Способ и устройство для последовательного вычитания помех с помощью обработки матрицы корня ковариации
Иллюстрации
Показать всеИзобретение относится к технике беспроводной связи и может быть использовано для обработки сигналов связи, использующих последовательное вычитание помех. Способ обработки составного сигнала связи, содержащего два или более одновременно принятых представляющих интерес сигнала, содержит вычисление восстановленной версии первого представляющего интерес сигнала, основанной на детектированных первых символах, соответствующих первому представляющему интерес сигналу, и формирование обновленного сигнала связи путем вычитания восстановленной версии первого представляющего интерес сигнала из составного сигнала связи, первые символы для использования в вычислении восстановленной версии первого представляющего интерес сигнала, детектируют, используя первые весовые коэффициенты, вычисленные из матрицы квадратного корня ковариации и суммарной характеристики канала для первого представляющего интерес сигнала, при этом матрица квадратного корня ковариации представляет ковариацию искажений или ковариацию данных для составного сигнала связи, затем матрицу квадратного корня ковариации обновляют, чтобы получить обновленную матрицу квадратного корня ковариации, соответствующую обновленному сигналу связи. Технический результат - повышение точности отслеживания статистических свойств принимаемого сигнала путем упрощения вычислений. 2 н. и 27 з.п. ф-лы, 1 табл., 12 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение в целом относится к беспроводным системам связи, и, более конкретно, относится к способам и устройству для обработки сигналов связи, использующим последовательное вычитание помех.
УРОВЕНЬ ТЕХНИКИ
Традиционные беспроводные приемники часто используют информацию о ковариации шумов и/или данных в виде ковариационной матрицы для подавления помех между многочисленными принимаемыми сигналами, то есть многочисленными наборами отсчетов (выборок) одиночного передаваемого сигнала, многочисленными разными сигналами или любой их комбинацией. Примеры подавляющих помехи приемников включают в себя корректоры чипов (символьных последовательностей), RAKE-приемники, обобщенные RAKE-приемники (GRAKE), приемники с одним входом и многими выходами, приемники с многими входами и многими выходами и так далее.
Как известно в данной области техники, было показано, что многопользовательское детектирование (MUD) является эффективным способом для подавления помех множественного доступа (MAI) и улучшения пропускной способности системы. В системах MUD, сигналы от создающих помехи пользователей используются при детектировании сигналов индивидуальных пользователей. Примеры систем MUD включают в себя приемники вычитания помех, часто упоминаемые как приемники последовательного подавления помех (SIC) и приемники с обратной связью принятия решения (DF). Подход SIC основан на идее, что как только принято решение о бите создающего помехи пользователя, создающий помехи сигнал может быть восстановлен на приемнике, используя знания о канале, и вычтен из принятого сигнала. Этот процесс повторяется последовательно для одного или более сигналов других пользователей, и постепенно снижает помехи, по мере того, как детектируется каждый из сигналов, связанных с другими пользователями. Часто самые сильные сигналы детектируются первыми и вычитаются из принятого сигнала, что ослабляет помехи для более слабых сигналов.
Подход DF основан на схожей идее, за исключением того, что вычитание производится на обработанной версии принятого сигнала, а именно на статистике решений приемника. Кроме того, вычитаемая величина формируется из предварительно детектированных битов пользователя, схожим с коррекцией обратной связи принятия решения способом. Хотя системы MUD эффективны в уменьшении MAI, сложность оптимальных систем MUD возрастает экспоненциально с числом пользователей. Соответственно, большинство практических систем MUD используют субоптимальные системы детектирования.
Приемники с подавлением помех требуют точного отслеживания статистических свойств принимаемого сигнала и/или искажений сигнала, обычно с использованием ковариационной матрицы. Отслеживание ковариаций данных или искажений часто требует крайне сложных вычислений из-за огромного числа принимаемых наборов отсчетов. Эти сложные вычисления часто ограничивают способность беспроводного приемника точно отслеживать и использовать ковариации сигнала. Эти проблемы могут усложняться в приемниках с вычитанием помех и других конструкциях MUD приемников из-за необходимости вычислять ковариации каждый раз, когда принятый сигнал модифицируется путем вычитания сигнала создающего помехи пользователя.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
В материалах настоящей заявки раскрыты способы и устройство для обработки составного сигнала связи, содержащего два или более одновременно принимаемых представляющих интерес сигнала. Примерный приемник, который может включать в себя приемник G-Rake, линейный корректор чипов или другой подавляющий помехи приемник, применяет матрицу квадратного корня ковариации для обработки принятых сигналов, где матрица квадратного корня ковариации является альтернативой ковариационной матрице для представления ковариации искажений или ковариации данных для составного сигнала связи.
В примерном способе для обработки составного сигнала связи, приемник детектирует первые символы, соответствующие первому представляющему интерес сигналу, из составного сигнала связи, используя весовые коэффициенты обработки, вычисленные из матрицы квадратного корня ковариации и суммарную характеристику канала для первого представляющего интерес сигнала. Как отмечено выше, матрица квадратного корня представляет ковариацию искажений или ковариацию данных для составного сигнала связи. Способ дополнительно содержит расчет восстановленной версии первого представляющего интерес сигнала из детектированных первых символов, формирование обновленного сигнала связи путем вычитания восстановленной версии первого представляющего интерес сигнала из составного сигнала связи, и обновление матрицы квадратного корня ковариации для получения обновленной матрицы квадратного корня ковариации. В некоторых вариантах осуществления, обновление матрицы квадратного корня ковариации включает в себя применение одного или более обновлений ранга 1 к матрице квадратного корня ковариации, хотя также могут быть использованы обновления более высокого ранга. В некоторых вариантах осуществления используется единственное обновление ранга 1, вычисленное в зависимости от суммарной характеристики канала для первого представляющего интерес сигнала, в то время как в других применяется более развернутый процесс обновления, основанный на модели ковариации данных восстановленной версии первого представляющего интерес сигнала.
Обновленная матрица квадратного корня ковариации, созданная, согласно изобретению, первым каскадом приемника, может быть предоставлена второму каскаду приемника для выполнения обработки обновленного сигнала связи. В таком варианте осуществления вторые символы, соответствующие второму представляющему интерес сигналу, могут быть детектированы, используя вторые весовые коэффициенты обработки, вычисленные из обновленной матрицы квадратного корня ковариации и суммарной характеристики канала для второго представляющего интерес сигнала.
В некоторых вариантах осуществления второй представляющий интерес сигнал может быть восстановлен и вычтен из обновленного сигнала связи, чтобы произвести второй обновленный сигнал связи для дальнейшей обработки.
Устройство для обработки составного сигнала связи, согласно одному или более из вышеприведенных способов, а также вариациям этих способов, также раскрыто в материалах настоящей заявки. В частности, раскрываются схемы приемника, сконфигурированные для получения и обработки составного сигнала связи, содержащего два или более представляющих интерес сигнала. В некоторых вариантах осуществления схема приемника содержит схему детектирования сигнала, сконфигурированную для детектирования первых символов, соответствующих первому представляющему интерес сигналу из составного сигнала связи, используя весовые коэффициенты обработки, вычисленные из матрицы квадратного корня ковариации и суммарной характеристики канала для первого представляющего интерес сигнала. В этих вариантах осуществления схема приемника может дополнительно содержать схему подавления помех, сконфигурированную, чтобы рассчитывать восстановленную версию первого представляющего интерес сигнала, основываясь на детектированных первых символах, и формировать обновленный сигнал связи путем вычитания восстановленной версии первого представляющего интерес сигнала из составного сигнала связи. Схема приемника дополнительно содержит схему обновления ковариации, сконфигурированную, чтобы обновлять матрицу квадратного корня ковариации для получения обновленной матрицы квадратного корня ковариации, соответствующей обновленному сигналу связи. Схема детектирования сигнала может содержать приемник Rake или G-Rake, в этом случае весовые коэффициенты обработки могут содержать комбинирующие весовые коэффициенты Rake или G-Rake. В других вариантах осуществления схема детектирования сигнала может содержать корректор чипов, в этом случае весовые коэффициенты обработки могут содержать весовые коэффициенты отводов корректора чипов. В некоторых вариантах осуществления схема приемника может содержать один или более дополнительных каскадов приемника, включающих в себя одну или более дополнительных схем детектирования сигнала для дополнительной обработки обновленного сигнала связи, используя обновленную матрицу квадратного корня ковариации.
Конечно, настоящее изобретение не ограничивается вышеприведенными признаками и преимуществами. Специалистам в данной области буду понятны дополнительные признаки и преимущества из нижеследующего подробного описания и сопроводительных чертежей.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 иллюстрирует примерную систему связи.
Фиг.2 - блок-схема, иллюстрирующая примерный приемник вычитания помех согласно одному из вариантов осуществления изобретения.
Фиг.3 иллюстрирует примерный каскад приемника, использующий ковариационную матрицу.
Фиг.4 иллюстрирует примерный каскад приемника, использующий матрицу квадратного корня ковариации.
Фиг.5 - блок-схема, иллюстрирующая несколько каскадов приемника, соединенных последовательно.
Фиг.6 - блок-схема, иллюстрирующая примерный каскад приемника, сконфигурированный для параллельного детектирования нескольких сигналов.
Фиг.7 иллюстрирует синхронизацию нескольких не выровненных принятых сигналов.
Фиг.8 - логическая блок-схема последовательности операций, иллюстрирующая примерный способ обработки составного сигнала связи.
Фиг.9 - еще одна логическая блок-схема последовательности операций, иллюстрирующая способ обработки сигналов связи согласно изобретению.
Фиг.10 - логическая блок-схема последовательности операций, иллюстрирующая другой примерный способ согласно изобретению.
Фиг.11 - логическая блок-схема последовательности операций, иллюстрирующая еще один примерный способ обработки сигналов связи согласно изобретению.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Обсуждаемые и иллюстрируемые детали во многих примерных вариантах осуществления настоящего изобретения неизбежно содержат определенный уровень сложности. Такие сложности рассматриваются в примерных деталях, показанных позже в материалах настоящей заявки, но изначальное понимание более широких аспектов настоящего изобретения может быть получено со ссылкой на сравнительно простую диаграмму, показанную на фиг.1. Однако, перед обсуждением фиг.1, следует понять, что настоящее изобретение широко использует детектирование сигнала на основе G-Rake (или другие методы обработки, которые используют ковариационные матрицы данных и/или искажений в процессе детектирования сигнала) в сочетании с последовательным подавлением помех.
Термин «G-Rake», в качестве используемого в материалах настоящей заявки, подразумевает комбинирующую схему «Rake» или комбинирующий способ Rake, который рассчитывает комбинирующие весовые коэффициенты, основанные на оценке корреляций искажений между выходами коррелятора Rake ("отводами"). Такие искажения возникают, например, по причине MAI, повторного использования кода расширения, условий многолучевого распространения и замирания (фединга) канала, межсотовых помех и так далее. Как будет объяснено более детально ниже, обработка G-Rake может быть приспособлена для использования в приемнике с последовательным подавлением помех, чтобы обработка корреляции искажений в последовательных каскадах примерной цепи детектирования сигнала отражала изменяющиеся условия искажения, возникающие из-за последовательных подавлений сигнала.
Фиг.1 иллюстрирует примерную беспроводную систему 8 связи, содержащую приемник 10 и несколько передатчиков с 12-1 по 12-K, обменивающихся информацией через соответствующие каналы распространения с 11-1 по 11-K. Для целей обработки принятых сигналов, каналы могут рассматриваться включающими в себя воздействия передающих и приемных трактов обработки сигналов (например, импульсный профиль фильтра), а также воздействия среды передачи (например, трактов распространения между передатчиком и приемником).
Приемник 10 может, к примеру, быть включен в или связан с базовой радиостанцией, в то время как каждый из передатчиков с 12-1 по 12-K может быть включен в или связан с мобильным терминалом, таким как сотовый радиотелефон, портативный цифровой секретарь (PDA), ноутбук, карманный компьютер, или другое устройство, поддерживающее беспроводную связь.
Приемник 10 и передатчики 12 функционируют, например, в соответствии с установленным форматом/протоколом беспроводной передачи сигналов, например, в соответствии со стандартом IS-95B/IS-2000 (CDMA 2000) множественного доступа с кодовым разделением (CDMA), широкополосным CDMA (WCDMA) или стандартом универсальных мобильных телекоммуникационных систем (UMTS). Таким образом, несмотря на то, что изобретение описывается с различных позиций в нижеследующем обсуждении в контексте систем WCDMA, специалистам в данной области техники будет понятно, что изобретение может применяться при других условиях, используя другие стандарты.
Более того, хотя сценарий вычитания помех описывается здесь в установке восходящих линий связи (то есть касательно многочисленных сигналов, принимаемых на базовой станции от некоторого количества мобильных передатчиков), специалистам в данной области техники будет понятно, что методы, раскрытые в материалах настоящей заявки, также могут применяться к сигналам нисходящих линий связи. Например, передатчик 10 базовой станции может быть сформирован согласно конфигурации поблочной асинхронной передачи (BLAST) (например, CR-BLAST), используя, таким образом, многочисленные антенны для передачи желаемого сигнала пользователя, в виде одновременных параллельных подпотоков. При таком подходе, информационный сигнал для заданного пользователя разделяется на параллельные подпотоки, каждый из которых может кодироваться отдельно. На приемнике пользователя подпотоки принимаются, типично используя многочисленные антенны приемника, и могут быть детектированы последовательно, как представляющий интерес сигнал в серии каскадов детектирования сигнала. Таким образом, влияние каждого подпотока может быть последовательно подавлено по мере того, как обработка сигнала проходит через последовательность каскадов детектирования сигнала. Специалистам в данной области техники должно быть понятно, что выбранные аспекты конструкций примерного приемника, описанного в материалах настоящей заявки, могут, таким образом, быть сконфигурированы, чтобы применять особые характеристики заданной конструкции передатчика и/или структуры сигнала.
Другим применением заявленных способов, описанных в материалах настоящей заявки, которое может быть полезно как в нисходящих, так и восходящих линиях связи, является уменьшение помех совместных каналов. В случае нисходящих линий связи, многочисленные ячейки передают на одной и той же несущей частоте, и приемник терминала может подавлять создающие помехи сигналы от других ячеек, используя раскрытые способы и конструкции приемника. В случае восходящих линий связи, приемник базовой станции может подавлять создающие помехи сигналы, отправленные с терминалов, связанных с другими ячейками, вновь используя раскрытые методы.
Согласно фиг.1, приемник 10 обслуживает ряд пользователей, соответствующих передатчикам с 12-1 по 12-K. Переданные сигналы пользователя создают друг другу помехи на приемнике 10. Так как базовая станция должна демодулировать сигналы, соответствующие каждому из К пользователей в любом случае, дополнительная работа, требуемая для использования выходных данных из одного процесса детектирования сигнала в другом, является приемлемой. Таким образом, выгодно использовать архитектуру вычитания помех в приемнике 10, чтобы детектированный сигнал пользователя мог быть вычтен из составного принятого сигнала для снижения его вредного воздействия на недетектированные сигналы для других пользователей.
Специалистам в данной области должно быть понятно, что порядок вычитания может иметь значение. Одна из возможных стратегий - ранжировать пользователей в порядке снижения принимаемой мощности, что типично переносится в снижение скорости передачи данных (в битах в секунду). Пользователи могут быть дополнительно сгруппированы в подмножества сходной принимаемой мощности. Еще одна возможная стратегия состоит в том, чтобы группировать пользователей согласно поддиапазонам мощности, которые могут быть предустановлены или адаптированы к имеющемуся в распоряжении общему диапазону сигнала. Любой из этих подходов хорошо подходит для смешанного сценария, при котором пользователи высокоскоростной передачи данных сосуществуют с пользователями низкоскоростных голосовых служб и служб коротких сообщений (SMS). Другая возможная стратегия - ранжировать пользователей в порядке снижения избыточного качества сигнала. Другими словами, сигнал пользователя, принятый при таких условиях, что качество канала (например, отношение сигнала к совокупной мощности шумов и помех, или SINR), превышает минимальные требования, вероятнее всего будет обработан успешно. Следовательно, детектирование сигнала этого пользователя первым и вычитание его вклада в помехи из составного принятого сигнала с большей вероятностью поможет другим. Вновь, вышеприведенные варианты могут быть приняты. Еще одна возможная стратегия - ранжировать пользователей в порядке снижения чувствительности к задержке обработки. То есть некоторые пользователи могут посылать голосовые данные, имеющие высокую чувствительность, тогда как другие пользователи могут загружать большой файл, с низкими чувствительностями к задержкам обработки. Другие стратегии, такие как сочетание предыдущих трех, также могут быть рассмотрены. В нижеследующем обсуждении предполагается, что пользователи были ранжированы согласно подходящей стратегии, и обозначены от 1 до К, как раньше. Сначала описывается чисто последовательная конфигурация, в которой K пользователей обрабатываются последовательно. Затем обсуждается последовательная/параллельная гибридная конфигурация.
В нижеследующем подробном обсуждении приемником для каждого индивидуального сигнала является G-Rake, который может быть описан в целом как линейный корректор символов с «отбеливанием». Как хорошо известно специалистам в данной области техники, он тесно связан с классом линейных корректоров чипов. Специалистам в данной области техники, таким образом, должно быть понятно, что методы, раскрытые в материалах настоящей заявки в контексте приемника G-Rake, могут быть применены к соответствующим конструкциям корректора чипов. Более того, нелинейные приемники, которые используют информацию о ковариации, могут быть использованы вместо линейных приемников. Примеры этого включают в себя корректоры с обратной связью принятия решения (DFE) и приемники с оценкой последовательности по критерию максимального правдоподобия (MLSE).
Приемник G-Rake обрабатывает выходные данные устройства декодирования, обратного расширения, полученные с различными задержками. Детали традиционного приемника G-Rake хорошо известны, будучи широко описанными в технической литературе (см., например, G.E. Bottomley, T. Ottosson and Y.-P.E. Wang, "A generalized RAKE receiver for interference suppression (Обобщенный RAKE-приемник для подавления помех)", IEEE J. Select. Areas Commun., vol. 18, pp.1536-1545, Aug. 2000), а также в патентных заявках (см., например, Cairns et al., заявка № 10/800,167, поданная 12.03.2004 и опубликованная как заявка № 2005/0201447 A1, все содержание которой включено в материалы настоящей заявки путем ссылки). Эти детали, таким образом, не повторяются в материалах настоящей заявки.
Фиг. 2 предоставляет блок-схему для примерного приемника 10 вычитания помех согласно одному или более вариантам осуществления изобретения. Приемник 10 включает в себя входной каскад радио, содержащий некоторое количество антенн 215 приемника и один или более процессоров 210 радио. Процессоры 210 радио могут включать в себя усилители, фильтры, преобразователи частот, цифровые преобразователи и/или другую электронику, необходимую для создания дискретизированного составного сигнала связи для дальнейшей обработки. Приемник 10 дополнительно содержит множество последовательных каскадов с 220-1 по 220-K приемника. В примерной конфигурации каждый каскад (кроме последнего, как будет рассмотрено ниже) содержит схему 230 детектирования сигнала и схему 240 обработки обновления.
В процессе работы, радиопроцессор(ы) 210 сконфигурированы, чтобы обеспечить оцифрованные выборки, соответствующие принятому составному сигналу, r ( 0 ) , который включает в себя многочисленные представляющие интерес сигналы. Эти многочисленные представляющие интерес сигналы могут представлять собой различные сигналы пользователей, переданные с двух или более передатчиков 10. В любом случае, последовательные каскады с 220-1 по 220-K приемника сконфигурированы, чтобы обеспечить последовательное детектирование представляющих интерес сигналов внутри принятого составного сигнала, например сигналов S 1 , S 2 , … , S K , и дополнительно сконфигурированы, чтобы обеспечить последовательное подавление детектированных сигналов, так что более поздние каскады в цепи детектирования извлекают пользу из детектирования и подавления сигналов в предыдущих каскадах. Таким образом, помехи, возникающие из детектированного представляющего интерес сигнала в каждом каскаде 220-i приемника, постепенно устраняются из последовательно включенных входных сигналов каскадов, основываясь на детектировании представляющего интерес сигнала в каждом каскаде 220 и обновлении составного сигнала связи путем вычитания детектированного представляющего интерес сигнала из входного сигнала каскада, предоставленного для следующего каскада 18.
Например, в проиллюстрированной конфигурации каскад 220-1 детектирует представляющий интерес сигнал S 1 из своего входного сигнала каскада, используя свою схему 230-1 детектирования сигнала, которая предоставляет выходные символы s ( 1 ) (индексированные с помощью "1", чтобы обозначать каскад "1"). Схема 230-1 детектирования сигнала также предоставляет оценку вектора h ( 1 ) суммарной характеристики канала, соответствующего сигналу S 1 . Сигнал S 1 восстанавливается схемой 240-1 обновления, используя детектированные символы s ( 1 ) и вектор h ( 1 ) суммарной характеристики канала, и вычитается из составного сигнала r ( 0 ) связи, чтобы получить обновленный сигнал связи. Обновленный сигнал r ( 1 ) связи, таким образом, по-прежнему включает в себя остающиеся недетектированными представляющие интерес сигналы S ( 2 ) , S ( 3 ) , … , S ( K ) , но помехи другим сигналам, которые в ином случае могли бы быть вызваны сигналом S ( 1 ) , больше в нем не присутствуют, или по меньшей мере значительно снижены.
Обновленный сигнал связи r ( 1 ) предоставляется каскаду 220-2, который детектирует сигнал S 2 и устраняет его, чтобы сформировать другой обновленный сигнал r ( 2 ) , который включает в себя остающиеся недетектированными представляющие интерес сигналы S ( 3 ) , … , S ( K ) . Этот процесс может повторятся до тех пор, пока последний обновленный сигнал ( r ( K − 1 ) ) связи не обработается последним каскадом 220-K для получения последнего недетектированного представляющего интерес сигнала. Таким образом, входной сигнал каскада 220-n извлекает пользу из вычитания всех детектированных до этого сигналов, так что помехи, вызванные совместно принятыми представляющими интерес сигналами, постепенно уменьшаются по мере того, как обработка проходит через последовательность каскадов 220.
Каждая схема 230 детектирования сигнала может содержать приемник G-Rake. Без потери общности, рассмотрим схему 230-1 детектирования сигнала, которая детектирует символы s ( 1 ) , соответствующие принятому представляющему интерес сигналу S 1 . Принятые выборки чипов перед декодированием, обратным расширением, обозначены r ( 0 ) , а ковариационная матрица данных, соответствующая r ( 0 ) , обозначена R d ( 0 ) . Схема 230-1 детектирования сигнала включает в себя декодирование, обратное расширение и комбинирующие операции G-Rake, а также оценивание канала, которое создает вектор оценок h ( 1 ) , соответствующий суммарной характеристике канала для сигнала S 1 . Схема 230-1 детектирования сигнала может также включать в себя декодер, хотя специалисты в данной области техники будут принимать во внимание, что либо программные символы, либо декодированные символы могут быть использованы в восстановлении представляющего интерес сигнала для вычитания из составного сигнала связи.
Для простоты, нижеследующее обсуждение в целом предполагает, что каждый каскад 220 приемника использует один и тот же набор задержек. Один из подходов состоит в том, чтобы рассмотреть набор задержек, равный объединению задержек для индивидуальных сигналов. В качестве альтернативы, может быть использована регулярная сеть задержек, которая охватывает диапазон задержек для индивидуальных сигналов. Далее ниже представлены усовершенствования, описывающие, как набор задержек может быть сокращен или расширен, чтобы удовлетворять требованиям каждого индивидуального приемника. Также для простоты, нижеследующий анализ в целом предполагает, что сигналы от различных пользователей поступают на базовую станцию синхронизированным образом. Другими словами, их временные интервалы выровнены. В действительности многие системы не налагают такое требование, так что одновременно принятые сигналы, наряду с перекрытием, существенно несинхронизированы. Вновь, дополнительный анализ ниже будет демонстрировать, что это не представляет серьезных проблем для приемников, выполненных согласно настоящему изобретению.
Так или иначе, символы, детектированные на каскаде 220-1 приемника, могут быть использованы наряду с последовательностью расширения и оценками канала, чтобы обновлять принимаемый сигнал. А именно, восстановленная версия сигнала S 1 вычитается из составного сигнала r ( 0 ) связи:
r ( 1 ) = r ( 0 ) − h ( 1 ) ∗ s c ( 1 ) , (1)
где, s c ( 1 ) - обратно-расширенная версия символов s ( 1 ) , а * обозначает свертку.
Воздействие сигнала M ( i ) может быть устранено из ковариационной матрицы
R d ( 0 ) данных путем вычитания из M ( 0 ) поправочного члена Δ . Точное выражение для Δ является ковариацией данных восстановленного сигнала h ( 1 ) * s c ( 1 ) , что описано в H.Hadinejad-Mahram, "On the equivalence of linear MMSE chip equalizer and generalized RAKE (Об эквивалентности линейного MMSE корректора чипов и обобщенного RAKE-корректора)," IEEE Commun. Letters, vol. 8, no. 1, January 2004. Однако это достаточно сложная функция вектора h ( 1 ) канала, ответвлений канала, отводов приемника и формы импульса. Также, в общем случае, ковариационная матрица данных для восстановленного сигнала имеет полный ранг, или близкий к нему, делая расчеты более сложными. Соответственно, взамен могут использоваться различные упрощающие аппроксимации.
В некоторых вариантах осуществления изобретения, Δ может быть аппроксимирован, используя поправочный член Δ 1 , вычисленный как тензорное произведение h ( 1 ) , то есть:
Δ 1 = α ( 1 ) h ( 1 ) h ( 1 ) H (2)
Здесь коэффициент α ( 1 ) масштабирования принимает на себя необходимые поправки, если таковые имеются, такие как учет ожидаемого значения символов модуляции, или относительных мощностей контрольных символов и символов данных. Затем, используя эту аппроксимацию для ковариации данных восстановленного сигнала S 1 , обновленная ковариационная матрица R d ( 1 ) данных, соответствующая обновленному сигналу r ( 1 ) связи, становится:
R d ( 1 ) = R d ( 0 ) − α ( 1 ) h ( 1 ) h ( 1 ) H . (3)
В других вариантах осущ