Гомологи глицерин-3-фосфатацилтрансферазы (гфат) и их использование

Иллюстрации

Показать все

Настоящее изобретение относится к области молекулярной биологии и генной инженерии и может быть использовано в процессе синтеза жирных кислот. Из штамма липидпродуцирующего грибка Mortierella alpina получен новый ген, кодирующий фермент глицерин-3-фосфатацилтрансферазы; определена его полная нуклеотидная последовательность, а также ее часть, кодирующая зрелый белок; выведена аминокислотная последовательность нового фермента. Путем трансформации штаммов Mortierella и дрожжевых штаммов кодирующей фермент нуклеотидной последовательностью получены трансформанты с измененным в сравнении с организмом-хозяином долевым соотношением жирных кислот. 4 н.п. ф-лы, 6 табл., 1 ил., 8 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Данная заявка испрашивает приоритет по отношению к японской патентной заявке № 2007-160042 (поданной 18 июня 2007).

Настоящее изобретение относится к новым генам глицерин-3-фосфатацилтрансферазы.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Жирные кислоты являются важными компонентами липидов, таких как фосфолипиды и триацилглицерины. Жирные кислоты, содержащие две или более ненасыщенных связи, вместе обозначаются как полиненасыщенные жирные кислоты (ПНЖК) и, как известно, включают арахидоновую кислоту, дигомо-γ-линоленовую кислоту, эйкозапентаеновую кислоту и докозагексаеновую кислоту. Сообщалось о различных физиологических активностях этих жирных кислот (непатентный документ 1). Вероятно, эти полиненасыщенные жирные кислоты обладают применениями в различных областях, но некоторые из них не могут быть синтезированы в организме животного. Таким образом, были разработаны микробиологические технологии для получения полиненасыщенных жирных кислот посредством культивирования различных микроорганизмов. Также предпринимались другие попытки для синтеза полиненасыщенных жирных кислот в растениях. В этих случаях известно, что полиненасыщенные жирные кислоты накапливаются, например, в виде компонентов запасных липидов, таких как триацилглицерины в клетках микроорганизмов или семенах растений.

Более конкретно, триацилглицерины синтезируются in vivo следующим образом. А именно, глицерин-3-фосфат ацилируется глицерин-3-фосфатацилтрансферазой для образования лизофосфатидной кислоты, которая затем дополнительно ацилируется ацилтрансферазой лизофосфатидной кислоты для образования фосфатидной кислоты. В свою очередь, эта фосфатидная кислота дефосфорилируется кислой фосфатидной фосфатазой для образования диацилглицерина, который затем ацилируется диацилглицеринацилтрансферазой для образования триацилглицерина. Также известно, что другие ферменты, такие как ацилКоА:холестерин ацилтрансфераза и лизофосфатидилхолинацилтрансфераза, косвенно вовлечены в биосинтез триацилглицеринов.

Известно, что в вышеуказанном метаболическом пути биосинтеза триацилглицерина или в метаболических путях биосинтеза фосфолипидов реакция, в которой глицерин-3-фосфат ацилируется для образования лизофосфатидной кислоты, опосредована глицерин-3-фосфатацилтрансферазой (в дальнейшем также обозначаемой как «ГФАТ»; EC 2.3.1.15).

До сих пор сообщается о генах ГФАТ в некоторых организмах. Относительно генов ГФАТ млекопитающих, было клонировано два типа генов: микросомальный (мембраносвязанный) и митохондриальный (мембраносвязанный) гены ГФАТ (непатентный документ 2). Также относительно генов ГФАТ растений, было клонировано три типа генов: микросомальный (мембраносвязанный), митохондриальный (мембраносвязанный) и хлоропластный (свободный) гены ГФАТ (непатентный документ 3). Кроме того, относительно генов ГФАТ, полученных из грибка Saccharomyces cerevisiae, было клонировано два типа генов: микросомальный (мембраносвязанный) GPT2 (GAT1) и SCT1 (GAT2) гены (непатентный документ 4). Для этих генов грибков было показано, что GPT2 обладает способностью использовать в качестве субстрата широкий диапазон жирных кислот, простирающийся от пальмитиновой кислоты (16:0) до олеиновой кислоты (18:1), тогда как SCT1 обладает высокой избирательностью в использовании C16 жирных кислот (например, пальмитиновой кислоты (16:0), пальмитолеиновой кислоты (16:1)) в качестве субстрата (непатентный документ 4). Кроме того, гены ГФАТ также были клонированы из многих других организмов.

Сообщения также касаются ГФАТ, полученных из микроорганизмов рода Mortierella, которые являются липидопродуцирующими грибками. Что касается ГФАТ, полученной из Mortierella ramanniana, была выделена микросомальная ГФАТ и было обнаружено, что она использует олеиновую кислоту (18:1) в качестве донора ацила с 5,4-кратной избирательностью по сравнению с пальмитиновой кислотой (16:0) (непатентный документ 5). Что касается ГФАТ, полученной из Mortierella alpina (в последствии также обозначаемой как «M. alpina»), сообщалось, что микросомальная фракция этого грибка обладает глицерин-3-фосфатацилтрансферазной активностью (непатентный документ 6). Кроме того, было обнаружено, что в реакциях с различными ацил-коферментами А in vitro, ГФАТ, присутствующая в микросомах M. alpina (которая находится в мембраносвязанном состоянии), используется широкий диапазон ПНЖК, включая олеиновую кислоту (18:1), линолевую кислоту (18:2), дигомо-γ-линоленовую кислоту (ДГЛК) (20:3) и арахидоновую кислоту (20:4) в качестве субстрата при сохранении высокой активности (патентный документ 1). Кроме того, при экспрессии в Yarrowia lipolytica, трансформированной так, чтобы сделать возможным биосинтез вплоть до эйкозапентаеновой кислоты (ЭПК), было обнаружено, что ГФАТ, клонированная из M. alpina (ATCC #16266), обеспечивает более высокую долю дигомо-γ-линоленовой кислоты (ДГЛК) (20:3) и более низкую долю олеиновой кислоты (18:1) среди всех жирных кислот. Этот результат указывает на то, что ПНЖК с более длинной цепью и большей степенью ненасыщенности используются более избирательно (патентный документ 2).

Патентный документ 1: Международная публикация № WO2004/087902

Патентный документ 2: Публикация патента США № 2006/0094091

Непатентный документ 1: Lipids, 39, 1147 (2004)

Непатентный документ 2: Biochimica et Biophysica Acta, 1348, 17-26, 1997

Непатентный документ 3: Biochimica et Biophysica Acta, 1348, 10-16, 1997

Непатентный документ 4: The Journal of Biological Chemistry, 276 (45), 41710 41716, 2001

Непатентный документ 5: The Biochemical Journal, 355, 315-322, 2001

Непатентный документ 6: Biochemical Society Transactions, 28, 707-709, 2000

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

ПРОБЛЕМЫ, РЕШАЕМЫЕ С ПОМОЩЬЮ ИЗОБРЕТЕНИЯ

Однако даже если гены ГФАТ, о которых ранее сообщалось, введены и экспрессируются в клетках-хозяевах, композиции жирных кислот, синтезируемые организмами-хозяинами, ограничиваются субстратной специфичностью экспрессируемых ферментов. По этой причине существует необходимость устанавливать новые гены, которые делают возможным синтез композиции жирных кислот, в которых доля жирных кислот отличается от тех, о которых сообщалось ранее.

СРЕДСТВА РЕШЕНИЯ ПРОБЛЕМ

Цель настоящего изобретения состоит в предоставлении белка или нуклеиновой кислоты, которая делает возможным синтез жиров и масел с желаемой долей жирных кислот и/или обогащение желаемых жирных кислот посредством введения или экспрессии в клетках-хозяевах.

Для достижения вышеуказанной цели изобретатели настоящего изобретения выполнили экстенсивные и интенсивные исследования. Сначала, на липидопродуцирующем грибке, Mortierella alpina, был выполнен анализ маркёрных экспрессируемых последовательностей, чтобы получить последовательности, обладающие высоким сходством с известными генами ГФАТ. Для получения полной открытой рамки считывания (ORF), кодирующей ГФАТ, гены дополнительно клонировали с помощью скрининга библиотеки кДНК или ПЦР. В результате попыток ввести эти гены в высокопролиферативные клетки-хозяева (например, клетки дрожжей) чтобы таким образом синтезировать желаемые композиции жирных кислот, изобретатели преуспели в клонировании гена, относящегося к новой ГФАТ с отличающейся субстратной специфичностью, которая делает возможным синтез композиции жирных кислот, отличающейся от таковых, синтезируемых организмами-хозяинами, экспрессирующим традиционные ГФАТ. Это привело к выполнению настоящего изобретения. Конкретно, настоящее изобретение представляет собой следующее.

(1) Нуклеиновая кислота, содержащая нуклеотидную последовательность, показанную ниже в любом из пунктов с (a) до (e):

(a) нуклеотидная последовательность, которая кодирует белок, состоящий из аминокислотной последовательности с делециями, заменами или вставками одной или нескольких аминокислот в аминокислотную последовательность, показанную в SEQ ID № 2 и обладающую глицерин-3-фосфатацилтрансферазной активностью;

(b) нуклеотидная последовательность, которая является гибридизуемой при строгих условиях с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, состоящей из SEQ ID № 4, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью;

(c) нуклеотидная последовательность, которая состоит из нуклеотидной последовательности, обладающей сходством в 70% или более с нуклеотидной последовательностью, состоящей из SEQ ID № 4, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью;

(d) нуклеотидная последовательность, которая кодирует аминокислотную последовательность, обладающую сходством в 70% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью; или

(e) нуклеотидная последовательность, которая является гибридизуемой при строгих условиях с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, кодирующей белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью.

(2) Нуклеиновая кислота согласно вышеприведенному (1), которая содержит нуклеотидную последовательность, показанную ниже в любом из пунктов с (a) до (c):

(a) нуклеотидная последовательность, которая кодирует белок, состоящий из аминокислотной последовательности с делецией, заменой или вставкой от 1 до 10 аминокислот в аминокислотную последовательность, показанную в SEQ ID № 2, и обладающий глицерин-3-фосфатацилтрансферазной активностью;

(b) нуклеотидная последовательность, которая является гибридизуемой в условиях 2× SSC при 50°C с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, состоящей из SEQ ID № 4, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью; или

(c) нуклеотидная последовательность, которая кодирует аминокислотную последовательность, обладающую сходством в 90% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2, и которая кодирует белок, обладающий глицерин-3-фосфатацилтрансферазной активностью.

(3) Нуклеиновая кислота, содержащая нуклеотидную последовательность, показанную ниже в любом из пунктов с (a) до (c) или ее фрагмент:

(a) нуклеотидная последовательность, показанная в SEQ ID № 4;

(b) нуклеотидная последовательность, кодирующая белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2; или

(c) нуклеотидная последовательность, показанная в SEQ ID № 1.

(4) Нуклеиновая кислота, содержащая нуклеотидную последовательность, показанную ниже в любом из пунктов с (a) до (e):

(a) нуклеотидная последовательность, которая кодирует следующий белок:

белок, который состоит из аминокислотной последовательности с делецией, заменой или вставкой одной или нескольких аминокислот в аминокислотную последовательность, показанную в SEQ ID № 2, и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты;

(b) нуклеотидная последовательность, которая является гибридизуемой при строгих условиях с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, состоящей из SEQ ID № 4, и которая кодирует следующий белок:

белок, который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты;

(c) нуклеотидная последовательность, которая состоит из нуклеотидной последовательности, обладающей сходством в 70% или более с нуклеотидной последовательностью, состоящей из SEQ ID № 4, и которая кодирует следующий белок:

белок, который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты;

(d) нуклеотидная последовательность, которая кодирует следующий белок:

белок, который состоит из аминокислотной последовательности, обладающей сходством в 70% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2, и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты; или

(e) нуклеотидная последовательность, которая является гибридизуемой при строгих условиях с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, кодирующей белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2, и которая кодирует следующий белок:

белок, который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты.

(5) Нуклеиновая кислота согласно вышеприведенному (4), которая содержит нуклеотидную последовательность, показанную ниже в любом из пунктов с (a) до (c):

(a) нуклеотидная последовательность, которая кодирует следующий белок:

белок, который состоит из аминокислотной последовательности с делецией, заменой или вставкой от 1 до 10 аминокислот в аминокислотную последовательность, показанную в SEQ ID № 2, и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты;

(b) нуклеотидная последовательность, которая является гибридизуемой в условиях 2× SSC при 50°C с нуклеиновой кислотой, состоящей из нуклеотидной последовательности, комплементарной нуклеотидной последовательности, состоящей из SEQ ID № 4, и которая кодирует следующий белок:

белок, который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты; или

(c) нуклеотидная последовательность, которая кодирует следующий белок:

белок, который состоит из аминокислотной последовательности, обладающей сходством в 90% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2 и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты.

(6) Белок, показанный ниже в пунктах (a) или (b):

(a) белок, который состоит из аминокислотной последовательности с делецией, заменой или вставкой одной или нескольких аминокислот в SEQ ID № 2, и который обладает глицерин-3-фосфатацилтрансферазной активностью; или

(b) белок, который состоит из аминокислотной последовательности, обладающей сходством в 70% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2, и который обладает глицерин-3-фосфатацилтрансферазной активностью.

(7) Белок, показанный ниже в пунктах (a) или (b):

(a) белок, который состоит из аминокислотной последовательности с делецией, заменой или вставкой одной или нескольких аминокислот в SEQ ID № 2 и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, состоящий из аминокислотной последовательности, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты; или

(b) белок, который состоит из аминокислотной последовательности, обладающей сходством в 70% или более с аминокислотной последовательностью, состоящей из SEQ ID № 2, и который обладает способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких из показанных ниже пунктов с i) до v) в доле жирных кислот организма-хозяина, экспрессирующего белок, состоящий из аминокислотной последовательности, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты.

(8) Белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2.

(9) Рекомбинантный вектор, содержащий нуклеиновую кислоту согласно любому из приведенных выше пунктов с (1) до (5).

(10) Трансформант, трансформированный рекомбинантным вектором согласно вышеприведенному (9).

(11) Композиции жирных кислот, полученные посредством культивирования трансформанта согласно вышеприведенному (10), где, по меньшей мере, один или несколько из показанных ниже пунктов с i) до v) больше в доле жирных кислот в композиции жирных кислот, чем в культивированном продукте, полученном посредством культивирования организма-хозяина, который не трансформирован рекомбинантным вектором согласно вышеприведенному (9):

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты.

(12) Способ получения композиции жирных кислот, который содержит сбор композиции жирных кислот согласно вышеприведенному (11) из культивированного продукта, полученного посредством культивирования трансформанта согласно вышеприведенному (10).

(13) Пищевой продукт, содержащий композицию жирных кислот согласно вышеприведенному (11).

ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ

ГФАТ по настоящему изобретению обладает субстратной специфичностью, отличающейся от субстратной специфичности традиционных ГФАТ, и позволяет организму-хозяину синтезировать композицию жирных кислот, в которых доля жирных кислот отличается от доли жирных кислот в композиции жирных кислот, синтезируемой организмами-хозяинами, экспрессирующим традиционные ГФАТ. В результате ГФАТ по настоящему изобретению делает возможным предоставление липидов, обладающих желаемыми свойствами и эффектами, и пригодны для применения в пищевых продуктах, косметике, фармацевтике, мылах и т.д.

Кроме того, ГФАТ по настоящему изобретению делает возможным улучшение способности синтезировать жирные кислоты и запасные липиды, и таким образом является предпочтительной в качестве средства для улучшения производительности синтеза полиненасыщенных жирных кислот в микроорганизмах и растениях.

КРАТКОЕ ОПИСАНИЕ РИСУНКОВ

На фигуре 1 показана последовательность кДНК (SEQ ID № 1) ГФАТ2 по настоящему изобретению, наряду с ее расшифрованной аминокислотной последовательностью (SEQ ID № 2). На фигуре «*» обозначает аминокислотный остаток, который кажется важным для ГФАТ активности, и «+» обозначает аминокислотный остаток, который кажется важным для связывания с глицерин-3-фосфатом.

ЛУЧШИЙ ВАРИАНТ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к новым генам глицерин-3-фосфатацилтрансферазы, полученной из рода Mortierella, отличающейся ацилированием глицерин-3-фосфата для образования лизофосфатидной кислоты.

Глицерин-3-фосфатацилтрансфераза (ГФАТ) в настоящем изобретении представляет собой фермент, который катализирует реакцию, в которой глицерин-3-фосфат ацилируется для образования лизофосфатидной кислоты. Донором ацила, как правило, является ацилКоА, но не ограничивается им. Акцептором ацила в реакции переноса ацила, катализируемой белком по настоящему изобретению, является глицерин-3-фосфат, но не ограничивается им.

Нуклеиновые кислоты по настоящему изобретению, кодирующие глицерин-3-фосфатацилтрансферазу

Глицерин-3-фосфатацилтрансфераза (ГФАТ) в настоящем изобретении относится к ГФАТ2. Соответствие между кДНК, кодирующими последовательностями, открытыми рамками считывания и аминокислотными последовательностями нуклеиновой кислоты, кодирующей ГФАТ2, объединены далее в таблице 1.

Таблица 1
ГФАТ2
SEQ ID № Соответствующий участок в SEQ ID № 1
кДНК SEQ ID № 1 *****
Кодирующая последовательность SEQ ID № 3 Позиции 113-1891
Открытая рамка считывания SEQ ID № 4 Позиции 113-1888
Аминокислотная последовательность SEQ ID № 2 *****

То есть, последовательности, относящиеся к ГФАТ2 по настоящему изобретению, включают SEQ ID № 2 (аминокислотная последовательность ГФАТ2), SEQ ID № 4 (последовательность, представляющая участок открытой рамки считывания в ГФАТ2), SEQ ID № 3 (последовательность, представляющая участок кодирующей последовательности в ГФАТ2) и SEQ ID № 1 (нуклеотидная последовательность кДНК для ГФАТ2). Среди них SEQ ID № 3 соответствует нуклеотидам 113-1891 в SEQ ID № 1, тогда как SEQ ID № 4 соответствует нуклеотидам 113-1888 в SEQ ID № 1 или нуклеотидам 1-1776 в SEQ ID № 3.

Нуклеиновые кислоты по настоящему изобретению охватывают одноцепочечные и двухцепочечные ДНК, а также комплементарную им РНК, которая или может встречаться в природе или быть изготовлена искусственным образом. ДНК включают в качестве неограничивающих примеров, геномные ДНК, кДНК, соответствующие геномным ДНК, химически синтезированную ДНК, ПЦР-амплифицированную ДНК, а также их сочетания и гибриды ДНК/РНК.

Предпочтительные варианты осуществления нуклеиновых кислот по настоящему изобретению включают (a) нуклеотидную последовательность, показанную в SEQ ID № 4, (b) нуклеотидную последовательность, кодирующую белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2, и (c) нуклеотидную последовательность, показанную в SEQ ID № 1.

Вышеприведенная нуклеотидная последовательность, показанная в SEQ ID № 4, нуклеотидная последовательность, кодирующая белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2, и нуклеотидная последовательность, показанная в SEQ ID № 1, представляют собой то, что показано в таблице 1.

Для получения этих нуклеотидных последовательностей данные нуклеотидных последовательностей маркёрных экспрессируемых последовательностей или геномных ДНК из организмов, обладающих ГФАТ активностью, можно использовать для поиска нуклеотидной последовательности, кодирующей белок, обладающий высоким сходством с известными белками, обладающими ГФАТ активностью. Предпочтительные организмы, обладающие ГФАТ активностью представляют собой липидопродуцирующие грибки, включая, в качестве неограничивающих примеров, M. alpina.

Для анализа маркёрных экспрессируемых последовательностей сначала подготавливают библиотеку кДНК. В отношении способов подготовки библиотеки кДНК можно дать ссылку на «Molecular Cloning, A Laboratory Manual 3rd ed.» (Cold Spring Harbor Press (2001)). Альтернативно можно использовать коммерчески доступный набор для подготовки библиотеки кДНК. В качестве примера, способы подготовки библиотеки кДНК, пригодные для настоящего изобретения, представляют собой следующее. Конкретно, соответствующий штамм M. alpina, липидопродуцирующего грибка, инокулируют в соответствующую среду и предварительно культивируют в течение соответствующего периода. Условия культивирования, подходящие для этого предварительного культивирования, включают, например, среду, состоящую из 1,8% глюкозы, 1% дрожжевого экстракта и pH 6,0, период культивирования 3 дня и температура культивирования 28°C. Затем предварительно культивированный продукт подвергают основному культивирование при соответствующих условиях. Состав среды, пригодной для основного культивирования, может быть, например, 1,8% глюкозы, 1% порошка соевых бобов, 0,1% оливкового масла, 0,01% Adekanol, 0,3% KH2PO4, 0,1% Na2SO4, 0,05% CaCl2∙2H2O, 0,05% MgCl2∙6H2O и pH 6,0. Условия культивирования, пригодные для основного культивирования могут быть, например, аэробной культурой с постоянным перемешиванием при 300 об/мин, 1 vvm, 26°C в течение 8 дней. Соответствующее количество глюкозы может быть добавлено в ходе культивирования. Образцы культивированного продукта забирают в соответствующие моменты времени в ходе основного культивирования, из которых затем собирают клетки для подготовки общей РНК. Для подготовки общей РНК возможно использование любых известных способов, таких как способ с гуанидингидрохлоридом/CsCl. Полученная общая РНК может быть обработана коммерчески доступным набором для очистки поли(A)+РНК. Дополнительно, библиотека кДНК может быть подготовлена с помощью коммерчески доступного набора. Затем для любого клона из подготовленной таким образом библиотеки кДНК определяют его нуклеотидную последовательность посредством применения праймеров, которые предусмотрены в векторе, чтобы сделать возможным определение нуклеотидной последовательности вставки. В результате, могут быть получены маркёрные экспрессируемые последовательности. Например, когда ZAP cDNA GigapackIII Gold Cloning Kit (Stratagene) используется для подготовки библиотеки кДНК, может быть выполнено прямое клонирование.

При сравнении нуклеотидных последовательностей их открытых рамок считывания, ген ГФАТ2 по настоящему изобретению и известный ген ГФАТ1, выделенный из M. alpina (ATCC #16266), обладают сходством 42,0%. Следует отметить, что при анализе с помощью BLASTX, ген ГФАТ2 по настоящему изобретению обладает сходством 36,9% с нуклеотидной последовательностью, кодирующей предполагаемую белковую последовательность, выделенную из Aspergillus nidulans, похожую на 1-ацил-sn-глицерин-3-фосфатацилтрансферазу (инвентарный номер GB EAA62242), обладающую наименьшим E-value (т.е., указывающим на наилучшее сходство) и обладающую сходством 36,6% с нуклеотидной последовательностью, кодирующей полученную из Saccharomyces cerevisiae глицерин-3-фосфатацилтрансферазу Sct1p (инвентарный номер GB CAC85390), указывая на самое высокое сходство среди белков с установленной функцией.

Также идентичность аминокислотных последовательностей между ГФАТ2 по настоящему изобретению и известной ГФАТ1, выделенной из M. alpina (ATCC #16266), составляет 15,7%. Следует отметить, что при анализе с помощью BLASTX, ген ГФАТ2 по настоящему изобретению обладает сходством 17,0% с выделенной из Aspergillus nidulans 1-ацил-sn-глицерин-3-фосфатацилтрансфераза-подобной предполагаемой белковой последовательностью (инвентарный номер GB EAA62242), обладающей наименьшим E-value (т.е., указывающим на наилучшее сходство), и обладает сходством 15,0% с выделенной из Saccharomyces cerevisiae глицерин-3-фосфатацилтрансферазой Sct1p (инвентарный номер GB CAC85390), указывая на наивысшее сходство среди белков с установленной функцией.

Настоящее изобретение также охватывает нуклеиновые кислоты, функционально эквивалентные нуклеиновой кислоте, содержащей вышеупомянутую нуклеотидную последовательность, показанную в SEQ ID № 4 (в дальнейшем также обозначаемую как «нуклеотидная последовательность по настоящему изобретению») или нуклеотидную последовательность, кодирующую белок, состоящий из аминокислотной последовательности, показанной в SEQ ID № 2 (в дальнейшем также обозначаемую как «аминокислотная последовательность по настоящему изобретению»). Фраза «функционально эквивалентный» предназначена для того, чтобы обозначать, что белок, кодируемый нуклеотидной последовательностью по настоящему изобретению или белок, состоящий из аминокислотной последовательности по настоящему изобретению обладает ГФАТ активностью. В дополнение к этой ГФАТ активности, белок, кодируемый нуклеотидной последовательностью по настоящему изобретению, или белок, состоящий из аминокислотной последовательности по настоящему изобретению, может обладать способностью давать долю жирных кислот, обеспечивающей более высокую степень, по меньшей мере, одного или нескольких пунктов из:

i) содержание олеиновой кислоты;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты; и

v) степень содержания арахидоновой кислоты и/или дигомо-γ-линоленовой кислоты

в доле жирных кислот организма-хозяина, экспрессирующего белок, чем в доле жирных кислот организма-хозяина, не экспрессирующего белок (такой белок в дальнейшем также обозначается как «белок, обладающий способностью давать долю жирных кислот ГФАТ в настоящем изобретении»).

Конкретный пример представляет собой нуклеиновую кислоту, содержащую нуклеотидную последовательность, кодирующую белок, обладающий способностью давать долю жирных кислот, удовлетворяющую, по меньшей мере, одному или нескольким из следующих пунктов:

i) содержание олеиновой кислоты составляет 47% или более, предпочтительно 48% или более, 49% или более, 50% или более, 51% или более;

ii) отношение содержания олеиновой кислоты к содержанию пальмитиновой кислоты составляет 8,0 или более, предпочтительно 9,0 или более, 10,0 или более, 10,5 или более;

iii) отношение общего содержания стеариновой кислоты и олеиновой кислоты к содержанию пальмитиновой кислоты составляет 8,5 или более, предпочтительно 9,0 или более, 10,0 или более, 11,0 или более, 11,5 или более;

iv) отношение содержания C18 жирной кислоты к содержанию C16 жирной кислоты составляет 1,2 или более, предпочтительно 1,3 или более, 1,4 или более; и

v) содержание арахидоновой кислоты составляет 0,47 или более, предпочтительно 0,50 или более, 0,55 или более, 0,60 или более, и/или содержание дигомо-γ-линоленовой кислоты составляет 0,34 или более, предпочтительно 0,40 или более, 0,50 или более, 0,55 или более,

когда вышеупомянутая нуклеотидная последовательность по настоящему изобретению встроена в экспрессирующий вектор pYE22m (Biosci. Biotech. Biochem., 59, 1221-1228, 1995) и трансформирована в дрожжевой организм-хозяин, штамм EH13-15 Saccharomyces cerevisiae (Appl. Microbiol. Biotechnol., 30, 515 520, 1989), и полученный трансформант культивируют, чтобы собрать клетки, которые затем анализируют на жирные кислоты посредством процедур, описанных в нижеприведенном примере 6. Более предпочтительной является нуклеиновая кислота, содержащая нуклеотидную последовательность, кодирующую белок, обладающий как ГФАТ активностью, так и вышеуказанной способностью давать долю жирных кислот ГФАТ в настоящем изобретении.

Одной из отличительных особенностей композиции жирных кислот по настоящему изобретению является высокое содержание арахидоновой кислоты. Арахидоновая кислота, субстанция, представленная химической формулой C20H32O2 и обладающая молекулярной массой 304,47, представляет собой карбоновую кислоту, содержащую 20 атомов углерода и 4 двойные связи ([20:4(n-6)]) и классифицированную как член семейства (n-6). Арахидоновая кислота присутствует в виде важных фосфолипидов (особенно фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол) в клеточных мембранах животных и в избытке содержится в мозге. Кроме того, арахидоновая кислота служит в качестве стартового материала для семейства эйкозаноидов (например, простагландин, тромбоксан, лейкотриен), порождаемых каскадом арахидоновой кислоты, и также явля