Композиция для нанесения покрытия

Изобретение имеет отношение к композиции для нанесения покрытий, покрытию, содержащему такую композицию, изделию, а также способу нанесения покрытий на подложку. Композиция для нанесения покрытий содержит сополимер, полученный из реакционной смеси, содержащей: этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир, инициатор и агент передачи цепи. Покрытие содержит отверждаемую золь-гель дисперсию и композицию для нанесения покрытий. Изделие включает подложку и отвержденное покрытие на по меньшей мере одной поверхности подложки, где отвержденное покрытие представляет собой отвержденную композицию, содержащую отверждаемую золь-гель дисперсию и композицию для нанесения покрытий. Способ нанесения покрытий на подложку включает стадии, на которых: обеспечивают подложку, обеспечивают отверждаемую композицию для нанесения покрытий, содержащую отверждаемую золь-гель дисперсию и композицию для нанесения покрытия, наносят покрытие из отверждаемой композиции для нанесения покрытий на по меньшей мере часть подложки и отверждают покрытие. Технический результат - получение подложки с нанесенным покрытием, обеспечивающей низкую поверхностную энергию для облегчения очистки, имеющей низкую степень налипания пуха. 4 н. и 22 з.п. ф-лы, 12 табл., 50 пр.

Реферат

Область техники

Настоящее изобретение относится к композициям для нанесения покрытий и твердым покрытиям, полученным из композиций для нанесения покрытий.

Известный уровень техники

Широкий спектр композиций для нанесения покрытий используется для модификации поверхностных свойств подложки. Одним из примеров таких композиций для нанесения покрытий являются твердые покрытия. Твердые покрытия используются для защиты широкого спектра поверхностей. Некоторые из таких твердых покрытий являются оптически прозрачными, позволяя пользователю видеть через покрытие. Твердые покрытия типично содержат частицы неорганических оксидов, например диоксида кремния, имеющие размеры в нанометровом диапазоне, диспергированные в матрице прекурсора смолы связующего, и иногда называются "керамерами" (ceramers).

Для снижения поверхностной энергии в твердые покрытия включают фторированные материалы, что делает поверхность краскооталкивающей и/или легкочистящейся.

Сущность изобретения

Раскрыты композиции, пригодные для изготовления покрытий. Композиции содержат сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор. В некоторых вариантах исполнения композиция дополнительно содержит отверждаемую золь-гель дисперсию.

Также раскрыты покрытия, содержащие отверждаемую золь-гель дисперсию и сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор. В некоторых вариантах исполнения покрытия отверждают.

Также раскрыты изделия, включающие подложки и отвержденное покрытие на по меньшей мере одной поверхности подложки, где отвержденное покрытие содержит отвержденную композицию, включающую отверждаемую золь-гель дисперсию и сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор.

Также раскрыты способы нанесения покрытий на подложку. Способы включают обеспечение подложки, обеспечение отверждаемой композиции для нанесения покрытий, содержащей отверждаемую золь-гель дисперсию и сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор, нанесение покрытия из композиции для нанесения покрытий на по меньшей мере часть подложки, и отверждение покрытия.

Раскрытые подложки с нанесенными покрытиями не только обеспечивают низкую поверхностную энергию для облегчения очистки, но также имеют низкую степень налипания пуха.

Детальное описание

Настоящее изобретение обеспечивает композиции для нанесения покрытий, которые могут быть использованы для формирования покрытий на подложках. Такие покрытия могут обладать различными желательными свойствами, включая, например, оптическую прозрачность, легкость очистки, пухоотталкивающие свойства, сопротивление царапанию, краскоотталкивающие свойства, грязеотталкивающие свойства и т.п. Прибавление фторированных материалов в композиции твердого покрытия может значительно снизить их поверхностную энергию, обеспечивая краско- и/или грязеотталкивающие свойства, но может вызвать нежелательное повышенное притяжение пуха. Таким образом, существует потребность в покрытиях, таких как фторорганические покрытия, которые обеспечивали бы низкую поверхностную энергию твердых покрытий и при этом не усиливали склонность притягивать пух. Композиции для нанесения покрытий по настоящему изобретению обеспечивают такой баланс краскоотталкивающих и пухоотталкивающих свойств. Дополнительно, прибавление фторированных материалов в композиции твердого покрытия существенно не влияет на твердость твердого покрытия.

В некоторых вариантах исполнения, композиции для нанесения покрытий содержат сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор. В других вариантах исполнения композиции для нанесения покрытий представляют собой отверждаемые композиции для нанесения покрытий, которые отверждаются с образованием, например, твердых покрытий. Такие отверждаемые композиции для нанесения покрытий могут содержать отверждаемую золь-гель дисперсию, а также сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор.

Термины в единственном числе (с артиклями "a", "an" и "the") используются взаимозаменяемо с выражением "по меньшей мере один", обозначая один или несколько из описываемых элементов.

Термин "этиленненасыщенный" относится к реакционноспособной группе, содержащей концевую углерод-углеродную двойную связь, которая способна полимеризоваться по механизму свободнорадикальной полимеризации. Примеры этиленненасыщенных групп включают, например, винильные группы и (мет)акрилатные группы.

Термин "алкил" относится к одновалентной группе, являющейся радикалом алкана, представляющего собой насыщенный углеводород. Алкил может быть линейным, разветвленным, циклическим или их комбинациями и типично содержит от 1 до 20 атомов углерода. В некоторых вариантах исполнения, алкильная группа содержит от 1 до 50, от 1 до 18, от 1 до 12, от 1 до 10, от 1 до 8, от 1 до 6, или от 1 до 4 атомов углерода. Примеры алкильных групп включают, без ограничений, метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил (т-бутил), н-пентил, н-гексил, циклогексил, н-гептил, н-октил и этилгексил.

Термин "гетероалкил" относится к алкильной группе, содержащей гетероатомы. Такие гетероатомы могут быть галогенами, такими как фтор, хлор, бром или йод, или другими атомами, такими как азот, кислород или сера. Примером гетероалкильной группы является полиоксиалкильная группа, такая как -СН2СН2(ОСН2СН2)nOCH3.

Термин "замещенный алкил" относится к алкильной группе, содержащей заместители, расположенные вдоль углеводородной основной цепи. Такие заместители могут быть алкильными группами, гетероалкильными группами или арильными группами. Примером замещенной алкильной группы является бензильная группа.

Термин "арил" относится к ароматической карбоциклической группе, представляющей собой радикал, содержащий от 1 до 5 колец, которые могут быть соединенными друг с другом или сконденсироваными. Арильная группа может быть замещена алкильной или гетероалкильной группами. Примером арильной группы является фенильная группа.

Термин "алкилен" относится к двухвалентной группе, представляющей собой радикал алкана. Алкилен может быть линейным, разветвленным, циклическим или их комбинациями. Алкилен часто содержит от 1 до 20 атомов углерода. В некоторых вариантах исполнения, алкилен содержит от 1 до 18, от 1 до 12, от 1 до 10, от 1 до 8, от 1 до 6, или от 1 до 4 атомов углерода. Радикальные центры алкилена могут находиться на одном атоме углерода (т.е., алкилиден) или на разных атомах углерода.

Термин "гетероалкилен" относится к двухвалентной группе, которая включает по меньшей мере две алкиленовые группы, соединенные тио, окси, или -NR-, где R обозначает алкил. Гетероалкилен может быть линейным, разветвленным, циклическим, замещенным алкильными группами или их комбинациями. Некоторые гетероалкилены представляют собой полиоксиалкилены (poloxyyalkylenes), где гетероатом является кислородом, такие как, например, -СН2СН2(ОСН2СН2)nOCH2CH2-. Термин "простой полиэфир" (polyether) используется как синоним термина полиоксиалкилен.

Термин "арилен" относится к двухвалентной группе, которая является карбоциклической и ароматической. Группа содержит от одного до пяти колец, которые являются соединенными друг с другом, сконденсироваными, или их комбинациями. Другие кольца могут быть ароматическими, неароматическими или их комбинациями. В некоторых вариантах исполнения, ариленовая группа содержит до 5 колец, до 4 колец, до 3 колец, до 2 колец или одно ароматическое кольцо. Например, ариленовая группа может быть фениленом.

Термин "гетероарилен" относится к двухвалентной группе, которая является карбоциклической и ароматической и содержит гетероатомы, такие как сера, кислород, азот, или галогены, такие как фтор, хлор, бром или йод.

Термин "аралкилен" относится к двухвалентной группе формулы -Ra-Ara-, где Ra обозначает алкилен и Ara обозначает арилен (т.е., алкилен связан с ариленом).

Термин "алкокси" относится к группам формулы -OR, где R обозначает алкил, арил или замещенную алкильную группу.

Термин "(мет)акрилат" относится к мономерным сложным акриловым или метакриловым эфирам спиртов. Акрилатные и метакрилатные мономеры коллективно называются тут "(мет)акрилатными" мономерами.

Термин "(мет)акрилатная группа" относится к общей структуре H2C=CHR-С(O)O-, где С(О) обозначает карбонильную группу, а именно С=O, и R обозначает Н (для акрилатных групп) и метил (для метакрилатных групп).

Если не указно иное, "оптически прозрачный" относится к покрытию или изделию, имеющему высокое светопропускание по меньшей мере в части видимого светового спектра (от примерно 400 до примерно 700 нанометров) и низкую степень замутненности.

Термины "полимер" и "полимерный материал" относятся как к материалам, полученным из одного мономера, таким как гомополимер, так и к материалам, полученным из двух или больше мономеров, таким как сополимер, терполимер и т.п. Аналогично, термин "полимеризоваться" относится к процессу получения полимерного материала, который может быть гомополимером, сополимером, терполимером и т.п.Термины "сополимер" и "сополимерный материал" относятся к полимерному материалу, полученному из по меньшей мере двух мономеров.

Термины "комнатная температура" и "температура окружающей среды" используются взаимозаменяемо и обозначают температуры в интервале значений от 20°С до 25°С.

Термин "фторированный" при использовании в сочетании с алкильной, алкиленовой или простой полиэфирной группами относится к замещению по меньшей мере одного атома водорода на атом фтора. Термин "высокофторированный" относится к замещению почти всех атомов водорода на атомы фтора. Термин "перфторированный" относится к замещению всех атомов водорода на атомы фтора. Например, термин "фторированный простой полиэфир" относится к оксиалкилену, имеющему по меньшей мере один атом водорода, замещенный на атом фтора. Если почти все атомы водорода замещены на атомы фтора, то группа называется "высокофторированный простой полиэфир". Если все атомы водорода замещены на атомы фтора, то группа называется "перфторированный простой полиэфир".

Термин "HFPO-" относится к концевой группе F(CF(CF3)CF2O)uCF(CF3)-метилового сложного эфира F(CF(CF3)CF2O)uCF(CF3)C(O)OCH3, где "u" имеет в среднем значение от 1 до 50, который может быть получен путем олигомеризации гексафторпропеноксида в соответствии со способом, раскрытым в патенте США №3250808 (Moore et al.), с очисткой фракционной перегонкой, где указание величины численных интервалов по концевым точкам включает все числа, относящиеся к этому интервалу (например, интервал от 1 до 50 включает 1, 1,5, 3,33 и 50).

Термин "гидролизуемый силан" относится к компоненту, содержащему группу структуры -SiY1Y2Y3, где по меньшей мере один из Y1, Y2 и Y3 является гидролизуемым, то есть вступает в реакцию обмена с водой с образованием фрагмента Si-OH, который может далее вступать в реакцию с образованием силоксановых связей (Si-O-Si). Конкретные примеры гидролизуемых групп включают метокси, этокси и пропоксигруппы, группы хлора и ацетоксигруппы.

Термин "отвержденный" означает высушенный (например, путем испарения воды или органического растворителя при температуре окружающей среды или повышенной температуре), сшитый или их комбинации.

Термин "твердое покрытие" или "слой твердого покрытия" означает слой или покрытие, расположенные на поверхности, например на внешней поверхности объекта, где слой или покрытие предназначены для защиты объекта по меньшей мере от истирания.

Композиции для нанесения покрытий по настоящему изобретению включают сополимер, полученный из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор.

Любой пригодный этиленненасыщенный гидролизуемый силан может быть использован для приготовления композиций для нанесения покрытий. Такие мономеры содержат концевую этиленненасыщенную группу и концевую гидролизуемую силановую группу и могут быть описаны общей формулой

где

X содержит этиленненасыщенную группу;

L1 обозначает простую ковалентную связь или двухвалентную связующую группу; и

каждый из Y1, Y2 и Y3 независимо обозначает гидролизуемую группу или алкильную группу, так чтобы по меньшей мере один из Y1, Y2 и Y3 представлял собой гидролизуемую группу.

Примеры этиленненасыщенных групп включают винильные группы и (мет)акрилатные группы. (Мет)акрилатная группа имеет общую структуру H2C=CHR-C(O)O-, где С(О) относится к карбонильной группе, а именно С=O, и R обозначает Н (для акрилатной группы) и метил (для метакрилатной группы). (Мет)акрилатные гидролизуемые силаны являются особенно пригодными.

Связующая группа L1 между простым перфторполиэфирным сегментом и этиленненасыщенной концевой группой включает двухвалентную или имеющую более высокую валентность группу, выбранную из алкилена, арилена, гетероалкилена или их комбинаций и, необязательно, двухвалентную группу, выбранную из карбонила, сложного эфира, амида, сульфонамида или их комбинаций. L1 может быть незамещенным или замещенным алкилом, арилом, галогеном или их комбинациями. Группа L1 типично содержит не более 30 атомов углерода. В некоторых соединениях, группа L1 содержит не более 20 атомов углерода, не более 10 атомов углерода, не более 6 атомов углерода или не более 4 атомов углерода. Например, L1 может быть алкиленом, алкиленом, замещенным арильной группой, или алкиленом в комбинации с ариленом, или связующей группой типа простого алкильного эфира или простого алкилтиоэфира. Пригодные примеры связующих групп L1 включают алкиленовые группы, особенно алкиленовые группы с от 1 до примерно 20 атомов углерода, ариленовые группы, аралкиленовые группы и гетероалкиленовые группы. Особенно пригодные примеры включают алкиленовые группы этилена (-СН2СН2-), пропилена (-СН2СН2СН2-), бутилена (-СН2СН2СН2СН2-), фенилена (-С6Н4-) и т.п.

Группы Y1, Y2 и Y3 могут быть одинаковыми или разными при условии, что по меньшей мере одна из них является гидролизуемой группой. Типичные гидролизуемые группы включают, например, атомы хлора, ацетоксигруппы или алкоксигруппы. Обычно алкоксигруппы являются предпочтительными, потому что продуктом гидролиза является спирт. Примеры пригодных алкоксигрупп включают, например, метокси, этокси, пропокси и т.п. Типичные негидролизуемые группы, которыми могут быть Y1, Y2 и Y3, включают, например, алкил, арил или замещенные алкильные группы, такие как, например, метил, этил, пропил, фенил, толил и т.п.

Примеры пригодных этиленненасыщенных гидролизуемых силановых мономеров включают, например, винилсиланы, такие как винилтриметоксисилан, или винилтриэтоксисилан и (мет)акрилатсиланы, такие как 3-(акрилоилокси)пропилтриметоксисилан, 3-(метакрилоилокси)пропилтриметокси-силан, 3-(акрилоилокси)пропилтриэтоксисилан, 3-(метакрилоилокси)пропил-триэтоксисилан, 3-(акрилоилокси)пропилтрипропоксисилан, 3-(метакрилоилокси)-пропилтрипропоксисилан, {3-(акрилоилокси)пропил}метилдиметоксисилан, {3-(метакрилоилокси)пропил}метилдиметоксисилан, {3-(акрилоилокси)пропил}-метилдиэтоксисилан, {3-(метакрилоилокси)пропил}метилдиэтоксисилан, {3-(акрилоилокси)пропил}метилдипропоксисилан, {3-(метакрилоилокси)пропил}-метилдипропоксисилан, {4-(акрилоилокси)бутил}фенилдиметоксисилан, {4-(метакрилоилокси)бутил}фенилдиметоксисилан, {3-(акрилоилокси)пропил}-фенилдиэтоксисилан, {3-(метакрилоилокси)пропил}фенилдиэтоксисилан, {3-(акрилоилокси)пропил}фенилдипропоксисилан, {3-(метакрилоилокси)пропил}-фенилдипропоксисилан, {3-(акрилоилокси)пропил}диметилметоксисилан, {3-(метакрилоилокси)пропил}диметилметоксисилан, {3-(акрилоилокси)пропил}-диметилэтоксисилан, {3-(метакрилоилокси)пропил}диметилэтоксисилан, {3-(акрилоилокси)пропил}фенилметилметоксисилан, {3-(метакрилоилокси)пропил}-фенилметилметоксисилан, {3-(акрилоилокси)пропил}фенилметилэтоксисилан и {3-(метакрилоилокси)пропил}фенилметилэтоксисилан. Особенно пригодным является 3-(метакрилоилокси)пропилтриметоксисилан, общеизвестный как гамма-метакрилоксипропилтриметоксисилан или 3-(триметоксисилил)пропилметакрилат, коммерчески поставляемый как SILQUEST А-174 фирмой Crompton Corp.

Количество этиленненасыщенного гидролизуемого силанового мономера, присутствующего в реакционной смеси, используемой для получения композиции сополимера по настоящему изобретению, может составлять от примерно 1 до примерно 50 мас.%, или от 10 до 50 мас.%, или даже от 20 до 40 мас.%, от общего количества смеси мономеров.

Этиленненасыщенным полиоксиалкиленовым мономером могут быть любые пригодные мономеры, содержащие по меньшей мере одну концевую этиленненасыщенную группу и полиоксиалкиленовую цепь. Такие мономеры могут быть описаны общей формулой

где

R1 обозначает Н, алкильную группу, содержащую от 1 до 18 атомов углерода, или X;

n имеет значение от 2 до 4;

m имеет значение от 4 до 5000;

R2 обозначает Н или метильную группу;

X содержит этиленненасыщенную группу;

L2 обозначает простую ковалентную связь или L1 (то есть двухвалентную связующую группу, как описано выше); и

L3 обозначает гетероатом или L2.

Типично этиленненасыщенный полиоксиалкиленовый мономер имеет молекулярный вес, равный по меньшей мере 200 г/моль, 250 г/моль, или 300 г/моль. Молекулярный вес, типично, не превышает примерно 5000 г/моль, обычно составляет менее примерно 3000 г/моль.

В некоторых вариантах исполнения, n равен 1 или 2, и R может быть Н или метильной группой, так чтобы этиленненасыщенный полиоксиалкиленовый мономер представлял собой полиоксиэтиленовый мономер, полиоксипропиленовый мономер или мономер, содержащий смесь полиоксиэтиленовых и полиоксипропиленовых групп.

Особенно пригодными мономерами являются полиоксиалкилен-(мет)акрилаты. Такие мономеры описываются общей формулой:

где

R3 обозначает Н или алкильную группу с от 1 до 18 атомов углерода;

R2 обозначает Н или метильную группу;

R обозначает H или метильную группу;

n обозначает целое число от 1 до 3; и

m обозначает целое число от 4 до примерно 5000.

Пригодные этиленненасыщенные полиоксиалкиленовые мономеры могут быть получены из коммерчески доступных исходных материалов и с использованием широко известных и общепринятых методик. Например, мономеры могут быть получены путем проведения реакции ненасыщенной карбоновой кислоты, такой как акриловая кислота или метакриловая кислота, с эквимолярным количеством полиоксиалкиленового моноспирта. Реакция эстерификации обычно проводится в безводных условиях в органическом растворителе, таком как толуол, который, предпочтительно, образует азеотропную смесь с водой, образующейся в результате реакции эстерификации. Типично, спирт смешивают с органическим растворителем и затем прибавляют ненасыщенную карбоновую кислоту. Реакция проводится в присутствии кислотного катализатора, такого как пара-толуолсульфоновая кислота, и ингибитора образования свободных радикалов, такого как порошок меди. Реакционную смесь нагревают до кипения с обратным холодильником в течение нескольких часов под атмосферой азота и образующуюся воду удаляют азеотропной перегонкой.

Примеры коммерчески доступных полиоксиалкиленов, которые могут быть использованы для получения мономеров, включают оксипропилен/оксиэтиленовые сополимеры PLURONIC, поставляемые фирмой BASF Corp., Mount Olive, NJ, и полиоксиэтилены CARBOWAX, поставляемые фирмой Union Carbide Corp., South Charlston, WV. Полиоксиэтилены, которые могут быть использованы для вышеописанной процедуры, включают, например, CARBOWAX 350, CARBOWAX 550, CARBOWAX 750, CARBOWAX 2000 и CARBOWAX 5000, т.е., метоксиполиоксиэтиленэтанолы с молекулярными весами примерно 350, 550, 750, 2000 и 5000 грамм/моль, соответственно.

Примеры коммерчески доступных моноакрилатполиоксиалкиленовых мономеров, пригодных для использования по настоящему изобретению, включают, например, метоксиполиэтиленгликольмоноакрилат, метокси-полиэтиленгликольмонометакрилат, алкоксилированный тетрагидрофурфурил-акрилат, алкоксилированный лаурилакрилат, алкоксилированный фенилакрилат, тетрагидрофурфурилакрилат, этоксилированный нонилфенолакрилат, пропоксилированный аллилметакрилат, этоксилированный гидроксиэтил-метакрилат, этоксилированный нонилфенолметакрилат и полипропиленгликоль-монометакрилат. Особенно пригодные полиоксиалкилен(мет)акрилатные мономеры включают соединения с общей структурой СН2=СМеС(O)-(ОС2Н4)m-ОМе, где m обозначает целое число больше 3, коммерчески доступные, например, под марками CD550, CD551, CD552, CD553 от фирмы Sartomer Company, Inc.

Количество этиленненасыщенного полиоксиалкиленового мономера, присутствующего в реакционной смеси, используемой для получения композиции сополимера по настоящему изобретению, может составлять от примерно 1 до примерно 50 мас.,% или от 10 до 50 мас.%, или даже от 20 до 40 мас.%, от общего количества мономерной смеси.

Этиленненасыщенным фторированным простым полиэфирным мономером могут быть любые пригодные мономеры, содержащие концевую этиленненасыщенную группу и фторированную простую полиэфирную группу. Примеры пригодных этиленненасыщенных фторированных простых полиэфирных мономеров могут быть представлены формулой

где

Rf обозначает фторированную простую полиэфирную группу;

L1 обозначает двухвалентную связующую группу, описанную выше; и

X обозначает этиленненасыщенную группу.

Примеры этиленненасыщенных групп включают винильные группы и (мет)акрилатнные группы. Особенно пригодными являются (мет)акрилатные фторированные простые полиэфиры.

Группа фторированного простого полиэфира Rf может быть линейной, разветвленной, циклической или их комбинациями, и может быть насыщенной или ненасыщенной, частично фторированной или полностью фторированной, т.е., простым перфторполиэфиром. Фторированный простой полиэфир содержит в цепи по меньшей мере четыре последовательно соединенных кислородных гетероатома. Фторированные простые полиэфирные группы могут быть описаны как содержащие повторяющиеся звенья и концевые звенья. Типичные примеры фторированных простых полиэфирных групп включают материалы, имеющие повторяющиеся звенья, выбранные из групп -(СрВ)-, -(СрВО)-, -(CB(Z))-, -(CB(Z)O)-, -(CB(Z)CpB2pO)-, -(CpB2pCB(Z)0)-, -(CB2CB(Z)0)-, или их комбинации, где каждый В независимо обозначает атом Н или атом F, а в случае простых перфторполиэфиров каждый В обозначает атом F. В таких повторяющихся звеньях р типично обозначает целое число от 1 до 10. В некоторых вариантах исполнения, р обозначает целое число от 1 до 8, от 1 до 6, от 1 до 4, или от 1 до 3. Группа Z обозначает алкильную группу, фторированную алкильную группу, перфторалкильную группу, простую перфторэфирную группу, простую перфторполиэфирную группу или перфторалкоксигруппу, которые все могут быть линейными, разветвленными или циклическими. Группа Z типично содержит не более 12 атомов углерода, не более 10 атомов углерода, или не более 9 атомов углерода, не более 4 атомов углерода, не более 3 атомов углерода, не более 2 атомов углерода или не более 1 атома углерода. В некоторых вариантах исполнения, группа Z может содержать не более 4, не более 3, не более 2, не более 1 или не содержать атомов кислорода. В таких фторированных простых полиэфирных структурах разные повторяющиеся звенья могут быть статистически распределены по длине цепи. Концевые группы Rf могут представлять собой (СрВ2р+1)-, (CpB2p+1O)-, (GCpB2pO)- или (GCpB2p)-, где В обозначает атом Н или атом F, G обозначает водород, хлор или бром, и р обозначает целое число от 1 до 10. В некоторых вариантах исполнения, концевая группа является перфорированной и р обозначает целое число от 1 до 10, от 1 до 8, от 1 до 6, от 1 до 4 или от 1 до 3. Типичные примеры Rf групп включают, например, CF3O(C2F4O)aCF2-, C3F7O(CF2CF2CF2CO)aCF2CF2- и C3F7O(CF(CF3)CF2CO)aCF(CF3)-, где "а" имеет среднее значение от 0 до 50, от 1 до 50, от 3 до 30, от 3 до 15 или от 3 до 10.

Связующая группа L1 между простым перфторполиэфирным сегментом и этиленненасыщенной концевой группой включает двухвалентную или имеющую более высокую валентность группу, выбранную из алкилена, арилена, гетероалкилена или их комбинаций, и необязательно, двухвалентную группу, выбранную из карбонила, сложного эфира, амида, сульфонамида или их комбинаций. L1 может быть незамещенной или замещенной алкилом, арилом, галогеном или их комбинациями. Группа L1 типично содержит не более 30 атомов углерода. В некоторых соединениях, группа L1 содержит не более 20 атомов углерода, не более 10 атомов углерода, не более 6 атомов углерода или не более 4 атомов углерода. Например, L1 может быть алкиленом, алкиленом, замещенным арильной группой, или алкиленом в комбинации с ариленом или связующими группами типа простого алкилового эфира или простого алкилтиоэфира.

Простые перфторполиэфиракрилатные соединения могут быть синтезированы по известным методикам, таким как описанные в патентах США №3553179 и 3544537, а также в публикации патентной заявки США №2004/0077775.

Соединения фторированного простого полиэфир(мет)акрилата могут быть получены путем введения (мет)акрилатных групп по гидроксильным группам фторированных простых полиэфирных соединений, имеющих концевые гидроксильные группы. В некоторых вариантах исполнения, фторированные простые полиэфирные соединения с концевыми гидроксильными группами могут быть высокофторированными. Пригодные примеры таких фторированных простых полиэфирных соединений, содержащих гидроксильные группы, включают, например: HOCH2-CF2O-(CF2CF2O)l-(CF2O)m-CF2CH2OH; F-(CF2CF2CF2O)1-CF2CF2CH2OH; F-(CF(CF3)CF2O)l-CF(CF3)CH2OH; HOCH2-CF(CF3)O-(CF2CF(CF3)O)l-O(CF2)m-O-(CF(CF3)CF2O)l-OCF(CF3)CH2OH; HO(CH2CH2O)n-CH2-CF2O-(CF2CF2O)l- (CF2O)m-CF2CH2(OCH2CH2)nOH; CF3OCF2CF2CF2OCHFCF2C(O)NHCH2CH2OH; CF3CF2CF2OCHFCF2C(O)NHCH2CH2OH; CF3CF2CF2OCHFCF2CH2OH; CF3CFH-O-(CF2)5CH2OH; CF3-O-CF2-O-CF2-CF2-O-CF2-CHF-CF2CH2OH; CF3-(O-CF2)2-O-CF2-CF2-O-CHF-CF2-CH2OH; и HOCH2CH(OH)CH2O-CH2-CF2O-(CF2CF2O)l-(CF2O)m-CF2CH2OCH2CH(OH)CH2OH, где каждый l, m и n обозначает целое число, равное по меньшей мере 1.

В некоторых вариантах исполнения, простая перфторполиэфирная группа содержит концевую группу "HFPO-", то есть концевую группу F(CF(CF3)CF2O)uCF(CF3)- (метилового сложного эфира F(CF(CF3)CF2O)uCF(CF3)C(O)OCH3), где u имеет среднее значение от 2 до 50 или даже от 4 до 50. В некоторых вариантах исполнения, u имеет среднее значение, равное по меньшей мере 3 или 4. Типично, u не превышает 8 или 10. Такие соединения обычно существуют в виде распределения или смеси олигомеров с величинами u в определенном интервале значений, так что средняя величина u может быть нецелочисленной. В одном варианте исполнения, u имеет среднее значение, равное примерно 7. Особенно пригодный фторированный метакрилатный мономер имеет структуру

где u имеет среднее значение, равное примерно 6,84, со средним молекулярным весом 1344 г/моль.

Количество этиленненасыщенного фторированного простого полиэфирного мономера, присутствующего в реакционной смеси, используемой для получения композиции сополимера по настоящему изобретению, может составлять от примерно 1 до примерно 50 мас.%, или от 10 до 50 мас.%, или даже от 20 до 40 мас.%, от общего количества смеси мономеров.

По меньшей мере один инициатор образования свободных радикалов типично используется для приготовления сополимера по настоящему изобретению. Пригодные термические инициаторы образования свободных радикалов включают, например, азо, пероксидные, персульфатные и окислительно-восстановительные инициаторы и их комбинации. Пригодные фотоинициаторы образования свободных радикалов включают, например, материалы, известные как пригодные для УФ-отверждения акрилатных полимеров. Особенно пригодными являются термические инициаторы, включая, например, азонитрильные инициаторы, такие как коммерчески поставляемые фирмой E.I. du Pont de Nemours & Co.; Wilmington, DE, под торговой маркой "VAZO-67".

Инициатор прибавляется в количестве, вызывающем желательную полимеризацию мономеров. Типично инициатор используется в количестве 0,01-5,0 в.ч. (весовых частей), более типично, 0,015-2,0 в.ч., в пересчете на общий вес используемых мономеров.

Помимо мономеров типа этиленненасыщенного гидролизуемого силана, этиленненасыщенного полиоксиалкилена и этиленненасыщенного фторированного простого полиэфира могут быть использованы дополнительные сополимеризуемые этиленненасыщенные мономеры. Такие мономеры могут быть использованы для модификации свойств образующегося полимера, такой как, например, изменение температуры стеклования, или могут быть использованы в качестве недорогих мономеров для снижения стоимости конечного полимера. Пригодные этиленненасыщенные мономеры включают, например, метилакрилат, бутилакрилат, н-октилакрилат, изо-октилакрилат, октадецилакрилат, винилацетат, стиролы, силиконакрилаты, 2-(N,N-диметиламино)этилметакрилат, н-C4F9CH2CH2OC(O)CH=CH2) C6F13CH2CH2OC(O)CH=CH2, C4F9SO2NMeCH2CH2OC(O)CH=CH2 и т.п.

Молекулярный вес простого перфторполиэфирного полимера может контролироваться путем добавления пригодного агента передачи цепи. Агенты передачи цепи могут быть использованы для промотирования терминации цепи и ограничения гелеобразования. Пригодные агенты передачи цепи включают, например, тиолы и полигалоидуглеводороды. Примеры коммерчески доступных агентов передачи цепи включают тетрабромметан, 1-гексантиол, 1-гептантиол, 1-октантиол, 1-нонантиол, 1-декантиол, 1-додекантиол, 1-октадецилмеркаптан, 1-пентадекантиол, 1-гексадецилмеркаптан, трет-нонилмеркаптан, трет-гексадецилмеркаптан, трет-тетрадецилмеркаптан, 1Н,1Н,2Н,2Н-перфтор-гексантиол и 1Н, 1Н, 2Н, 2Н-перфтордодецил-1-тиол.

В некоторых вариантах исполнения может быть желательным использовать агент передачи цепи, содержащий реакционноспособные группы, такие как гидролизуемые силановые группы, пригодные для последующего введения гидролизуемых силанов на конце образующегося сополимера. Агенты передачи цепи с гидролизуемыми силановыми группами включают, например, 3-меркаптопропилтриметоксисилан, 3-меркаптопропилтриэтоксисилан, 2-меркаптоэтилтриэтоксисилан, 3-меркаптопропилметилдиметоксисилан и т.п. Агент передачи цепи 3-меркаптопропилтриметоксисилан является особенно пригодным и коммерчески доступен как SILQUEST А-189 от фирмы Momentive Performance Materials.

Агент передачи цепи может также содержать полиоксиалкиленовые звенья. Синтез меркаптанового агента передачи цепи с полиоксиалкиленовым звеном может быть проведен в соответствии с известными процедурами, описанными в литературе, такими как эстерификация CH3O(CH2CH2O)е-Н с помощью HSCH2CO2H для получения CH3O(CH2CH2O)e-C(O)CH2SH.

Отверждаемые композиции для нанесения покрытий могут быть получены из смеси отверждаемого золь-гель компонента и сополимера, полученного из реакционной смеси, содержащей этиленненасыщенный гидролизуемый силан, этиленненасыщенный полиоксиалкилен, этиленненасыщенный фторированный простой полиэфир и инициатор. В некоторых вариантах исполнения, отверждаемые композиции для нанесения покрытий могут содержать большую часть отверждаемого золь-гель компонента. Отверждаемая композиция для нанесения покрытий может быть использована для получения отверждаемых покрытий или слоев отверждаемых покрытий. Такие покрытия могут быть, например, твердыми покрытиями или слоями твердых покрытий.

Отверждаемая композиция для нанесения покрытий, особенно при использовании в качестве твердого поверхностного слоя или подлежащего слоя твердого покрытия, типично содержит поверхностно-модифицированные неорганические частицы, которые придают механическую прочность и износоустойчивость полученному покрытию. Частицы, типично, имеют по существу сферическую форму и относительно однородный размер. Частицы могут иметь по существу монодисперсное распределение по размерам или полимодальное распределение, полученное путем смешения двух или больше по существу монодисперсных распределений. Частицы неорганических оксидов типично являются неагрегированными (по существу дискретными), поскольку агрегация может привести к осаждению частиц неорганических оксидов или желированию твердого покрытия. Частицы неорганических оксидов типично имеют коллоидные размеры, со средним диаметром частиц от примерно 0,001 до примерно 0,2 микрометров, менее примерно 0,05 микрометров и менее примерно 0,03 микрометров. Такие интервалы значений размеров способствуют диспергированию частиц неорганических оксидов в смоле связующего и позволяют получить керамеры с желательными поверхностными свойствами и оптической прозрачностью. Средний размер частиц неорганических оксидов может быть измерен с помощью трансмиссионной электронной микроскопии для подсчета числа частиц неорганических оксидов данного диаметра. Частицы неорганических оксидов могут состоять по существу из или состоять из одного оксида, такого как диоксид кремния, или могут содержать комбинацию оксидов, таких как диоксид кремния и оксид алюминия, или сердцевину из оксида одного типа (или сердцевину из материала, отличного от оксида металла), на которую осаждают оксид другого типа. Обычно используемой неорганической частицей является диоксид кремния. Частицы неорганических оксидов часто готовят в форме золя, содержащего коллоидную дисперсию частиц неорганических оксидов в жидкой среде. Золь может быть приготовлен с использованием различных методик и в различных формах, включая гидрозоли (в которых жидкой средой служит вода), органозоли (в которых для этого используются органические жидкости) и смешанные золи (в которых жидкая среда содержит как воду, так и органическую жидкость), например, как описано в патентах США №5648407 (Goetz et al.); 5677050 (Bilkadi et al.) и 6299799 (Craig et al.). Могут быть использованы водные золи (например, аморфного диоксида кремния). Золи обычно содержат по меньшей мере 2 мас.%, по меньшей мере 10 мас.%, по меньшей мере 15 мас.%, по меньшей мере 25 мас.% и часто по меньшей мере 35 мас.% коллоидных частиц неорганических оксидов в пересчете на общий вес золя. Количество коллоидных частиц неорганического оксида, типично, составляет не более 50 мас.% (напри