Способ обжига мелкозернистого материала
Иллюстрации
Показать всеИзобретение относится к области обжига мелкозернистых материалов в печах с псевдоожиженным слоем. Для повышения равномерности обжига мелкозернистого материала предложен способ, включающий предварительное псевдоожижение и последующий обжиг в печи, содержащей камеру подогрева с газораспределительной решеткой, снабженную питателем и соединенную с санитарным циклоном, камеру обжига с кольцевой газораспределительной решеткой, имеющую топливные горелки и переточное устройство внутри цилиндрической полости, от которой установлен горячий циклон, камеру охлаждения с газораспределительной решеткой, снабженную воздуховодом, при этом кольцевую газораспределительную решетку камеры обжига выполняют с тонкими профильными лопатками и направляющей перегородкой, отделяющей зону поступления материала от зоны его выгрузки. Профильные лопатки кольцевой газораспределительной решетки камеры обжига выполняют с переменным равномерно чередующимся шагом. Топливные горелки располагают на разной высоте с равномерным чередованием высот в пределах толщины слоя псевдоожиженного материала, а их оси направляют под разными углами к продольной оси печи. Топливные горелки могут быть выполнены с тангенциальным вводом, по крайней мере, одного из компонентов топлива, причем максимальный диаметр факела распыла указанных топливных горелок соответствует толщине слоя псевдоожиженного материала, а его длина - ширине слоя псевдоожиженного материала. 2 з.п. ф-лы, 5 ил.
Реферат
Изобретение относится к области обжига мелкозернистых материалов, в частности к печам псевдоожиженного слоя и способам обжига псевдоожиженных материалов в них.
Известен способ обжига мелкозернистых материалов с использованием печи для обжига мелкозернистого материала в псевдоожиженном слое, содержащей камеру подогрева, снабженную питателем и соединенную с санитарным циклоном, камеру обжига, имеющую топливные горелки и переточное устройство внутри цилиндрической полости, от которой установлен горячий циклон, и камеру охлаждения, снабженную воздуховодом. Камеры охлаждения, обжига и подогрева оборудованы газораспределительными решетками (Авт. св. СССР №469037, МПК: F27B 15/10).
Недостатками известного способа являются неравномерный обжиг материала вследствие неупорядоченного его движения в кольцевой камере обжига и значительное гидравлическое сопротивление печи.
Известна печь для обжига мелкозернистого материала в псевдоожиженном слое, содержащая камеру подогрева с газораспределительной решеткой, снабженную питателем и соединенную с санитарным циклоном, камеру обжига с газораспределительной решеткой, имеющую топливные горелки и переточное устройство внутри цилиндрической полости, от которой установлен горячий циклон, камеру охлаждения с газораспределительной решеткой, снабженную воздуховодом, при этом кольцевая газораспределительная решетка камеры обжига выполнена с тонкими профильными лопатками и направляющей перегородкой, отделяющей зону поступления материала от зоны его выгрузки (патент РФ №1145228, МПК: F27B 15/10 - прототип).
Указанная печь работает следующим образом.
Обжигаемый материал через питатель поступает в камеру подогрева, откуда после подогрева и подсушки проходит через переточное устройство в камеру обжига, в зону поступления материала, где псевдоожижается и начинает перемещаться вдоль кольцевой решетки с тонкими профильными лопатками за счет подачи из камеры охлаждения воздуха, имеющего как вертикальную, так и горизонтальную составляющие скорости. Топливно-воздушная смесь подается в камеру обжига через горелки и сжигается в псевдоожиженном слое обжигаемого материала, который перемещается вдоль решетки по всему кольцевому сечению до направляющей перегородки выгрузки. Так как ввод и вывод обжигаемого материала разнесены, то его частицы имеют одинаковое время пребывания в камере и подвергаются обжигу, последовательно пересекая зоны действия горелок. Выгрузка мелкозернистого материала производится не только из-за свойства текучести псевдоожиженного слоя, но и вынужденно, под действием наклонных струй газов, обеспечивающих направленное перемещение частиц. Такое решение позволяет производить обжиг и при достаточно тонких псевдоожиженных слоях, что также повышает качество тепловой обработки материала и уменьшает гидравлическое сопротивление печи.
Недостатками известного устройства и примененного в нем способа обжига являются неравномерный обжиг материала вследствие неупорядоченного его движения в кольцевой камере обжига и значительное гидравлическое сопротивление печи.
Задачей изобретения является устранение указанных недостатков и создание способа обжига мелкозернистого дисперсного материала в печи с псевдоожиженным слоем, применение которого позволит обеспечить требуемую неравномерность обжига дисперсных материалов при одновременном повышении производительности печи и улучшении условий сжигания топлива.
Решение указанной задачи достигается тем, что в предложенном способе обжига мелкозернистого материала, заключающемся в его предварительном псевдоожижении и последующем обжиге в печи, содержащей камеру подогрева с газораспределительной решеткой, снабженную питателем и соединенную с санитарным циклоном, камеру обжига с газораспределительной решеткой, имеющую топливные горелки и переточное устройство внутри цилиндрической полости, от которой установлен горячий циклон, камеру охлаждения с газораспределительной решеткой, снабженную воздуховодом, при этом кольцевую газораспределительную решетку камеры обжига выполняют с тонкими профильными лопатками и направляющей перегородкой, отделяющей зону поступления материала от зоны его выгрузки, согласно изобретению профильные лопатки кольцевой газораспределительной решетки камеры выполняют с переменным равномерно чередующимся шагом, при этом топливные горелки располагают на разной высоте, с равномерным чередованием высот в пределах толщины слоя псевдоожиженного материала, а их оси направляют под разными углами к продольной оси печи.
В варианте исполнения топливные горелки выполнены с тангенциальным вводом, по крайней мере, одного из компонентов топлива.
В варианте исполнения максимальный диаметр факела распыла указанных топливных горелок примерно равен толщине слоя псевдоожиженного материала, а его длина составляет величину, примерно равную ширине слоя псевдоожиженного материала.
Максимальный диаметр факела распыла указанных топливных горелок выбран примерно равным толщине слоя псевдоожиженного материала исходя из того, что дальнейшее его увеличение приведет к неэффективному перемешиванию слоя мелкозернистого псевдоожиженного материала, т.к. часть факела топливной горелки, в котором продукты сгорания имеют максимальную линейную скорость, будет выступать за пределы слоя псевдоожиженного материала. При уменьшении диаметра факела ниже указанного значения факел продуктов сгорания будет захватывать часть слоя псевдоожиженного материала, что приведет к ухудшению эффективности перемешивания.
Длина факела распыла указанных топливных горелок выбрана примерно равной ширине слоя псевдоожиженного материала исходя из того, что при дальнейшем ее увеличении поток продуктов сгорания будет попадать на центральные части печи, что может привести к их прогару и потребует дополнительного их охлаждения, а при уменьшении - факел продуктов сгорания будет захватывать лишь часть слоя псевдоожиженного материала, что приведет к ухудшению эффективности перемешивания.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 изображен общий вид печи; на фиг.2 - поперечный разрез перегородки; на фиг.3 - вид сверху кольцевой решетки; на фиг.4 - вид сбоку кольцевой решетки, на фиг.5 - общий вид горелки.
Печь содержит камеру подогрева 1, снабженную питателем 2 и соединенную с санитарным циклоном 3, камеру обжига 4, имеющую топливные горелки 5 и переточное устройство 6, внутри цилиндрической полости 7 которой установлен горячий циклон 8, камеру охлаждения 9, снабженную воздуховодом 10. Камеры подогрева 1 и охлаждения 9 оборудованы газораспределительными решетками 11. Камера обжига 4 оборудована кольцевой решеткой 12 с тонкими профильными лопатками и направляющей перегородкой 13. Кольцевая профильная решетка 12 содержит внутренний 14 и наружный 15 бандажные ободы, расположенные между ними профильные лопатки 16. Для исключения провалов материала решетка покрыта сверху металлической термостойкой сеткой 17. В варианте исполнения в топливной горелке 5 один из компонентов топлива, например газ, подается в камеру смешения 18 горелки через тангенциальный ввод 19.
Данный способ может быть реализован следующим образом.
Обжигаемый материал через питатель 2 подают в камеру подогрева 1, откуда после подогрева и подсушки его подают через переточное устройство 6 в камеру обжига 4, в зону поступления материала, где обжигаемый материал псевдоожижают и начинают перемещать вдоль кольцевой решетки с тонкими профильными лопатками за счет подачи из камеры охлаждения 9 воздуха, имеющего как вертикальную, так и горизонтальную составляющие скорости.
Топливно-воздушная смесь подают в камеру обжига 4 через горелки 5 и сжигают в псевдоожиженном слое обжигаемого материала, который перемещают вдоль решетки по всему кольцевому сечению до направляющей перегородки 13, до зоны выгрузки. За счет того, что топливные горелки располагают на разной высоте, с равномерным чередованием высот в пределах толщины слоя псевдоожиженного материала, а их оси направляют под разными углами к продольной оси печи, происходит дополнительное интенсивное перемещение частиц обжигаемого дисперсного материала по толщине слоя, что приводит к улучшению условий обжига частиц и снижению неравномерности обжига.
В варианте исполнения горючее подают в камеру смешения 18 горелки 5 через тангенциальный ввод 19. Поток горючего закручивается в указанной камере и поступает в камеру обжига, в слой псевдоожиженного обжигаемого материала, в виде вращающегося конуса. Вращающийся конус горючего горелки захватывает частицы обжигаемого материала, находящиеся в слое псевдоожиженого материала, сообщает им вертикальную, горизонтальную составляющие скорости и центростремительное ускорение, что приводит к интенсификации движения частиц обжигаемого материала внутри слоя и, следовательно, их более равномерному обжигу. Кроме этого, применение тангенциального ввода одного из компонентов топлива позволит значительно уменьшить длину факела пламени горелки и повысить экономичность ее работы, что, в свою очередь, даст возможность уменьшить радиальные размеры печи.
Так как ввод и вывод обжигаемого материала разнесены, то его частицы имеют одинаковое время пребывания в камере 4 и подвергаются равномерному обжигу, последовательно пересекая зоны действия горелок. Выгрузку мелкозернистого материала производят не только из-за свойства текучести псевдоожиженного слоя, но и вынужденно, под действием наклонных струй газов, обеспечивающих направленное перемещение частиц, что повышает производительность печи, т.е. количество обжигаемого материала в единицу времени. Это позволяет производить обжиг и при достаточно тонких псевдоожиженных слоях, что также повышает качество тепловой обработки материала и уменьшает гидравлическое сопротивление печи, так как, кроме возможности работы печи на тонких слоях, профильная газораспределительная решетка 12 имеет большое живое сечение, а следовательно, и малое гидравлическое сопротивление.
Производительность печи регулируют за счет изменения скорости дутья.
Радиальные плоские струи воздуха, выходящего из кольцевой решетки с тонкими профильными лопатками под углом относительно горизонтальной ее плоскости, обеспечивают, кроме перемещения мелкого зернистого материала, и более качественное сжигание топливно-воздушной смеси за счет удлинения траектории движения частиц топлива в зоне его горения. Кроме этого, за счет того, что профильные лопатки кольцевой газораспределительной решетки 12 камеры установливают с переменным равномерно чередующимся шагом, происходит дополнительная интенсификация процесса перемещения мелкого зернистого материала, что, в свою очередь, снижает неравномерность обжига и повышает качество получаемого продукта.
Затем через переточное устройство 6 обожженный материал подают в камеру охлаждения 9 и после частичного охлаждения удаляют из печи. В камеру охлаждения 9 по воздуховоду 10 подают воздух, который, псевдоожижая охлаждаемый материал, отбирает часть его тепла и в нагретом состоянии, противотоком по отношению твердого материала, поступает через кольцевую решетку 12 в камеру обжига 4, приобретая при обтекании профильных лопаток 16 как горизонтальные, так и вертикальные составляющие своей скорости.
Образующиеся дымовые газы с пылью направляют в горячий циклон 8 и, частично освобождая их в нем от пыли, подают через газораспределительную решетку 11 в камеру подогрева 1, где подогревают поступающий на обжиг материал. Запыленные дымовые газы из камеры подогрева Г выводят в санитарный циклон 3 и после частичной очистки направляют в систему тонкой очистки (не показана) или выбрасывают в атмосферу, если достигнуты соответствующие санитарные нормы по степени очистки дымовых газов. Пыль из циклонов 8 и 3 выводят из системы или направляют на дообжиг в камеру обжига 4 в зависимости от технологических особенностей обжига конкретных материалов.
Использование изобретения позволит уменьшить неравномерность обжига материала, повысить производительность печи и улучшить качество обжига мелкозернистого материала за счет направленного перемещения частиц псевдоожиженного слоя во всех направлениях по всему кольцевому сечению камеры обжига и исключения повторного его обжига.
1. Способ обжига мелкозернистого материала, включающий предварительное псевдоожижение и последующий обжиг в печи, содержащей камеру подогрева с газораспределительной решеткой, снабженную питателем и соединенную с санитарным циклоном, камеру обжига с кольцевой газораспределительной решеткой, имеющую топливные горелки и переточное устройство внутри цилиндрической полости, от которой установлен горячий циклон, камеру охлаждения с газораспределительной решеткой, снабженную воздуховодом, при этом кольцевую газораспределительную решетку камеры обжига выполняют с тонкими профильными лопатками и направляющей перегородкой, отделяющей зону поступления материала от зоны его выгрузки, отличающийся тем, что профильные лопатки кольцевой газораспределительной решетки камеры обжига выполняют с переменным равномерно чередующимся шагом, при этом топливные горелки располагают на разной высоте с равномерным чередованием высот в пределах толщины слоя псевдоожиженного материала, а их оси направляют под разными углами к продольной оси печи.
2. Способ по п.1, отличающийся тем, что топливные горелки выполняют с тангенциальным вводом, по крайней мере, одного из компонентов топлива.
3. Способ по п.1, отличающийся тем, что топливные горелки выполняют с максимальным диаметром факела распыла, примерно равным толщине слоя псевдоожиженного материала, а его длину устанавливают примерно равной ширине слоя псевдоожиженного материала.