Ингибиторы цитокинов

Иллюстрации

Показать все

Изобретение относится к соединениям имидазола формулы

где значения радикалов А, X, R1, R2, R3 представлены в п.1 формулы изобретения. Также раскрыты фармацевтические композиции указанных соединений для снижения уровня цитокина (например, ФНОα или ИЛ-1β). 6 н. и 10 з.п. ф-лы, 107 пр.

Реферат

Перекрестная ссылка

Настоящая заявка испрашивает приоритет в соответствии с заявкой США, порядковый номер 11/934154, поданной 2 ноября 2007 г., содержание которой включено в настоящее описание посредством ссылки.

Уровень техники

Фактор некроза опухолей альфа (TNFα, ФНОα), цитокин мононуклеаров, продуцирует преимущественно моноциты и макрофаги. Ему присущи различные виды биологической активности: (1) уничтожение раковых клеток или ингибирование роста раковых клеток, (2) активация фагоцитоза нейтрофильных гранулоцитов, (3) активация продуцирования пероксида и (4) уничтожение инфекционных патогенов.

Интерлейкин-1 бета (IL-1β, ИЛ-1β), цитокин, секретируемый клетками, такими как моноциты-макрофаги и дендритные клетки, выступает в качестве медиатора в иммунных и воспалительных реакциях.

Ядерный фактор каппа B (NF-кB) является провоспалительным фактором транскрипции. Он активирует цитокины, включая ФНОα и ИЛ-1β, и таким образом играет роль медиатора воспалительной реакции.

Индуцибельная синтаза оксида азота (iNOS) индуцируется эндотоксинами или цитокинами (например, ФНОα). Она катализирует образование оксида азота, который оказывает важное плейотропное действие, из L-аргинина и кислорода.

ФНОα, ИЛ-1β, NF-κB и iNOS играют важные роли во многих ключевых физиологических и патологических процессах, связанных с широким диапазоном заболеваний, например, таких как аутоиммунные заболевания, рак, атеросклероз и диабет. Поэтому модулирование экспрессии или активности ФНОα, ИЛ-1β, NF-κB или iNOS может оказать лечебный эффект в отношении этих заболеваний. См., например, Ogata H, Hibi T. et al Curr Pharm Des. 2003; 9(14): 1107-13; Taylor PC. et al Curr Pharm Des. 2003; 9(14): 1095-106; Fan C., et al. J. Mol. Med 1999, 77, 577-592; and Alcaraz et al., Current Pharmaceutical Design, 2002: 8, 215.

Сущность изобретения

Настоящее изобретение основано на неожиданно обнаруженном факте, заключающемся в том, что соединения имидазола в существенной степени ингибируют продукцию цитокинов, включая ФНОα, и интерлейкин (например, ИЛ-1β, ИЛ-2 или ИЛ-6), у мышей и крыс. Эти соединения потенциально полезны для лечения нарушений, опосредуемых патологическими уровнями цитокинов, таких как воспаления, аутоиммунные заболевания, диабеты, атеросклероз и рак.

Соответственно, в одном из аспектов настоящего изобретения предложены соединения имидазола формулы I:

В этой формуле A отсутствует или представляет собой (CR'R”)n, где n является 1, 2, 3, 4 или 5, или гетероарил, выбранный из группы, состоящей из:

при этом каждый из R' и R” независимо представляет собой H или C1-10 алкил, и R”' представляет собой H или C1-10 алкил, при этом C1-10 алкил необязательно замещен галогеном, C(O)Ra, ORb, SRb, S(O)2Rb, NRcRd, C(O)NRcNRd, при этом каждый из Ra и Rb независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил или гетероарил, и каждый из Rc и Rd независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, или Rc и Rd совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу; B представляет собой 5-6-членный гетероарил; X отсутствует или представляет собой (CRa'Rb')m, где m является 1, 2, 3, 4 или 5, SO, SO2, CO, COO, CONRc', NRc' или NRc'CONRd', при этом каждый из Ra', Rb', Rc' и Rd' независимо представляет собой H или C1-10 алкил; каждый из R1 и R2 независимо представляет собой H, галоген, NRc1C(O)Ra1, ORb1, NRc1Rd1, NRc1C(O)ORb1, NRc1S(O)2Rb1, C1-10 алкил или C1-10 галогеналкил, при этом каждый из Ra1 и Rb1 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил или гетероарил, и каждый из Rc1 и Rd1 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, или Rc1 и Rd1 совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу; а R3 представляет собой H, галоген, OC(O)Ra2, C(O)ORb2, ORb2, SRb2, SO2Rb2, C(O)NRc2Rd2, NRc2Rd2, NRc2C(O)Ra2, NRc2C(O)C(O)ORa2, NRc2S(O)2Rb2, C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены галогеном, C1-4 алкилом, C1-4 галогеналкилом, арилом, гетероарилом, CN, NO2, ORb2, C(O)ORb2, C(O)NRc2Rd2 или NRc2Rd2, при этом каждый из Ra2 и Rb2 независимо представляет собой H, C1-6 алкил, C1-6 галогеналкил, арил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил или гетероарилалкил, при этом C1-6 алкил, C1-6 галогеналкил, арил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил или гетероарилалкил необязательно замещены OH, C1-6 алкоксилом, CN, NO2 или галогеном, и каждый из Rc2 и Rd2 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, циклоалкил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, циклоалкил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены C1-6 алкоксилом, OH, амино, C1-4 алкиламино, C2-8 диалкиламино, S(O)2Rb2, C1-6 алкилом, C1-6 галогеналкилом, C1-6 галогеналкилом, арилом, арилалкилом, гетероарилом, гетероарилалкилом, циклоалкилом или гетероциклоалкилом, или Rc2 и Rd2 совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу.

В рамках формулы I подгруппа описанных выше соединений индазола представляет собой те соединения, в которых удаляют все A, CH2 или.

В этих соединениях B может представлять собой или .

X может отсутствовать или представлять собой (CRa'Rb')m, CO, COO, NRc', CONRc', или NRc'CONRd'. Более конкретно, X может представлять собой CH2, NH, CO, COO, CONH или NHCONH.

В настоящем описании термин «алкил» относится к линейному или разветвленному углеводороду, содержащему, например, 1-20 атомов углерода. Примеры алкильных групп включают метил, этил, н-пропил, изопропил, н-бутил, изобутил и трет-бутил, но не ограничиваются перечисленными. Термин «алкоксил» относится к -O-алкилу. Термин «галогеналкил» относится к алкильной группе, имеющей один или более заместителей-галогенов. Примеры галогеналкильных групп включают CF3, C2F5, CHF2, CCl3, CHCl2, C2Cl5 и т.п. Термин «арилалкил» (или «гетероарилалкил») относится к алкилу, содержащему в качестве заместителя арил (или гетероарил), а «циклоалкилалкил» (или «гетероциклоалкилалкил») относится к алкилу, содержащему в качестве заместителя циклоалкил (или гетероциклоалкил). Примером арилалкильной группы является бензил. Термин «циклоалкил» относится к насыщенному циклическому углеводородному фрагменту, такому как циклогексил. Термин «гетероциклоалкил» относится к насыщенному циклическому фрагменту, имеющему, по меньшей мере, один гетероатом в кольце (например, N, O или S), такой как 4-тетрагидропиранил. Термин «арил» относится к углеводородному фрагменту, включающему одно или более ароматических колец. Примеры арильных фрагментов включают фенил (Ph), фенилен, нафтил, нафтилен, пиренил, антрил и фенантрил. Термин «галогенарил» относится к арильной группе, имеющей один или более заместителей галогенов. Термин «гетероарил» относится к фрагменту, включающему одно или более ароматических колец, которые содержат, по меньшей мере, один гетероатом (например, N, O или S). Примеры гетероарильных фрагментов включают фурил, фурилен, флуоренил, пирролил, тиенил, оксазолил, имидазолил, тиазолил, пиридил, пиримидинил, хиназолинил, хинолил, изохинолил и индолил. Термин «галоген» включает фтор, хлор, бром и йод. Термин «алкиламино» относится к аминогруппе, содержащей в качестве заместителя алкильную группу. Термин «диалкиламино» относится к аминогруппе, содержащей в качестве заместителей две алкильные группы.

Алкил, галогеналкил, алкоксил, арилалкил, гетероарилалкил, циклоалкилалкил, гетероциклоалкилалкил, циклоалкил, гетероциклоалкил, арил и гетероарил, упомянутый в настоящем документе, включают как замещенные, так и незамещенные фрагменты, если не указано иное. Возможные заместители циклоалкила, циклоалкенила, гетероциклоалкила, гетероциклоалкенила, арила и гетероарила включают, не ограничиваясь перечисленными: C1-C10 алкил, C2-C10 алкенил, C2-C10 алкинил, C3-C20 циклоалкил, C3-C20 циклоалкенил, C1-C20 гетероциклоалкил, C1-C20 гетероциклоалкенил, C1-C10 алкокси, арил, арилокси, гетероарил, гетероарилокси, амино, C1-C10 алкиламино, C1-C20 диалкиламино, ариламино, диариламино, C1-C10 алкилсульфонамино, арилсульфонамино, C1-C10 алкилимино, арилимино, C1-C10 алкилсульфонимино, арилсульфонимино, гидроксил, галоген, тио, C1-C10 алкилтио, арилтио, C1-C10 алкилсульфонил, арилсульфонил, ациламино, аминоацил, аминотиоацил, амидо, амидино, гуанидин, уреидо, тиоуреидо, циано, нитро, нитрозо, азидо, ацил, тиоацил, ацилокси, карбоксил и эфир карбоновой кислоты. С другой стороны, возможные заместители алкила, алкенила или алкинила включают все вышеупомянутые заместители, кроме C1-C10 алкила. Циклоалкил, циклоалкенил, гетероциклоалкил, гетероциклоалкенил, арил и гетероарил также могут быть конденсированы друг с другом.

Другой аспект настоящего изобретения относится к способу снижения уровня цитокина (например, ФНОα или интерлейкина) посредством приведения цитокина (например, ФНОα или интерлейкина) в контакт с эффективным количеством одного или более соединений имидазола формулы I. Интерлейкин включает, не ограничиваясь перечисленными: ИЛ-1β, ИЛ-2 и ИЛ-6.

Еще один аспект настоящего изобретения относится к способу лечения нарушений, опосредуемых повышенной продукцией цитокина (например, ФНОα или интерлейкина), таких как воспалительные заболевания кишечника (включая болезнь Крона и неспецифический язвенный колит), хроническая сердечная недостаточность, сахарный диабет, системная красная волчанка, полимиозит/дерматомиозит, псориаз, острый миелобластный лейкоз, деменция при синдроме СПИД, септицемия, септический шок, реакция «трансплантат против хозяина», увеит, астма, острый панкреатит, аллергия, атеросклероз, рассеянный склероз или периодонтит. Способ включает введение субъекту, нуждающемуся в лечении, эффективного количества одного или более соединений имидазола формулы I.

Соединения формулы I, описанные выше, включают сами соединения, а также соли, пролекарства и сольваты таких соединений, если это возможно. Соль, например, может быть образована между анионом и положительно заряженной группой (например, аммонием) в соединении формулы I. Соответствующие анионы включают хлорид, бромид, йодид, сульфат, нитрат, фосфат, цитрат, метансульфонат, трифторацетат, ацетат, малат, тозилат, тартрат, фумурат, глутамат, глюкуронат, лактат, глутарат и малеат. Аналогично, соль может быть также образована между катионом и отрицательно заряженной группой (например, карбоксилатом) в соединении формулы I. Соответствующие катионы включают ион натрия, ион калия, ион магния, ион кальция, а также катион аммония, например, ион тетраметиламмония. Соединения также включают соли, содержащие четверичные атомы азота. Примеры пролекарств включают сложные эфиры и другие фармацевтически приемлемые производные, которые после введения субъекту могут выделять активные соединения формулы I. Сольватом называют комплекс, образованный между активным соединением формулы I и фармацевтически приемлемым растворителем. Примеры фармацевтически приемлемых растворителей включают воду, этанол, изопропанол, этилацетат, уксусную кислоту и этаноламин.

В еще одном аспекте настоящего изобретения предложен химический способ получения указанных соединений (включая их соли и сольваты) и/или соответствующих промежуточных продуктов.

В одном из вариантов воплощения способ включает взаимодействие соединения следующей формулы:

где B представляет собой 5-6-членный гетероарил, и каждый из R1 и R2 независимо представляет собой H, галоген, NRc1C(O)Ra1, ORb1, NRc1Rd1, NRc1C(O)ORb1, NRc1S(O)2Rb1, C1-10 алкил или C1-10 галогеналкил, при этом каждый из Ra1 и Rb1 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил или гетероарил, и каждый из Rc1 и Rd1 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, или Rc1 и Rd1 совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу; с соединением следующей формулы:

R 3a -X 1 -C(O)-L,

при этом L является уходящей группой (например, хлор или OC(O)R), X1 отсутствует или представляет собой (CRa'Rb')m, где m является 1, 2, 3, 4 или 5, и каждый из Ra' и Rb' независимо представляет собой H или C1-10 алкил, и R3a представляет собой H, галоген, OC(O)Ra2, C(O)ORb2, C(O)NRc2Rd2, C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены галогеном, C1-4 алкилом, C1-4 галогеналкилом, арилом, гетероарилом, CN, NO2, ORb2, C(O)ORb2, C(O)NRc2Rd2 или NRc2Rd2, при этом каждый из Ra2 и Rb2 независимо представляет собой H, C1-6 алкил, C1-6 галогеналкил, арил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил или гетероарилалкил, при этом C1-6 алкил, C1-6 галогеналкил, арил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил или гетероарилалкил необязательно замещены OH, C1-6 алкоксилом, CN, NO2 или галогеном, и каждый из Rc2 и Rd2 независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, циклоалкил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, циклоалкил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены C1-6 алкоксилом, OH, амино, C1-4 алкиламино, C2-8 диалкиламино, S(O)2Rb2, C1-6 алкилом, C1-6 галогеналкилом, C1-6 галогеналкилом, арилом, арилалкилом, гетероарилом, гетерарилалкилом, циклоалкилом или гетероциклоалкилом, или Rc2 и Rd2 совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу.

В еще одном варианте реализации процесс включает сочетание соединения следующей формулы:

где A отсутствует или представляет собой (CR'R”)n, где n является 1, 2, 3, 4 или 5, и каждый из R' и R” независимо представляет собой H или C1-10 алкил, B, R1 и R2 определены выше; с соединением следующей формулы:

L-X 2 -R 3b ,

где L является уходящей группой, X2 отсутствует или представляет собой SO, SO2 или CO и R3b представляет собой NRc2Rd2, C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены галогеном C1-4 алкилом, C1-4 галогеналкилом, арилом, гетероарилом, CN, NO2, ORb2, C(O)ORb2, C(O)NRc2Rd2 или NRc2Rd2, при этом Rc2 и Rd2 определены выше.

В еще одном варианте реализации способ включает осуществление сочетания соединения следующей формулы:

где L является уходящей группой, A' представляет собой гетероарил, выбранный из группы, состоящей из:

при этом каждый из R' и R” независимо представляет собой H или C1-10 алкил, и R”' представляет собой H или C1-10 алкил, при этом C1-10 алкил необязательно замещен галогеном, C(O)Ra, ORb, SRb, S(O)2Rb, NRcRd, C(O)NRcNRd, при этом каждый из Ra и Rb независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил или гетероарил, и каждый из Rc и Rd независимо представляет собой H, C1-10 алкил, C1-10 галогеналкил, арил, гетероарил, или Rc и Rd совместно с атомом N, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклоалкильную группу; B, R1 и R2 определены выше; с соединением следующей формулы:

H-R 3c ,

при этом R3c представляет собой OC(O)Ra2, ORb2, SRb2, SO2Rb2, NRc2Rd2, NRc2C(O)Ra2, NRc2C(O)C(O)ORa2, NRc2S(O)2Rb2, C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил, при этом C1-10 алкил, C1-10 галогеналкил, арил, галогенарил, циклоалкил, гетероарил, гетероциклоалкил, арилалкил, гетероарилалкил, циклоалкилалкил или гетероциклоалкилалкил необязательно замещены галогеном, C1-4 алкилом, C1-4 галогеналкилом, арилом, гетероарилом, CN, NO2, ORb2, C(O)ORb2, C(O)NRc2Rd2 или NRc2Rd2, при этом Ra2, Rb2, Rc2 и Rd2 определены выше.

После каждой реакции сочетания, описанной выше, способ может также включать получение фармацевтически приемлемой соли или сольвата полученного соединения формулы I.

Получение соединений может включать защиту и снятие защиты различных химических групп. Определение необходимости в защите и снятии защиты, выборе приемлемых защитных групп могут легко быть осуществлены любым специалистом в данной области. Информация о химии защитных групп может быть найдена, например, в Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, которая полностью включена в настоящее описание посредством ссылки.

Также в объем настоящего изобретения входит фармацевтическая композиция, содержащая одно или более соединений имидазола формулы I, для применения при лечении любого указанного выше заболевания и также для применения одного или более соединений имидазола для производства лекарственных средств для такого лечения.

Подробности одного или более вариантов реализации настоящего изобретения представлены в сопутствующем описании, представленном ниже. Другие признаки, назначения и преимущества изобретения станут очевидными из описания и формулы изобретения.

Подробное описание

Ниже показаны типичные соединения, соединения 1-106, согласно настоящему изобретению.

Описанные выше соединения могут быть получены способами, хорошо известными в данной области техники. В представленных ниже примерах 1-106 подробно описано фактическое получение соединений 1-106.

Описанные выше соединения включают одну или более неароматических двойных связей и один или более центров асимметрии. Указанные соединения могут существовать в виде рацематов, рацемических смесей, отдельных энантиомеров, отдельных диастереомеров, диастереомерных смесей и цис- или транс- или E- или Z-парных изомерных форм. Соединения согласно изобретению также включают таутомерные формы, такие как кето-енольные таутомеры. Соединения согласно изобретению могут также включать все изотопы атомов, встречающиеся в промежуточных соединениях или конечных соединениях. Изотопы включают атомы, имеющие одинаковый атомный номер, но различные массовые числа. Например, изотопы водорода включают тритий и дейтерий.

Согласно одному из аспектов настоящего изобретения предложен способ снижения уровня цитокина (например, ФНОα или ИЛ-1β), например, посредством ингибирования продукции цитокина у субъекта. Субъектом называют любое животное, включая млекопитающих, предпочтительно мышей, крыс, других грызунов, кроликов, собак, кошек, свиней, крупный рогатый скот, овец, лошадей или приматов и, наиболее предпочтительно, человека. Способ включает введение субъекту эффективного количества одного или более описанных выше соединений. Термин «эффективное количество» относится к количеству соединения, которое необходимо для достижения желаемого эффекта. Эффективные количества могут варьировать, что очевидно для специалистов в данной области, в зависимости от пути введения, использования инертного наполнителя и возможности совместного использования других средств.

Поскольку описанные выше соединения снижают уровень цитокина у субъекта, их можно применять для лечения нарушений, вызванных повышенной продукцией цитокина. Таким образом, в объем настоящего изобретения также входит способ лечения заболеваний, связанных с повышенной продукцией цитокина, то есть воспалительных заболеваний, аутоиммунных заболеваний, рака, диабетов, аллергии или атеросклероза. Аутоиммунные заболевания включают ревматический артрит, воспалительные заболевания кишечника (включая болезнь Крона и неспецифический язвенный колит), рассеянный склероз, псориаз или септический шок, но не ограничивается перечисленными. Способ включает введение субъекту, нуждающемуся в лечении, эффективного количества одного из описанных выше соединений.

Термин «терапия» или «лечение» относится к применению или введению композиции, содержащей соединение, субъекту, который страдает одним из вышеупомянутых заболеваний, проявляет симптом такого заболевания или имеет предрасположенность к этому заболеванию, с целью лечения, вылечивания, облегчения, ослабления, изменения, устранения, снижения выраженности, улучшения или оказания воздействия на заболевание, симптомы заболевания или предрасположенность к этому заболеванию.

Для осуществления способа лечения согласно настоящему изобретению одно или более из описанных выше соединений смешивают с фармацевтически приемлемым носителем и затем вводят перорально, ректально, парентерально, в форме аэрозоля для ингаляции или при помощи имплантированного резервуара. В настоящем описании термин «парентерально» включает подкожную, внутрикожную, внутривенную, внутримышечную, внутрисуставную, внутриартериальную, внутрисиновиальную, в подложечную область, интратекальную, в очаг поражения и внутричерепную инъекцию или инфузию.

Композиция для перорального приема может быть представлена в любой лекарственной форме, подходящей для перорального введения, включая таблетки, капсулы, эмульсии и водные суспензии, дисперсии и растворы, но не ограничивается перечисленными. Обычно используемые носители для таблеток включают лактозу и кукурузный крахмал. В таблетки также обычно добавляют смазывающие вещества, такие как стеарат магния. Для перорального приема в виде капсул пригодные разбавители включают лактозу и сухой кукурузный крахмал. Если водные суспензии или эмульсии вводят перорально, активный ингредиент может быть суспендирован или растворен в масляной фазе, объединенной с эмульгирующими или суспендирующими агентами. Если желательно, можно добавить подслащивающие, ароматизирующие или окрашивающие вещества.

Стерильная композиция для инъекций (например, водная или маслянистая суспензия) может быть изготовлена согласно методикам, известным в данной области, с использованием соответствующих диспергирующих или смачивающих агентов (таких как, например, Tween 80) и с помощью суспендирующих агентов. Стерильный состав для инъекций может также представлять собой стерильный раствор для инъекций или суспензию в нетоксичном разбавителе или растворителе, подходящем для парентерального введения, например, в виде раствора в 1,3-бутандиоле. К приемлемым средам и растворителям, которые можно использовать, относятся следующие: маннит, вода, раствор Рингера и изотонический раствор хлорида натрия. Кроме того, часто в качестве растворителя или суспендирующей среды используют стерильные, нелетучие масла (например, синтетические моно- или диглицериды). Жирные кислоты, такие как олеиновая кислота, и ее глицеридные производные можно применять в приготовлении средств для инъекций, поскольку они являются природными фармацевтически приемлемыми маслами, такими как оливковое масло или касторовое масло, в частности, в их полиоксиэтилированных вариантах. Эти масляные растворы или суспензии могут также содержать разбавитель или диспергирующий агент на основе длинноцепочечного спирта, или карбоксилметилцеллюлозу или подобные диспергирующие агенты.

Композицию для ингаляции можно приготовить согласно методикам, хорошо известным в области технологии приготовления фармацевтического состава, и можно представить в виде растворов в физиологическом растворе с использованием бензилового спирта или других соответствующих консервирующих средств, активаторов всасывания, улучшающих биодоступность, фторуглеродов и/или других солюбилизирующих или диспергирующих агентов, известных в данной области.

Одно или более активных соединений можно вводить ректально. Одним из примеров может служить суппозиторий, который включает активные соединения с основой для суппозиториев. Пригодными основами для суппозиториев являются, например, природные или синтетические триглицериды или углеводороды парафинового ряда. Еще одним примером является желатиновая капсула для ректального введения, которая включает активные соединения и основу. Возможные материалы основы включают, например, жидкие триглицериды, полиэтиленгликоли или углеводороды парафинового ряда.

Композиция для нанесения на кожу может быть представлена в виде масла, крема, лосьона, мази и т.п. Приемлемые носители для композиции включают растительные или минеральные масла, белый вазелин (белый мягкий парафин), жиры или масла с разветвлённой цепью, животные жиры и высокомолекулярные спирты (более C12). Предпочтительными носителями являются те носители, в которых активный ингредиент является растворимым. Также можно включить в состав эмульгаторы, стабилизаторы, увлажнители и антиоксиданты, а также средства, придающие цвет или запах, если это необходимо. Дополнительно, в таких составах для местного применения можно использовать усилители проникновения через кожу. Примеры таких усилителей можно найти в патентах США 3989816 и 4444762.

Кремы предпочтительно получают из смеси минерального масла, самоэмульгирующегося пчелиного воска и воды, к которым добавляют активный ингредиент, растворенный в малом количестве масла, таком как миндальное масло. Примером такого крема является крем, который включает приблизительно 40 частей воды, приблизительно 20 частей пчелиного воска, приблизительно 40 частей минерального масла и приблизительно 1 часть миндального масла.

Мази можно получить посредством добавления раствора активного ингредиента в растительное масло, такое как миндальное масло, с добавлением теплого мягкого парафина и охлаждением смеси. Примером такой мази служит мазь, которая включает приблизительно 30% миндаля и приблизительно 70% по массе белого мягкого парафина.

Носитель в фармацевтической композиции должен быть «приемлемым» в том смысле, что он должен быть совместим с активным ингредиентом состава (и предпочтительно обладать способностью к стабилизации активного ингредиента) и быть не вредным для субъекта, которого подвергают лечению. Например, солюбилизирующие агенты, такие как циклодекстрины (которые образуют специфические комплексы с активными соединениями, обладающие лучшей растворимостью), можно применять в качестве фармацевтических инертных наполнителей для доставки активных соединений. Примеры других носителей включают коллоидный диоксид кремния, стеарат магния, целлюлозу, лаурилсульфат натрия и D&C Желтый № 10.

Для предварительной оценки эффективности любого из вышеописанных соединений в снижении уровня цитокина (например, ФНОα или ИЛ-1β) можно провести соответствующее исследование in vitro. Соединения, которые демонстрируют высокую активность в предварительном скрининге, можно подвергать дальнейшему скринингу с использованием тестов in vivo (представленный ниже пример 107). Например, исследуемое соединение вводят животному (например, мыши в качестве модели), а затем оценивают его влияние на снижение уровня цитокина. Соединения можно дополнительно исследовать для проверки их эффективности в лечении нарушений, опосредуемых повышенной продукцией цитокина. Например, соединение можно вводить животному (например, мыши в качестве модели), страдающему воспалительным заболеванием кишечника, а затем оценивают его терапевтические эффекты. На основе результатов можно также определить соответствующие диапазоны дозы и пути введения.

Конкретные примеры, представленные ниже, следует рассматривать как исключительно иллюстративные, они никоим образом не ограничивают оставшуюся часть раскрытия. Предполагается, что любой специалист в данной области на основании представленного описания может использовать настоящее изобретение в полном объеме без дополнительных усилий. Все упомянутые в настоящем документе публикации полностью включены в настоящее описание посредством ссылки.

Пример 1

Соединение 1: 2-(3-(5-метил-1,2,4-оксадиазол-3-ил)фенил)имидазо[1,2-b]пиридазин получали в соответствии с представленной ниже схемой и описанием.

1 ммоль 3-(2-бромацетил)бензонитрила и 1 ммоль 6-хлорпиридазин-3-амина в 10 мл EtOH нагревали с обратным холодильником в течение 12 часов, а затем охлаждали до комнатной температуры. Оранжево-красный осадок собрали посредством фильтрации, промывали холодным EtOH и сушили на воздухе с получением 3-(6-хлоримидазо[1,2-b]пиридазин-2-ил)бензонитрила (125 мг, 50%).

2,5 мг 10% Pd-C добавляли в раствор 3-(6-хлоримидазо[1,2-b]пиридазин-2-ил)бензонитрила (50 мг, 0,2 ммоль) в 25 мл ТГФ/MeOH. Реакционную смесь интенсивно перемешивали при комнатной температуре в течение 4 часов в атмосфере водорода, а затем удаляли Pd-C. Концентрировали фильтрат в вакууме с получением 3-(имидазо[1,2-b]пиридазин-2-ил)бензонитрила в виде твердого вещества желто-белого цвета.

Смесь 0,5 ммоль 3-(имидазо[1,2-b]пиридазин-2-ил)бензонитрила, 1 ммоль NH2OH·HCl и 1 ммоль Et3N в EtOH перемешивали с обратным холодильником в течение 4 часов, а затем охлаждали. Избыток растворителя удаляли в вакууме с получением неочищенного продукта. Уксусный ангидрид (2 ммоль) добавляли в раствор смеси неочищенного продукта, ТГФ (15 мл) и DMAP (кат.) при комнатной температуре, а затем нагревали с обратным холодильником в течение 12 часов. Концентрировали смесь в вакууме и очищали неочищенный продукт посредством колоночной хроматографии на силикагеле с получением 2-(3-(5-метил-1,2,4-оксадиазол-3-ил)фенил)имидазо[1,2-b]пиридазина.

1H ЯМР (MeOD, 400 МГц): δ 8,676~8,650 (м, 1H), 8,606 (c, 1H), 8,444~8,424 (дд, J=6,0 Гц, 2,0 Гц, 1H), 8,150~8,113 (м, 1H), 8,041~7,988 (м, 2H), 7,631~7,580 (т, J=6,0 Гц, 1H), 7,266~7,220 (дд, J=6,0 Гц, 2,0 Гц, 1H); МС (m/e): 278,4 (М+1).

Пример 2

Соединение 2: 1-(3-(имидазо[1,2-b]пиридазин-2-ил)бензил)-3-(2-морфолиноэтил)мочевину получали в соответствии с представленной ниже схемой и описанием.

Катализатор никель Ренея (кат.) и NH3·H2O (4~5 капель) добавляли в раствор 3-(имидазо[1,2-b]пиридазин-2-ил)бензонитрила (25 мг) в MeOH. Смесь интенсивно перемешивали при комнатной температуре в течение 1 часа в атмосфере водорода, а затем удаляли катализатор никель Ренея. Концентрировали фильтрат в вакууме с получением (3-(имидазо[1,2-b]пиридазин-2-ил)фенил)метанамина.

0,2 ммоль (3-(имидазо[1,2-b]пиридазин-2-ил)фенил)метанамина и 1 ммоль K2CO3 в сухом толуоле перемешивали в течение 30 мин при температуре 30°C, добавляли CDI (0,2 ммоль) и продолжали перемешивание в течение 2 часов. Затем добавляли 0,2 ммоль 2-морфолиноэтанамина и DMAP (кат.) и нагревали раствор до 60°C в течение 2 часов. Концентрировали реакционную смесь в вакууме и удаляли осадок посредством колоночной хроматографии на силикагеле с получением 1-(3-(имидазо[1,2-b]пиридазин-2-ил)бензил)-3-(2-морфолиноэтил)мочевины.

1H ЯМР (MeOD, 400 МГц): δ 8,526 (с, 1H), 8,430~8,409 (дд, J=6,0 Гц, 2,4 Гц, 1H), 8,001~7,971 (д, J=12 Гц, 1H), 7,910 (с, 1H), 7,866~7,847 (д, J=8 Гц, 1H), 7,445~7,394 (т, J=10 Гц, 1H), 7,325~7,301 (д, J=10,0 Гц, 1H), 7,251~7,206 (дд, J=12,0 Гц, 5,6 Гц, 1H), 3,733~3,666 (м, 4H), 3,336~3,268 (м, 4H), 2,615~2,543 (м, 6H); МС (m/e): 381,4 (M+1).

Пример 3

Соединение 3: 1-(3-(имидазо[1,2-b]пиридазин-2-ил)бензил)-3-(2-метоксиэтил)мочевину получали способом, аналогичным описанному в примере 2.

1H ЯМР (CD3OD, 400 МГц): δ 8,533 (c, 1H), 8,429~8,411 (дд, J=6,0 Гц, 1,2 Гц, 1H), 8,005~7,970 (дд, J=12,4 Гц, 2,0 Гц, 1H), 7,897 (c, 1H), 7,874~7,850 (д, J=10,4 Гц, 1H), 7,444~7,394 (т, J=9,6~10,4 Гц, 1H), 7,321~7,298 (д, J=9,2 Гц, 1H), 7,251~7,206 (дд, J=12,4 Гц, 1,6 Гц, 1H), 3,694~3,662 (м, 3H), 3,440~3,402 (т, J=7,6 Гц, 2H), 3,329 (c, 2H), 3,277~3,240 (т, J=6,8~8,0 Гц, 2H); МС (m/e): 326,3 (M+1).

Пример 4

Соединение 4: N-((3-(3-(имидазо[1,2-b]пиридазин-2-ил)фенил)-1,2,4-оксадиазол-5-ил)метил)-2-метоксиэтанамин получали в соответствии с представленной ниже схемой и описанием.

Смесь 0,5 ммоль 3-(имидазо[1,2-b]пиридазин-2-ил)бензонитрила, 1 ммоль NH2OH·HCl и 1 ммоль Et3N в EtOH перемешивали с обратным холодильником в течение 4 часов, а затем охлаждали. Избыток растворителя удаляли в вакууме с получением неочищенного продукта. 2-хлорацетил хлорид (2 ммоль) добавляли в раствор смеси неочищенного продукта в толуоле (15 мл) при комнатной температуре, а затем нагревали с обратным холодильником в течение 5 часов. Концентрировали смесь в вакууме и очищали неочищенный продукт посредством колоночной хроматографии на силикагеле с получением 2-(3-(5-(хлорметил)-1,2,4-оксадиазол-3-ил)фенил)имидазо[1,2-b]пиридазина.

Смесь 2-(3-(5-(хлорметил)-1,2,4-оксадиазол-3-ил) фенил)имидазо[1,2-b]пиридазина (1,5 ммоль), йодида натрия (кат.) и 2-метоксиэтанамин (3 ммоль) в 25 мл EtOH перемешивали с обратным холодильником в течение 2 часов. Концентрировали смесь в вакууме и очищали неочищенный продукт посредством колоночной хроматографии на силикагеле с получением N-((3-(3-(имидазо[1,2-b]пиридазин-2-ил)фенил)-1,2,4-оксадиазол-5-ил)метил)-2-метоксиэтанамина.

1H ЯМР (CDCl3, 400 МГц): δ 8,667 (c, 1H), 8,386 (c, 1H), 8,326~8,306 (дд, J=6,0 Гц, 2,0 Гц, 1H), 8,211~8,181 (дд, J=10,4 Гц, 1,6 Гц, 1H), 8,109~8,080 (дд, J=10,4 Гц, 1,6 Гц, 1H), 7,999~7,969 (д, J=12 Гц, 1H), 7,619~7,566 (т, J=10,4 Гц, 1H), 7,082~7,037 (дд, J=11,6 Гц, 6,0 Гц, 1H), 4,188 (c, 2H), 3,577~3,544 (т, J=6~7,2 Гц, 2H), 3,378 (c, 3H), 2,967~2,935 (т, J=6,4 Гц, 2H); МС (m/e): 351,4 (M+1).

Пример 5

Соединение 5: N-((3-(3-(имидазо[1,2-b]пиридазин-2-ил)фенил)-1,2,4-оксадиазол-5-ил)метил)-2-морфолиноэтанамин получали способом, аналогичным описанному в примере 4.

1H ЯМР (CDCl3, 400 МГц): δ 8,663 (c, 1H), 8,370 (c, 1H), 8,323~8,303 (дд, J=6,0 Гц, 2,0 Гц, 1H), 8,177~8,146 (дд, J=6,4 Гц, 2,0 Гц, 1H), 8,077~8,052 (д, J=10,0 Гц