Устройство управления генерированием энергии и способ управления генерированием энергии для топливного элемента

Иллюстрации

Показать все

Устройство (3) управления генерированием энергии для топливного элемента (1) настоящего изобретения содержит блок (31) вычисления целевой генерируемой энергии, сконфигурированный для вычисления целевой генерируемой энергии топливного элемента (1) на основе условия нагрузки устройства электрической нагрузки, подключенного к топливному элементу (1); блок (34) вычисления целевого генерируемого тока, сконфигурированный для вычисления целевого генерируемого тока, получаемого из топливного элемента (1), на основе целевой генерируемой энергии; блок (35) вычисления предельного значения скорости изменения тока, сконфигурированный для вычисления предельного значения для скорости изменения целевого генерируемого тока в зависимости от рабочей температуры топливного элемента (1); и блок (37) ограничения тока, сконфигурированный для ограничения целевого генерируемого тока так, чтобы скорость изменения целевого генерируемого тока не превышала предельное значение, вычисленное блоком 35 вычисления предельного значения скорости изменения тока. Увеличение эффективности работы топливных элементов в условиях низкотемпературной окружающей среды является техническим результатом предложенного изобретения. 5 н. и 7 з.п. ф-лы, 26 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству управления генерированием энергии и способу управления генерированием энергии для топливного элемента, сконфигурированного для генерирования энергии посредством подачи топливного газа и окислительного газа.

Предшествующий уровень техники

Технология, описанная в нижеследующем патентном документе 1 - Японской патентной публикации № 5-151983, была ранее известна как устройство управления генерированием энергии для топливного элемента. В устройстве управления генерированием энергии, описанном в патентном документе 1, учтены задержка отклика топливного элемента вследствие нехватки подачи газа в переходном состоянии и тому подобное. В частности, скорость изменения тока, получаемого из топливного элемента, ограничена скоростью, которой может придерживаться топливный элемент, чтобы подавить снижение эффективности генерирования энергии топливного элемента.

Краткое изложение существа изобретения

В то же время, кроме нехватки подачи газа, одним из возможных факторов снижения эффективности генерирования энергии топливного элемента является указанное ниже. В частности, когда ток быстро извлекают из топливного элемента за короткое время, в низкотемпературной окружающей среде происходит, например, засорение воды в порах каталитического слоя катода и, тем самым, диффузионная способность кислорода снижается. Однако снижение эффективности генерирования энергии в этой низкотемпературной окружающей среде не учтено в устройстве управления генерированием энергии для топливного элемента, описанного в патентном документе 1. Соответственно, существует угроза того, что произойдет значительное снижение эффективности генерирования энергии в переходном состоянии, когда ток получают из топливного элемента в низкотемпературной окружающей среде.

Настоящее изобретение выполнено с учетом вышеупомянутой проблемы.

Задачей настоящего изобретения является ограничение скорости изменения целевого генерируемого тока, получаемого из топливного элемента на основе параметра рабочих условий, который соотнесен с рабочей температурой топливного элемента.

Устройство управления генерированием энергии для топливного элемента согласно первому аспекту настоящего изобретения содержит: блок вычисления целевой генерируемой энергии, сконфигурированный для вычисления целевой генерируемой энергии топливного элемента на основе условия нагрузки устройства электрической нагрузки, подключенного к топливному элементу; блок вычисления целевого генерируемого тока, сконфигурированный для вычисления целевого генерируемого тока, получаемого из топливного элемента, на основе целевой генерируемой энергии; блок вычисления предельного значения скорости изменения тока, сконфигурированный для вычисления предельного значения для скорости изменения целевого генерируемого тока на основе параметра рабочих условий, соотнесенного с рабочей температурой топливного элемента; и блок ограничения тока, сконфигурированный для ограничения целевого генерируемого тока так, чтобы скорость изменения целевого генерируемого тока не превышала предельное значение, вычисленное блоком вычисления предельного значения скорости изменения тока.

Способ управления генерированием энергии согласно второму аспекту настоящего изобретения содержит этап, на котором ограничивают скорость изменения целевого генерируемого тока, получаемого из топливного элемента, на основе параметра рабочих условий, соотнесенного с рабочей температурой топливного элемента.

Устройство управления генерированием энергии для топливного элемента согласно третьему аспекту настоящего изобретения содержит: блок вычисления целевой генерируемой энергии, сконфигурированный для вычисления целевой генерируемой энергии топливного элемента на основе условия нагрузки устройства электрической нагрузки, подключенного к топливному элементу; блок вычисления целевого генерируемого тока, сконфигурированный для вычисления целевого генерируемого тока, получаемого из топливного элемента, на основе целевой генерируемой энергии; и блок ограничения тока, сконфигурированный для осуществления ограничения для генерирования энергии таким образом, что значение целевого генерируемого тока, определяемого для заданной требуемой нагрузки при низкотемпературном запуске, меньше, чем значение целевого генерируемого тока, определяемого для требуемой нагрузки при прогреве.

Способ управления генерированием энергии согласно четвертому аспекту настоящего изобретения содержит этапы, на которых: вычисляют целевую генерируемую энергию топливного элемента на основе условия нагрузки устройства электрической нагрузки, подключенного к топливному элементу; вычисляют целевой генерируемый ток, получаемый из топливного элемента, на основе целевой генерируемой энергии; вычисляют предельное значение для скорости изменения целевого генерируемого тока на основе параметра рабочих условий, соотнесенного с рабочей температурой топливного элемента; и ограничивают целевой генерируемый ток так, чтобы скорость изменения целевого генерируемого тока не превышала предельное значение, полученное посредством вычисления.

Устройство управления генерированием энергии для топливного элемента согласно пятому аспекту настоящего изобретения содержит: средство вычисления целевой генерируемой энергии для вычисления целевой генерируемой энергии топливного элемента на основе условия нагрузки устройства электрической нагрузки, подключенного к топливному элементу; средство вычисления целевого генерируемого тока для вычисления целевого генерируемого тока, получаемого из топливного элемента, на основе целевой генерируемой энергии; средство вычисления предельного значения скорости изменения тока для вычисления предельного значения для скорости изменения целевого генерируемого тока на основе параметра рабочих условий, соотнесенного с рабочей температурой топливного элемента; и средство ограничения тока для ограничения целевого генерируемого тока так, чтобы скорость изменения целевого генерируемого тока не превышала предельное значение, вычисленное средством вычисления предельного значения скорости изменения тока.

Согласно настоящему изобретению скорость изменения целевого генерируемого тока может быть ограничена с учетом условия разрешения засорения воды, вызванного ростом температуры внутри топливного элемента. Исходя из этого, значительное снижение эффективности генерирования энергии в переходном состоянии может быть предотвращено, даже когда топливный элемент генерирует энергию в низкотемпературной окружающей среде.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:

Фиг.1 изображает конфигурацию системы топливных элементов, согласно варианту осуществления настоящего изобретения;

Фиг.2 изображает обычную временную диаграмму, показывающую следующий результат фактической генерируемой энергии по отношению к целевой генерируемой энергии, когда ограничение наложено только на максимальное значение целевого генерируемого тока, получаемого из пакета топливных элементов;

Фиг.3 изображает временную диаграмму, показывающую следующий результат фактической генерируемой энергии по отношению к целевой генерируемой энергии, когда контроллер выполняет обработку управления генерированием энергии, используя настоящее изобретение.

Фиг.4 изображает блок-схему последовательности операций способа, показывающую последовательность операций обработки управления генерированием энергии, проводимой контроллером;

Фиг.5 изображает блок-схему контроллера для реализации нормального управления генерированием энергии, которое является управлением генерированием энергии в условиях движения;

Фиг.6 изображает блок-схему последовательности операций способа, показывающую схему нормального управления генерированием энергии;

Фиг.7 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления целевой генерируемой энергии на этапе S201 на фиг.6;

Фиг.8 изображает диаграммы для вычисления требуемой генерируемой энергии на основе степени воздействия акселератора и скорости автомобиля;

Фиг.9 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления фактической генерируемой энергии на этапе S202 на фиг.6;

Фиг.10 изображает блок-схему последовательности операций, показывающую подробности управления подачей газа на этапе S203 на фиг.6;

Фиг.11 изображает диаграммы для вычисления тока, определяющего газ на основе целевой генерируемой энергии и рабочей температуры пакета топливных элементов;

Фиг.12 изображает табличные данные для вычисления целевого давления газа на основе тока, определяющего газ;

Фиг.13 изображает табличные данные для вычисления целевой скорости потока воздуха на основе тока, определяющего газ;

Фиг.14 изображает графические данные для вычисления числа оборотов для указания компрессору на основе целевой скорости потока воздуха и целевого давления газа;

Фиг.15 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления предельного значения скорости изменения тока на этапе S204 на фиг.6;

Фиг.16 изображает табличные данные для вычисления предельного значения для увеличивающегося изменения скорости изменения тока на основе рабочей температуры пакета топливных элементов;

Фиг.17 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления максимального предельного тока на этапе S205 на фиг.6;

Фиг.18 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления целевого генерируемого тока на этапе S206 на фиг.6;

Фиг.19 изображает пример способа вычисления для увеличения запаса целевой генерируемой энергии;

Фиг.20 изображает табличные данные для вычисления оцениваемой постоянной энергии на основе целевого генерируемого тока после ограничения;

Фиг.21 изображает вид, поясняющий пример способа вычисления для целевой генерируемой энергии после коррекции;

Фиг.22 изображает табличные данные для вычисления целевого генерируемого тока на основе целевой генерируемой энергии после корректировки;

Фиг.23 изображает блок-схему последовательности операций, показывающую подробности обработки ограничения тока на этапе S207 на фиг.6;

Фиг.24 изображает блок-схему последовательности операций, показывающую подробности обработки подавления колебаний энергии на этапе S208 на фиг.6;

Фиг.25 изображает характеристики низкочастотного фильтра;

Фиг.26 изображает блок-схему последовательности операций, показывающую подробности обработки вычисления целевого генерируемого напряжения на этапе S209 на фиг.6.

Описание предпочтительных вариантов

осуществления изобретения

Конкретный вариант осуществления настоящего изобретения будет подробно описан ниже со ссылкой на сопроводительные чертежи.

Фиг.1 изображает конфигурацию системы 100 топливных элементов согласно этому варианту осуществления. Система 100 топливных элементов может быть выполнена, например, как источник питания на гибридном электрическом автомобиле и сконфигурирована для подачи питания устройству электрической нагрузки, такому как приводной двигатель (за пределами системы 100 топливных элементов) и вспомогательная машина (внутри системы 100 топливных элементов) гибридного электрического автомобиля, и включает в себя пакет 1 топливных элементов, сконфигурированный из нескольких топливных элементов, сложенных вместе.

Каждый из топливных элементов, составляющих пакет 1 топливных элементов, включает в себя мембранный электрод, прикрепленный к корпусу, образованному таким образом, что топливный электрод (анод), принимающий подачу топливного газа, и окислительный электрод (катод), принимающий подачу окислительного газа, расположены лицевой стороной друг к другу с размещенной между ними мембраной из твердого полимерного электролита, мембранный электрод, прикрепленный к корпусу, проложен сепаратором. Разделитель каждого из топливных элементов, составляющих пакет 1 топливных элементов, содержит проход топливного газа со стороны анода для топливного газа, который протекает через него, и проход окислительного газа со стороны катода для окислительного газа, который протекает через него. Более того, так как топливный газ, содержащий водород, подают на сторону анода каждого топливного элемента и окислительный газ (воздух), содержащий кислород, подают на сторону катода каждого топливного элемента, то пакет 1 топливных элементов осуществляет генерирование энергии посредством электрохимических реакций, показанных ниже в формуле (1) и формуле (2).

Анод (топливный электрод): H2→2H++2e~ (1)
Катод (окислительный электрод): 2H++2e~+(1/2)O2→H2O (2)

Кроме пакета 1 топливных элементов, сконфигурированного для осуществления генерирования энергии, система 100 топливных элементов, согласно этому варианту осуществления, также включает в себя систему подачи водорода, сконфигурированную для подачи топливного газа (в нижеследующем описании используют чистый водород в качестве топливного газа) пакету 1 топливных элементов, систему подачи воздуха, сконфигурированную для подачи воздуха, служащего окислительным газом, пакету 1 топливных элементов, систему охлаждения, сконфигурированную для охлаждения пакета 1 топливных элементов, устройство 2 управления энергией, сконфигурированное для управления получением энергии из пакета 1 топливных элементов, и контроллер 3 (устройство управления генерированием энергии), сконфигурированный для осуществления общего управления действиями в системе 100 топливных элементов.

Система подачи водорода включает в себя бак 4 для водорода, сконфигурированный для хранения водорода, служащего топливным газом, клапан 5 управления давлением водорода, сконфигурированный для регулирования давления водорода, подаваемого из бака 4 для водорода, эжектор 6, сконфигурированный для смешивания водорода, подаваемого из бака 4 для водорода, с рециркулирующим водородом, проход 7 циркуляции водорода, сконфигурированный для рециркуляции водорода, не потребленного в пакете 1 топливных элементов, спускной клапан 8 для водорода, сконфигурированный для отвода примеси, не использованной в реакциях в пакете 1 топливных элементов, датчик 9 температуры бака, сконфигурированный для детектирования температуры внутри бака 4 для водорода, датчик 10 давления бака, сконфигурированный для детектирования давления внутри бака 4 для водорода, датчик 11 температуры водорода на входе, сконфигурированный для детектирования температуры водорода на анодном входе пакета 1 топливных элементов, и датчик 12 давления водорода на входе, сконфигурированный для детектирования давления водорода на анодном входе пакета 1 топливных элементов.

В этой системе подачи водорода водород хранится в баке 4 для водорода, а температуру и давление внутри бака 4 для водорода измеряют датчиком 9 температуры бака и датчиком 10 давления бака соответственно. Водород под высоким давлением, извлеченный из бака 4 для водорода, подвергают управлению давлением клапаном 5 управления давлением водорода, подают в эжектор 6 и смешивают с водородом, проходящим через проход 7 циркуляции водорода, в эжекторе 6. Затем водород, смешанный в эжекторе 6, подают к аноду пакета 1 топливных элементов. Здесь датчиком 11 температуры водорода на входе и датчиком 12 давления водорода на входе соответственно детектируют температуру и давление водорода на анодном входе пакета 1 топливных элементов и передают в контроллер 3. После этого контроллером 3 осуществляют управление клапаном 5 управления давлением водорода на основе давления, измеренного датчиком 12 давления водорода на входе. В это время водород, отведенный из пакета 1 топливных элементов, обычно проходит в проход 7 циркуляции водорода, когда спускной клапан 8 для водорода закрыт. Однако спускной клапан 8 для водорода открывают, когда утечка воды (переполнение) или тому подобное происходит в пакете 1 топливных элементов или, например, когда рабочее давление пакета 1 топливных элементов должно быть снижено, так чтобы отвести водород, находящийся внутри прохода 7 циркуляции водорода и пакета 1 топливных элементов. Здесь рабочее давление пакета 1 топливных элементов является переменным. В частности, давление газа устанавливают подходящим образом в зависимости от выхода, получаемого из пакета 1 топливных элементов, или от его температуры.

Система подачи воздуха включает в себя компрессор 13, сконфигурированный для повышения давления и нагнетания воздуха, служащего окислительным газом, датчик 14 расхода воздуха, сконфигурированный для детектирования расхода воздуха, нагнетаемого из компрессора 13, проход 15 подачи воздуха, сконфигурированный для подачи воздуха, нагнетаемого из компрессора 13 в катод пакета 1 топливных элементов, датчик 16 давления воздуха на входе, сконфигурированный для детектирования давления воздуха на катодном входе пакета 1 топливных элементов, проход 17 отработанного воздуха, сконфигурированный для отвода воздуха из катода пакета 1 топливных элементов, и клапан 18 управления давлением воздуха, сконфигурированный для управления давлением воздуха в пакете 1 топливных элементов.

В этой системе подачи воздуха компрессор 13 принимает воздух из атмосферы и затем повышает давление и нагнетает принятый воздух. Воздух, нагнетенный из компрессора 13, измеряют датчиком 14 расхода воздуха, затем отправляют в проход 15 подачи воздуха и подают к катоду пакета 1 топливных элементов. В этом отношении датчик 16 давления воздуха на входе детектирует давление воздуха на катодном входе пакета 1 топливных элементов, и контроллер 3 управляет раскрытием клапана 18 управления давлением воздуха на основе детектированного давления.

Система охлаждения включает в себя циркуляционный насос 19 хладагента, сконфигурированный для циркуляции хладагента для охлаждения пакета 1 топливных элементов, датчик 20 температуры хладагента, сконфигурированный для детектирования температуры хладагента, отведенного из пакета 1 топливных элементов, и теплообменник 21, сконфигурированный для излучения тепла из циркулирующего хладагента для охлаждения.

В этой системе охлаждения хладагент для охлаждения пакета 1 топливных элементов циркулируют с помощью циркуляционного насоса 19 хладагента, и температуру хладагента, нагретого за счет поглощения тепла из пакета 1 топливных элементов, измеряют датчиком 20 температуры хладагента, затем хладагент отправляют в теплообменник 21 и охлаждают излучением тепла посредством теплообменника 21.

Устройство 2 управления энергией является преобразователем постоянного тока в постоянный ток (DC/DC) повышающе-понижающего типа. Находясь между пакетом 1 топливных элементов и устройством электрической нагрузки, таким как приводной двигатель за пределами системы, устройство 2 управления энергией управляет получением энергии из пакета 1 топливных элементов. В этом преобразователе DC/DC разные переключающие элементы задействованы для осуществления повышающего преобразования и понижающего преобразования, и требуемое напряжение может быть выведено в соответствии с продолжительностью включения сигнала управления, который прикладывают к переключающим элементам. Поэтому переключающими элементами управляют для выведения напряжения, равного или выше входного напряжения во время повышающего преобразования, тогда как переключающими элементами управляют для выведения напряжения, равного или ниже входного напряжения во время понижающего преобразования.

Более того, система 100 топливных элементов включает в себя датчик 22 тока, сконфигурированный для детектирования генерируемого тока пакета 1 топливных элементов, и датчик 23 напряжения, сконфигурированный для детектирования генерируемого напряжения пакета 1 топливных элементов. Значения детектирования датчика 22 тока и датчика 23 напряжения выводят в контроллер 3.

Контроллер 3 включает в себя микрокомпьютер, имеющий, например, центральный процессор (ЦП), оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ) и интерфейс ввода-вывода, и сконфигурирован для осуществления общего управления действиями в системе 100 топливных элементов посредством выполнения заданных программ управления. В частности, контроллер 3 управляет действиями системы 100 топливных элементов посредством принимаемых выходных сигналов из всех вышеописанных датчиков внутри системы 100 топливных элементов и выдачи сигналов возбуждения на приводы, сконфигурированные для приведения в действие различных вспомогательных машин, таких как компрессор 13 и спускной клапан 8 для водорода. В то же время контроллер 3 сконфигурирован для управления действиями устройства 2 управления энергией, включающего в себя преобразователь DC/DC, посредством проведения обработки управления генерированием энергии, которая будет подробно описана ниже, и, тем самым, позволяет фактической генерируемой энергии пакета 1 топливных элементов точно соответствовать целевой генерируемой энергии без возникновения значительного снижения эффективности генерирования энергии. Таким образом, настоящее изобретение применяют к контроллеру 3 (устройству управления генерированием энергии). В то же время контроллер 3 может включать в себя несколько микрокомпьютеров и может также быть устройством, сконфигурированным для выполнения нескольких задач управления в дополнение к управлению обработкой управления генерированием энергии, которая будет описана ниже.

Сейчас следующий результат фактической генерируемой энергии по отношению к целевой генерируемой энергии пакета 1 топливных элементов будет объяснен для случая, когда контроллер 3 в системе 100 топливных элементов этого варианта осуществления, сформированный таким образом, выполняет обработку управления генерированием энергии, которая будет описана ниже {фиг.3(a), фиг.3(b)}. Здесь будет описан случай в сравнении со случаем, где ограничение наложено только на максимальное значение целевого генерируемого тока, получаемого из пакета 1 топливных элементов {фиг.2(a), фиг.2(b)}.

В случае, когда ограничение наложено только на максимальное значение целевого генерируемого тока, получаемого из пакета 1 топливных элементов, генерируемое напряжение пакета 1 топливных элементов иногда внезапно снижается в переходном состоянии, как показано на фиг.2(b), когда генерируемый ток получают из пакета 1 топливных элементов в низкотемпературной окружающей среде. Тогда, вследствие внезапного снижения генерируемого напряжения в этом переходном состоянии, фактическая генерируемая энергия, получаемая из пакета 1 топливных элементов, может значительно отличаться от целевой генерируемой энергии, как показано на фиг.2(a).

С другой стороны, в случае, когда контроллер 3 выполняет обработку управления генерированием энергии, которая будет описана ниже, возможно подавить снижение генерируемого напряжения пакета 1 топливных элементов в переходном состоянии, как показано на фиг.3(b), когда генерируемый ток получают из пакета 1 топливных элементов в низкотемпературных условиях (включая температуры ниже нуля). Это происходит потому, что скорость изменения (скорость увеличивающегося изменения) целевого генерируемого тока, получаемого из пакета 1 топливных элементов, ограничивают с учетом влияния ухудшения осуществления дисперсии кислорода при условии засорения воды, происходящего в порах каталитического слоя катода, и условия засорения воды, вызванного ростом температуры внутри топливного элемента, вследствие генерируемого тока, получаемого из пакета 1 топливных элементов. Более того, фактическая генерируемая энергия может придерживаться целевой генерируемой энергии, в то время как скорость изменения целевого генерируемого тока поддерживается в окрестности предельного значения. Исходя из этого, может быть достигнут быстрейший отклик энергии в соответствии с рабочей температурой пакета 1 топливных элементов.

Далее будет описана обработка управления генерированием энергии контроллером 3, используя настоящее изобретение, со ссылкой на блок-схему последовательности операций способа на фиг.4. Ряд обработок, обозначенных в блок-схеме последовательности операций способа на фиг.4, выполняют контроллером 3 в заданный период времени (такой как 10-микросекундный период).

Когда запускают последовательность на фиг.4, контроллер 3 сначала детектирует рабочую температуру пакета 1 топливных элементов на этапе S101. Здесь параметр рабочих условий, соотнесенный с рабочей температурой пакета 1 топливных элементов, такой как температура хладагента, поглощающего температуру пакета 1 топливных элементов, используют в качестве рабочей температуры пакета 1 топливных элементов. В частности, контроллер 3 вводит значение детектирования температуры датчика 20 температуры хладагента и использует это значение детектирования температуры датчика 20 температуры хладагента в качестве рабочей температуры пакета 1 топливных элементов.

Далее на этапе S102 принимают решение в отношении, находится ли пакет 1 топливных элементов в подвижном состоянии генерирования энергии или нет. Когда рабочая температура пакета 1 топливных элементов, детектированная на этапе S101, равна или выше T1 и указатель завершения прогрева установлен на «1», принимают решение, что пакет 1 топливных элементов находится в подвижном состоянии генерирования энергии, и обработка переходит на этап S103. С другой стороны, если вышеупомянутое условие не удовлетворено, то принимают решение, что пакет 1 топливных элементов не находится в подвижном состоянии генерирования энергии, и обработка переходит на этап S104. Обратите внимание, что указатель завершения прогрева является указателем, означающим, что обработка на этапе S105, который будет описан позже, не должна быть выполнена. При этом температурный порог T1 устанавливают на температуру, при которой пакет 1 топливных элементов может быть заморожен, с учетом погрешности местоположения между пакетом 1 топливных элементов и датчиком 20 температуры хладагента, использованным на этапе S101.

Нормальное управление генерированием энергии, представляющее управление генерированием энергии в подвижном состоянии, выполняют на этапе S103. Конкретное содержание этого нормального управления генерированием энергии будет подробно описано ниже.

На этапе S104 указатель завершения прогрева устанавливают на «0» и указатель осуществления операции прогрева устанавливают на «1» для того, чтобы принять решение об осуществлении операции прогрева.

Далее на этапе S105 проводят операцию прогрева для установления пакета 1 топливных элементов в подвижное состояние генерирования энергии. Операция прогрева является действием для поднятия температуры пакета 1 топливных элементов, используя самонагрев, вызванный, например, генерированием энергии пакета 1 топливных элементов.

Далее на этапе S106 принимают решение в отношении, прекращена ли операция прогрева или нет. Здесь принимают решение установить пакет 1 топливных элементов в подвижное состояние генерирования энергии, если рабочая температура пакета 1 топливных элементов, выявленная на этапе S101, равна или выше T2, например, и операцию прогрева прекращают. Затем, на следующем этапе S107, указатель завершения прогрева устанавливают на «1» и прекращают обработку управления генерированием энергии. С другой стороны, если рабочая температура пакета 1 топливных элементов, выявленная на этапе S101, ниже T2, то продолжают операцию прогрева и прекращают обработку управления генерированием энергии. Здесь температурный порог T2 устанавливают на температуру, при которой может быть принято решение, что пакет 1 топливных элементов находится в подвижном состоянии генерирования энергии, или устанавливают на температуру, при которой пакету 1 топливных элементов позже снова не потребуется операция прогрева, с учетом погрешности местоположения между пакетом 1 топливных элементов и датчиком 20 температуры хладагента, использованным на этапе S101, а также изменения состояния генерирования энергии вследствие засорения образованной воды в мембране в течение операции прогрева.

Далее дополнительно будет подробно описано нормальное управление генерированием энергии на этапе S103 на блок-схеме последовательности операций способа на фиг.4.

Фиг.5 является блок-схемой, показывающей функциональную конфигурацию контроллера 3 для реализации нормального управления генерированием энергии. Это нормальное управление генерированием энергии является управлением, которое будет осуществлено на основе условия нагрузки устройства электрической нагрузки, подключенного к пакету 1 топливных элементов.

Ниже будет описан пример нормального управления генерированием энергии в случае, где, например, система топливных элементов смонтирована на гибридном электрическом автомобиле.

В качестве функциональной конфигурации для реализации нормального генерирования энергии контроллер 3 включает в себя блок 31 вычисления целевой генерируемой энергии, блок 32 вычисления фактической генерируемой энергии, блок 33 управления подачей газа, блок 34 вычисления целевого генерируемого тока, блок 35 вычисления предельного значения скорости изменения тока, блок 36 вычисления максимального предельного тока (блок вычисления верхнего предельного значения тока), блок 37 ограничения тока, блок 38 подавления колебаний энергии, блок 39 вычисления целевого генерируемого напряжения и блок 40 управления генерируемым напряжением, как показано на фиг.5.

Блок 31 вычисления целевой генерируемой энергии вычисляет целевую генерируемую энергию пакета 1 топливных элементов на основе параметра нагрузки и тому подобного приводного двигателя, который приводят в действие по запросу водителя.

Блок 32 вычисления фактической генерируемой энергии вычисляет фактическую генерируемую энергию, которая будет извлечена из пакета 1 топливных элементов устройством 2 управления энергией, на основе значения детектирования тока датчиком 22 тока и значения детектирования напряжения датчиком 23 напряжения.

Блок 33 управления подачей газа осуществляет управление подачей водорода и воздуха в пакет 1 топливных элементов на основе целевой генерируемой энергии, вычисленной блоком 31 вычисления целевой генерируемой энергии.

Для того чтобы фактическая генерируемая энергия точно следовала целевой генерируемой энергии, блок 34 вычисления целевого генерируемого тока вычисляет целевой генерируемый ток, который является целевым значением тока, получаемого из пакета 1 топливных элементов устройством 2 управления энергией, на основе целевой генерируемой энергии, вычисленной блоком 31 вычисления целевой генерируемой энергии, фактической генерируемой энергии, вычисленной блоком 32 вычисления фактической генерируемой энергии и выходного сигнала из блока 37 ограничения тока.

Блок 35 вычисления предельного значения скорости изменения тока вычисляет предельное значение для скорости увеличивающегося изменения целевого генерируемого тока и предельное значение для скорости понижающегося изменения целевого генерируемого тока как предельные значения для скорости изменения целевого генерируемого тока.

Блок 36 вычисления максимального предельного тока вычисляет верхнее предельное значение для целевого генерируемого тока (максимальный предел тока).

На основе предельных значений для скорости изменения тока, вычисленных блоком 35 вычисления предельного значения скорости изменения тока, и максимального предела тока, вычисленного блоком 36 вычисления максимального предельного тока, блок 37 ограничения тока ограничивает целевой генерируемый ток, вычисленный блоком 34 вычисления целевого генерируемого тока, и выводит целевой генерируемый ток после ограничения.

Блок 38 подавления колебаний энергии подвергает целевой генерируемый ток после ограничения, который является выходным из блока 37 ограничения тока, обработке низкочастотным фильтром так, что колебание фактической генерируемой энергии не увеличивается вследствие мгновенного колебания ВАХ (вольт-амперной характеристики), находящейся под влиянием засорения образованной воды в мембране пакета 1 топливных элементов и тому подобного.

Блок 39 вычисления целевого генерируемого напряжения преобразует целевой генерируемый ток, который был подвергнут обработке низкочастотным фильтром блоком 38 подавления колебаний энергии, в целевое генерируемое напряжение, управляемое устройством 2 управления энергией.

Блок 40 управления генерируемым напряжением управляет действиями устройства 2 управления энергией на основе целевого генерируемого напряжения, вычисленного блоком 39 вычисления целевого генерируемого напряжения.

Контроллер 3, сконфигурированный, как описано выше, например, выполняет нормальное управление генерированием энергии в соответствии с процедурами, показанными на блок-схеме последовательности операций способа на фиг.6.

В частности, целевую генерируемую энергию пакета 1 топливных элементов вычисляют сначала блоком 31 вычисления целевой генерируемой энергии на этапе S201.

Далее фактическую генерируемую энергию пакета 1 топливных элементов вычисляют блоком 32 вычисления фактической генерируемой энергии на этапе S202.

Затем на этапе S203 блоком 33 управления подачей газа выполняют управление подачей водорода и воздуха в пакет 1 топливных элементов на основе целевой генерируемой энергии, вычисленной на этапе S201.

Впоследствии предельное значение для скорости увеличивающегося изменения целевого генерируемого тока и предельное значение для скорости понижающегося изменения целевого генерируемого тока вычисляют блоком 35 вычисления предельного значения скорости изменения тока на этапе S204.

После этого, на этапе S205, верхнее предельное значение для целевого генерируемого тока (максимальный предел тока) вычисляют блоком 36 вычисления максимального предела тока на основе фактической генерируемой энергии, вычисленной на этапе S202.

После чего целевой генерируемый ток пакета 1 топливных элементов вычисляют блоком 34 вычисления целевого генерируемого тока на этапе S206.

Далее на этапе S207 целевой генерируемый ток, вычисленный на этапе S206, ограничивают блоком 37 ограничения тока на основе предельного значения для скорости увеличивающегося изменения и предельного значения для скорости понижающегося изменения целевого генерируемого тока, вычисленных на этапе S204, а также на основе верхнего предельного значения для целевого генерируемого тока (максимального предела тока), вычисленного на этапе S205.

Затем на этапе S208 целевой генерируемый ток после ограничения на этапе S207 подвергают обработке низкочастотным фильтром блоком 38 подавления колебаний энергии.

Впоследствии на этапе S209 целевой генерируемый ток, который был подвергнут обработке низкочастотным фильтром на этапе S208, преобразуют в целевое генерируемое напряжение блоком 39 вычисления целевого генерируемого напряжения.

После этого, на этапе S210, блок 40 управления генерируемым напряжением управляет действиями устройства 2 управления энергией так, что целевое генерируемое напряжение, полученное на этапе S209, реализуют и, тем самым, прекращают обработку нормального управления генерированием энергии.

Фиг.7 изображает блок-схему последовательности операций, показывающую подробности обработки блоком 31 вычисления целевой генерируемой энергии на этапе S201 на фиг.6.

Блок 31 вычисления целевой генерируемой энергии сначала детектирует степень воздействия водителя на акселератор на основе выходного сигнала из датчика акселератора, установленного в транспортном средстве, на этапе S301, и детектирует скорость транспортн