грунтовочный и покрывной слои выполнены из состава, содержащего силикон эпоксидную смолу, аминосилановый отвердитель, пигменты, наполнители, целевые добавки и растворитель, дополнительно модифицированного нанодисперсным фторопластом при следующих соотношениях компонентов, мас.%:
Силикон эпоксидная смола | 32,0-52,0 |
Аминосилановый отвердитель | 8,0-12,8 |
Пигменты и наполнители | 3,4-21,6 |
Целевые добавки | 1,84-2,32 |
Нанодисперсный фторопласт | 2,0-4,0 |
Органический растворитель | Остальное |