Сид светильники для широкомасштабного архитектурного освещения

Иллюстрации

Показать все

Изобретение относится к области светотехники и может быть использовано для освещения целевого объекта, расположенного в заданном диапазоне от системы освещения. Техническим результатом является повышение надежности за счет улучшение теплорассеяния и обеспечение широкого спектра световых эффектов при высокой интенсивности светового потока. Система содержит первое осветительное устройство (301) и второе осветительное устройство (302), при этом образуя между ними первый зазор (332). Как первое, так и второе осветительные устройства содержат множество СИДов, при этом первое осветительное устройство генерирует излучение, имеющее спектр, отличный от спектра излучения второго осветительного устройства. Задняя поверхность первого и второго осветительных устройств термически соединена с теплорассеивающими конструкциями. В корпусе (330) размещен контроллер, подключенный к СИД источникам света и выполненный с возможностью управления интенсивностью и суммарным воспринимаемым цветом и/или цветовой температурой излучения, генерируемого системой. Корпус (330) контроллера образует второй зазор (385) с теплорассеивающими конструкциями первого и второго осветительных устройств, соединенный с первым зазором (332) для обеспечения прохождения потока окружающего воздуха через систему освещения. 14 з.п. ф-лы, 20 ил.

Реферат

Предпосылки создания изобретения

Цифровые технологии освещения, то есть освещения на основе полупроводниковых источников света, таких как светоизлучающие диоды (СД), создают реальную альтернативу традиционным люминесцентным, газоразрядным лампам и лампам накаливания. Функциональные преимущества и выгоды светодиодов включают в себя высокие показатели преобразования энергии и оптическую эффективность, долговечность, низкие эксплуатационные затраты и многие другие преимущества. Последние достижения в светодиодной технологии привели к появлению полноспектральных эффективных и надежных источников освещения, которые обеспечивают различные световые эффекты во многих применениях. Некоторые из приборов, включающие в себя эти источники, имеют в своем составе модуль освещения, в том числе один или несколько светодиодов, способных производить различные цвета, например, красный, зеленый и синий, а также процессор для самостоятельного управления работой светодиодов в целях получения различных цветов и световых эффектов с цветовыми изменениями, как подробно показано, например, в патентах США №№. 6016038 и 6211626.

В частности, светильники, в которых использованы светодиоды с потоком высокой интенсивности, быстро становятся лучшей альтернативой обычным светильникам в силу их более высокой общей световой эффективности и способности генерировать различные эффекты и модели освещения. Одной из важных задач в разработке и эксплуатации этих светильников является управление тепловым режимом, потому что светодиоды работают с большей эффективностью и более продолжительный срок, если эксплуатируются при более низких температурах. Светодиоды с высокой интенсивностью потока, как правило, особенно чувствительны к рабочей температуре, а эффективность рассеивания тепла, вырабатываемого этими светодиодами, в значительной степени зависит от срока службы, производительности и надежности СИД источника света. Таким образом, поддержание оптимальной температуры перехода является важным фактором в разработке высокопроизводительных систем освещения. Однако с увеличением размера прибора и плотности потока СИД источника света эффективное рассеивание тепла может представлять собой проблему. При работе с СИД приборами большого размера, например, приборами наружного применения, предметом озабоченности является также безопасность переноски и монтажа, равно как и устойчивость.

Одним из желательных применений СИД светильников, в частности, тех, в которых использованы светодиоды с высокой интенсивностью потока, является освещение крупных архитектурных поверхностей и объектов с концентрацией света в определенном направлении. На протяжении многих лет для этой цели в различных театральных, телевизионных, архитектурных применениях и сферах общего назначения для освещения использовались обычные проекционные светильники (например, для верхнего освещения, прожекторного освещения, освещения взлетно-посадочных полос и высотных зданий и т.д.). Обычно эти устройства включают в себя лампы накаливания или газоразрядные лампы, установленные в непосредственной близости от вогнутого рефлектора, который отражает свет через узел линзы, направляя узкий луч света на значительные расстояния к целевому объекту.

В последние годы СИД осветительные устройства также использовались в некоторых типах проекционных осветительных приборов, выполненных в виде светильников внутреннего и наружного применения для улучшенной подсветки трехмерных объектов, а также для прожекторного освещения или заливающего освещения стен архитектурных поверхностей. В частности, узлы из одного или нескольких светодиодов поверхностного монтажа или типа «чип-на-плате» (COB) привлекли внимание в промышленности для использования в приложениях, требующих высокой яркости в сочетании с выработкой узкого луча света (для обеспечения четкой фокусировки и низкого геометрического распространения освещения). СИД узел «чип-на-плате» (COB) в целом относится к одному или нескольким полупроводниковым чипам (или «кристаллам»), в которых имеется один или несколько СИД переходов, в котором чип(чипы) смонтированы (например, приклеены) непосредственно на печатную плату (ПП). Чип (чипы) с помощью провода крепятся к печатной плате, после чего для покрытия чипа (чипов) и проводной связи может быть использован шарик из эпоксидной смолы или пластмассы. Один или несколько таких СИД узлов или «СИД капсул», в свою очередь, могут быть установлены на общую монтажную плату или подложку светильника.

Для узкого круга применений, в которых используются СИД узлы «чип-на-плате» или кристаллы, оптические элементы могут использоваться совместно с СИД узлами «чип-на-плате» для облегчения фокусировки генерируемого света с целью создания узкого луча коллимированного или квази-коллимированного света. Оптические структуры для коллимации видимого света, часто упоминаемые как «коллиматорные линзы» или «коллиматоры», известны в данной области техники. Эти структуры улавливают и перенаправляют свет, излучаемый источником света для улучшения его направленности. Одним из таких коллиматоров является коллиматор полного внутреннего отражения («ПВО»). Коллиматор ПВО включает в себя внутреннюю отражающую поверхность, которая служит для улавливания значительной части света, излучаемого источником света и направляемого коллиматором. Отражающая поверхность обычных коллиматоров ПВО обычно коническая, то есть образованная от параболической, эллиптической или гиперболической кривой.

Таким образом, в данной области техники существует потребность в высокопроизводительном СИД светильнике с улучшенными свойствами выработки света и рассеяния тепла. Особенно желателен СИД светильник с узким лучом, подходящий для крупномасштабных применений освещения, таких, как прожекторное освещение крупных объектов и сооружений или заливающие световые эффекты для наружных архитектурных поверхностей.

Сущность изобретения

Различные варианты осуществления раскрытого здесь изобретения в целом касаются внешних архитектурных осветительных приборов с использованием СИД источников света, которые способны испускать свет на большие расстояния и обеспечивать широкий спектр световых эффектов при высокой интенсивности светового потока. В частности, данное изобретение предназначено для архитектурных осветительных приборов, используемых для крупномасштабного заливающего освещения фасадов и для освещения крупных архитектурных сооружений, таких, как небоскребы, казино и магазины розничной торговли.

В различных вариантах осуществления, архитектурный светильник или осветительный прибор включает в себя, по меньшей мере, два СИД осветительных устройства, при этом каждое осветительное устройство включает в себя многочисленные СИД источники света. В одном показательном варианте осуществления, каждое осветительное устройство включает в себя большое количество СИД источников в форме «СИД капсул» или узлов «чип-на-плате», которые могут быть выполнены с возможностью генерации любого спектра. Осветительные устройства светильника выполнены с возможностью образования структуры «с разъемным корпусом» с воздушными зазорами между осветительными устройствами для облегчения рассеяния тепла, а каждое осветительное устройство оснащено теплорассеивающими ребрами, дополнительно способствующими рассеиванию тепла. В другом варианте, приспособление может включать в себя блок питания и схему управления, расположенную в отдельном корпусе контроллера, соединенного с разъемным корпусом устройства таким образом, чтобы обеспечивать воздушные зазоры между корпусом контроллера и разъемным корпусом устройства.

В других вариантах, архитектурные светильники в соответствии с различными вариантами осуществления настоящего изобретения могут дополнительно включать в себя множество оптических элементов разъемного рефлектора для сведения света, генерируемого капсулированными светодиодами каждого осветительного устройства, в тонкий луч, угол раствора которого, составляет, к примеру, около 5 градусов. В различных вариантах осуществления, каждый оптический рефлектор имеет верхний и нижний участки, которые образуют единую отражающую поверхность. Максимальный диаметр верхнего участка больше или равен максимальному диаметру нижнего участка, в том числе его лапе крепления, чтобы обеспечить плотно упакованную конфигурацию оптических элементов рефлектора.

В целях раскрытия настоящего изобретения, использованный здесь термин «светодиод» следует понимать как включающую в себя любые электролюминесцентные диоды или другого типа систему на основе инжекции носителей заряда/переходов, которая может генерировать излучение в ответ на электрический сигнал. Таким образом, термин светодиод включает в себя, но не ограничивается этим, различные полупроводниковые структуры, которые излучают свет в ответ на подачу тока, светоизлучающие полимеры, органические светоизлучающие диоды (ОСД), электролюминесцентные полосы, и тому подобное.

В частности, термин «светодиод» относится к светоизлучающим диодам всех типов (в том числе полупроводниковым и органическим светоизлучающим диодам), которые могут быть выполнены с возможностью генерации излучения в одном или нескольких инфракрасных диапазонах спектра, ультрафиолетовом диапазоне спектра, а также различных участках видимого диапазона спектра (как правило, включая в себя излучение с длиной волны от приблизительно 400 нанометров до приблизительно 700 нанометров). Некоторые примеры светодиодов включают в себя, но не ограничиваются этим, различные типы инфракрасных светодиодов, ультрафиолетовые светодиоды, красные светодиоды, синие светодиоды, зеленые светодиоды, желтые светодиоды, светодиоды янтарного цвета, оранжевые светодиоды и белые светодиоды (дополнительно рассмотренные ниже). Понятно также, что светодиоды могут быть выполнены и/или управляемы с возможностью генерирования излучения с различной пропускной способностью (например, с полной шириной на полувысоте максимума, или ПШПВ) для данного спектра (например, с узкой полосой пропускания, с широкой полосой пропускания), а также с различной доминирующей длиной волны в рамках определенной общей классификации цвета.

Например, один вариант осуществления светодиода, выполненный с возможностью излучения в основном белого света (например, белый светодиод), может включать в себя целый ряд кристаллов, излучающих соответственно различные спектры электролюминесценции, которые, в сочетании, перемешиваются и образуют в основном белый свет. В другом варианте осуществления, белый свет светодиода может быть связан с фосфорным материалом, который преобразует электролюминесценцию из первого спектра в иной второй спектр. В одном случае варианта осуществления, электролюминесценция с относительно короткой длиной волны и узкой полосой пропускания спектра «накачивает» фосфорный материал, который, в свою очередь, испускает длинноволновое излучение с несколько более широким спектром.

Следует также понимать, что термин «светодиод» не сводится к физическому и/или электрическому типу капсулы светодиода. Например, как отмечалось выше, «светодиод» может относиться к отдельному светоизлучающему устройству, имеющему несколько кристаллов, которые выполнены с возможностью испускания соответственно различных спектров излучения (например, таких, которыми можно или нельзя управлять отдельно). Кроме того, понятие «светодиод» может быть связано с фосфором, который считается неотъемлемой частью светодиода (например, некоторые виды белых светодиодов). В целом термин «светодиод» может относиться к капсулированным светодиодам, некапсулированным светодиодам, светодиодам поверхностного монтажа, светодиодам, выполненным по технологии «чип-на-плате», светодиодам в Т-образных капсулах, светодиодам в радиальных капсулах, светодиодам с блоком питания, светодиодам с оболочкой и/или оптическим элементом (например, рассеивающей линзой) и т.д.

Термин «источник света» следует понимать как относящийся к какому-либо одному или нескольким различным источникам излучения, включая, но не ограничиваясь этим, СИД источники (в том числе один или несколько светодиодов в определенном выше значении), источники с лампами накаливания, люминесцентные источники, фосфоресцирующие источники, разрядные источники высокой интенсивности (например, с парами натрия, парами ртути, и металлогалогенными лампами), а также другие источники. Данный источник света может быть выполнен с возможностью генерирования электромагнитного излучения видимой части спектра, невидимой части спектра, или сочетания обеих. Таким образом, термины «свет» и «излучение» в данном документе взаимозаменяемы. Кроме того, источник света может включать в себя в качестве неотъемлемого компонента один или несколько фильтров (например, цветных фильтров), линз или других оптических компонентов. Кроме того, следует понимать, что источник света может быть выполнен с возможностью различных применений, включая, но не ограничиваясь этим, функцией указания, отображения и/или освещения. «Источник освещения» представляет собой источник света, который выполнен, в частности, с возможностью генерирования излучения с интенсивностью, достаточной для эффективного освещения внутренних или внешних пространств. В этом контексте «достаточная интенсивность» означает достаточную мощность излучения в видимой области спектра, созданного в пространстве или среде (единица «люмен» часто используется для обозначения общего светового потока от источника света во всех направлениях, по отношению к мощности потока излучения или светового потока) для обеспечения окружающего освещения.

Термин «спектр» следует понимать как относящийся к какой-либо одной или нескольким частотам (или длинам волн) излучения, созданным одним или несколькими источниками света. Таким образом, термин «спектр» относится к частотам (или длинам волн) не только видимого диапазона, но также и частотам (или длинам волн) инфракрасной, ультрафиолетовой и других областей общего электромагнитного спектра. Кроме того, данный спектр может иметь сравнительно узкую полосу пропускания (например, ПШПВ, где, по существу, мало компонентов частоты или длины волны) или относительно широкую полосу пропускания (несколько частот или компонентов длины волны, имеющих различную относительную интенсивность). Следует также учитывать, что данный спектр может быть результатом смешения двух или нескольких различных спектров (например, при смешивании излучения, испускаемого соответственно несколькими источниками света).

В целях раскрытия настоящего изобретения, термин «цвет» используются взаимозаменяемо с термином «спектр». Тем не менее, термин «цвет», как правило, используется для обозначения в первую очередь свойства излучения, которое воспринимается наблюдателем (хотя такое использование и не имеет целью ограничить сферу применения этого термина). Таким образом, термины «разных цветов» косвенно относятся к множеству спектров с компонентами другой длины волны и/или шириной полосы. Понятно также, что термин «цвет» может быть использован по отношению как к белому, так и небелому свету.

Термин «цветная температура», как правило, используется здесь по отношению к белому свету, хотя такое использование и не имеет целью ограничить сферу применения этого термина. Цветная температура по существу относится к конкретному содержанию цвета или оттенку (например, красноватому, голубоватому) белого света. Цветная температура данного образца излучения обычно описывается в зависимости от температуры в градусах Кельвина (К) черного излучающего тела, которое излучает по существу тот же спектр, что и рассматриваемый образец излучения. Цветная температура абсолютно черного излучающего тела обычно лежит в диапазоне от приблизительно 700 градусов К (обычно считается, что начиная именно с такого диапазона свет становится видимым для человеческого глаза) до более 10000 К; белый свет, как правило, воспринимается при цветной температуре свыше 1500-2000 К.

Более низкие цветные температуры обычно указывают на белый свет с более значительным компонентом красного или «теплого цвета», более высокие цветовые температуры обычно указывают на белый свет с более значительным компонентом синего или «холодного цвета». К примеру, пламя имеет цветовую температуру приблизительно 1800 К, обычная лампа накаливания имеет цветовую температуру приблизительно 2848 градусов K, дневной свет рано утром имеет цветовую температуру приблизительно 3000 К, а небо в пасмурный полдень имеет цветовую температуру приблизительно 10000 К. Цветное изображение, рассматриваемое при белом свете с цветовой температурой приблизительно 3000 градусов по Кельвину, имеет относительно красноватый оттенок, в то время как то же самое изображение, рассматриваемое при белом свете с цветовой температурой приблизительно 10 тысяч градусов по Кельвину, имеет относительно голубоватые тона.

Термин «осветительный прибор» применяется здесь для обозначения варианта осуществления или компоновки одного или нескольких осветительных устройств в той или иной форме, узле, или капсуле. Термин «осветительное устройство» применяется здесь для обозначения устройства, включающего один или несколько источников света одного или различных типов. Данное осветительное устройство может иметь один из множества вариантов механизмов крепления для источника (источников) света, кожуха/корпуса и форм, и/или электрической и механической компоновок соединения. Кроме того, данное осветительное устройство, возможно, может быть связано (например, включать в себя, быть соединенным и/или капсулированным вместе) с другими компонентами (например, схемами управления), относящимися к эксплуатации источника (источников) света. «СИД осветительное устройство» относится к осветительному устройству, которое включает в себя один или несколько СИД источников света, как отмечалось выше, отдельно или в сочетании с другими не СИД источниками света. «Многоканальное» осветительное устройство относится к СИД или не СИД осветительному устройству, которое включает в себя, по меньшей мере, два источника света, выполненных с возможностью генерирования соответственно различных спектров излучения, в котором каждый спектр источника может рассматриваться как «канал» многоканального осветительного устройства.

Термин «контроллер» применяется здесь в целом для описания различных устройств, связанных с эксплуатацией одного или нескольких источников света. Применение контроллера для выполнения различных обсуждаемых здесь функций может быть реализовано различными способами (например, путем установки специального аппаратного обеспечения). Одним из примеров контроллера является «процессор», в котором используется один или несколько микропроцессоров, запрограммированных с помощью программного обеспечения (например, микрокода) для выполнения различных функций, обсуждаемых в настоящем документе. Контроллер может быть выполнен с использованием процессора или без него, а также может быть реализован в виде сочетания специального аппаратного обеспечения для выполнения некоторых функций и процессора (например, одного или нескольких запрограммированных микропроцессоров и соответствующих схем) для выполнения других функций. Примеры компонентов контроллера, которые могут быть использованы в различных вариантах осуществления настоящего изобретения, включают в себя, но не ограничиваются этим, обычные микропроцессоры, специализированные интегральные схемы (ASIC), и матрицы логических элементов с эксплуатационным программированием (FPGA).

В различных вариантах осуществления, процессор или контроллер может быть связан с одним или несколькими носителями (обычно именуемыми «памятью», например, энергозависимыми и энергонезависимыми устройствами памяти компьютера, такими как ОЗУ, ППЗУ, ЭППЗУ и ЭСППЗУ, дискетами, компакт-дисками, оптическими дисками, магнитными лентами и т.д.). В некоторых вариантах осуществления, на носителе может быть установлена одна или несколько программ, которые при исполнении на одном или нескольких процессорах и/или контроллерах, выполняют, по меньшей мере, некоторые из рассматриваемых здесь функций. Различные носители могут быть встроены в процессор или контроллер или могут быть переносными, так, что одна или несколько хранящихся на них программ могут быть загружены в процессор или контроллер для осуществления различных рассматриваемых здесь вариантов настоящего изобретения. Термины «программа» или «компьютерная программа» используются здесь в широком смысле для обозначения любого типа компьютерного кода (например, программного обеспечения или микрокода), которые могут быть использованы для программирования одного или нескольких процессоров или контроллеров.

Термин «адресуемый» применяется здесь для обозначения устройства (например, источника света в целом, осветительного устройства или прибора, контроллера и процессора, связанного с одним или несколькими источниками света и осветительными устройствами, другими неосветительными устройствами и т.д.), которое выполнено с возможностью приема информации (например, данных) предназначенной для нескольких устройств, в том числе для самого этого устройства, и выборочного ответа на конкретную предназначенную для него информацию. Термин «адресуемый» часто используется в сетевой среде (или «сети», о чем пойдет речь ниже), в которой многочисленные устройства соединяются вместе через какое-либо средство (или средства) коммуникации.

В одном варианте осуществления сети, одно или несколько подключенных к сети устройств могут служить контроллером для одного или нескольких других подключенных к сети устройств (например, отношение типа «главный - подчиненный»). В другом варианте осуществления, сетевая среда может включать в себя один или несколько выделенных контроллеров, которые выполнены с возможностью управления одним или несколькими подключенными к сети устройствами. Как правило, каждое из многочисленных подключенных к сети устройств может иметь доступ к данным, которые присутствуют в средстве или средствах коммуникации, однако, данное устройство может быть «адресуемым», поскольку выполнено с возможностью выборочного обмена данными с (т.е. приема данных и/или передачи данных) сетью, на основе, например, одного или нескольких конкретных идентификаторов (например, «адресов»), выделенных для выполнения данной задачи.

Под используемым здесь термином «сеть» понимается любое объединение двух или нескольких устройств (в том числе контроллеров или процессоров), которые облегчают передачу информации (например, для устройств управления, хранения данных, обмена данными и т.д.) между любыми двумя или несколькими устройствами и/или между несколькими устройствами, подключенными к сети. Легко понятно также, что различные варианты осуществления сетей, подходящих для подключения нескольких устройств, могут включать в себя любую из различных сетевых топологий и использовать любой из различных коммуникационных протоколов. Кроме того, согласно настоящему изобретению, в различных сетях любое соединение между двумя устройствами может представлять собой как выделенное соединение между двумя системами, так и невыделенное соединение. В дополнение к передаче предназначенной для двух устройств информации, невыделенное соединение может нести информацию, не обязательно предназначенную для одного из двух устройств (например, при открытом сетевом соединении). Кроме того, легко понятно также, что в различных обсуждаемых здесь сетях устройств могут использоваться одно или несколько беспроводных, проводных, кабельных и/или волоконно-оптических соединений для содействия передаче информации по всей сети.

Используемый здесь термин «пользовательский интерфейс» относится к интерфейсу между пользователем или оператором и одним или несколькими устройствами, который обеспечивает связь между пользователем и устройством (устройствами). Примеры пользовательских интерфейсов, которые могут быть использованы в различных вариантах осуществления настоящего изобретения, включают в себя, но не ограничиваются этим, переключатели, потенциометры, кнопки, наборные диски, слайдеры, мыши, клавиатуры, клавишные панели, различные типы игровых контроллеров (например, джойстики), шаровые манипуляторы, экраны дисплеев, различные типы графических пользовательских интерфейсов (GUI), сенсорные экраны, микрофоны и другие типы датчиков, которые могут воспринимать создаваемую в той или иной форме человеком команду и генерировать в ответ на нее сигнал.

Понятно, что явно использованная здесь терминология, которая может также появиться в любом включенном ниже путем ссылки документе, должно придаваться значение, в наибольшей степени согласующееся с раскрываемой здесь конкретной идеей изобретения.

Краткое описание чертежей

На чертежах одинаковые ссылочные позиции обычно относятся к одной детали на протяжении всех видов. Кроме того, чертежи не обязательно представлены в больших масштабах, а в целом акцент делается на иллюстрирующие принципы раскрываемой здесь технологии и смежных идей изобретения.

Фиг. 1 - схема, на которой показано управляемое СИД осветительное устройство, пригодное для использования в описываемых здесь архитектурных светильниках;

Фиг. 2 - схема, на которой показана сетевая система СИД осветительного устройства, представленная на Фиг. 1;

На Фиг. 3А-3G показаны различные виды, причем некоторые из них представляют собой частичные виды архитектурных светильников в соответствии с некоторыми вариантами осуществления изобретения;

На Фиг. 4A-4B представлены корпус источника питания и схемы управления архитектурного светильника, показанных на Фиг. 3А-3G в соответствии с различными вариантами осуществления изобретения;

На Фиг. 5A-5E представлен оптический рефлектор, пригодный для использования в архитектурных светильниках, показанных на Фиг. 3А-3G;

На Фиг. 6A-6C представлен способ установки оптического рефлектора, показанного на Фиг. 5A-5E в архитектурный светильник, показанный на Фиг. 3А-3G, а также

На Фиг. 7 показан архитектурный светильник в соответствии с альтернативными вариантами осуществления настоящей технологии.

Подробное описание

Ниже описаны различные варианты осуществления настоящего изобретения, в том числе некоторые варианты осуществления, связанные со световым проецированием, в частности, прожекторным освещением крупных объектов и сооружений и заливающим освещением архитектурных поверхностей. Однако понятно, что настоящее изобретение не ограничивается каким-либо конкретным способом осуществления, и что различные варианты осуществления, явным образом рассматриваемые в настоящем документе, приведены в первую очередь в целях иллюстрации. Например, различные обсуждаемые здесь концепции могут быть соответствующим образом применены во множестве светильников, имеющих различные формы и мощность светового потока и пригодных для внутреннего и/или внешнего освещения.

В целом, в некоторых вариантах, настоящее изобретение относится к системе освещения высокой выходной мощности, способной испускать узкий луч света на значительные расстояния к целевому объекту и пригодной для освещения больших архитектурных сооружений, таких как здания и мосты. Эти «дальнобойные» системы освещения включают в себя эффективные и компактные источники питания и компоненты управления, для обеспечения работы светодиодов высокой интенсивности и достижения огромного разнообразия широкомасштабных световых эффектов. На Фиг. 1 показан пример осветительного устройства 100, пригодного для использования в системах освещения в соответствии со многими вариантами осуществления настоящего изобретения. Некоторые общие примеры СИД осветительных устройств, аналогичных тем, что описаны ниже со ссылкой на Фиг. 1, можно найти, например, в патенте США № 6016038, выданном 18 января 2000г., озаглавленном «Многоцветное светодиодное осветительное устройство и способ освещения», и патенте США № 6211626, выданном 3 апреля 2001г., озаглавленном «Осветительные компоненты». В различных вариантах осуществления, осветительное устройство 100, показанное на Фиг. 1, может использоваться отдельно или совместно с другими подобными осветительными устройствами в системе осветительных устройств (например, как показано далее со ссылкой на Фиг. 2).

Как видно из Фиг. 1, во многих вариантах осуществления осветительное устройство 100 включает в себя один или несколько источников 104А, 104В, 104C и 104D света (обозначенных общей ссылочной позицией 104), в котором один или несколько источников света могут представлять собой СИД источник света, включающий в себя один или несколько светодиодов. Любые два или несколько источников света могут быть выполнены с возможностью генерирования излучения разных цветов (красного, зеленого, синего), и в этом отношении, как отмечалось выше, каждый из различных цветовых источников света создает свой спектр, образующий свой «канал» «многоканального» осветительного устройства. Хотя на Фиг. 1 показаны четыре источника света - 104А, 104В, 104C и 104D, понятно, что осветительное устройство не ограничено в этом отношении, поскольку в осветительном устройстве 100, как показано далее, может быть использовано разное количество и различные типы источников света (все СИД источники света, сочетания СИД и не СИД источников света и т.д.), выполненных с возможностью генерирования излучения различных цветов, в том числе, по существу, белого света.

Как показано далее на Фиг. 1, осветительное устройство 100 также может включать в себя контроллер 105, который выполнен с возможностью генерирования одного или нескольких сигналов управления источниками света, а также генерирования света различной интенсивности от источников света. Например, в одном варианте осуществления, контроллер может быть выполнен с возможностью подачи, по меньшей мере, одного управляющего сигнала на каждый источник света, для отдельного управления интенсивностью света (например, мощностью излучения в люменах) генерированного каждым источником света, в качестве альтернативного варианта, контроллер может быть выполнен с возможностью подачи одного или нескольких управляющих сигналов для коллективного идентичного управления группой из двух или нескольких источников света. Некоторые примеры управляющих сигналов, которые могут быть генерированы контроллером для управления источниками света, включают в себя, но не ограничиваются этим, импульсно-модулированные сигналы, сигналы широтно-импульсной модуляции (PWM), сигналы амплитудно - импульсной модуляции (РАМ), сигналы с импульсно-кодовой модуляцией (PCM), аналоговые управляющие сигналы (например, управляющие сигналы тока, управляющие сигналы напряжения, сочетания и/или модуляции вышеуказанных сигналов, или других управляющих сигналов. В одном варианте, особенно по отношению к СИД источникам, одна или несколько технологий модуляции обеспечивают переменное управление с использованием постоянного уровня тока, подаваемого на один или несколько светодиодов, с тем, чтобы снизить уровень потенциальных нежелательных или непредсказуемых колебаний мощности светодиода, которые могут возникнуть при подаче на светодиод переменных значений тока возбуждения. В другом варианте, контроллер 105 может управлять другими специализированными схемами (не показано на Фиг. 1), которые, в свою очередь, управляют источниками света таким образом, чтобы их интенсивность менялась.

В целом, интенсивность (мощность потока излучения) излучения, генерируемого одним или несколькими источниками света, пропорциональна средней мощности, поданной на источник (источники) света в течение заданного периода времени. Таким образом, одна технология изменения интенсивности излучения, генерируемого одним или несколькими источниками света, включает в себя модуляцию мощности (например, рабочей мощности), подаваемой на источник (источники) света. Для некоторых типов источников света, в том числе СИД источников, это может быть эффективно выполнено при использовании технологии широтно-импульсной модуляции (PWM).

В одном из показательных вариантов осуществления технологии широтно-импульсной модуляции (PWM), для каждого канала осветительного устройства на данный источник света, образующий канал, периодически подается фиксированное заданное напряжение Vисточника. Подача напряжения Vисточника может осуществляться через один или несколько переключателей (не показано), управляемых контроллером 105. При подаче напряжения Vисточника на источник света, заданный фиксированный ток Iисточника (например, определяемый регулятором тока, также не показанным на Фиг. 1) пропускается через источник света. Опять же, вспомним, что СИД источник света может включать в себя один или несколько светодиодов, таким образом, напряжение Vисточника может подаваться на группу светодиодов, составляющих источник, а ток Iисточника может пропускаться через группу светодиодов. Фиксированное напряжение Vисточника, будучи поданным на источник света, и регулируемый ток Iисточника при пропускании через источник света, определяют величину мгновенной рабочей мощности источника Pисточника света (Pисточника=Vисточника∙Iисточника). Как уже упоминалось выше, для СИД источников света использование регулируемого тока снижает потенциальные нежелательные или непредсказуемые колебания мощности светодиода, которые могут возникнуть при подаче на светодиод переменных значений тока возбуждения.

В соответствии с технологией PWM, периодически подавая напряжение Vисточника на источник света и варьируя время, в течение которого подается напряжение при данном цикле включения-выключения, можно модулировать среднюю мощность, подаваемую на источник света за определенный период времени (среднюю рабочую мощность). В частности, контроллер 105 может быть выполнен с возможностью подачи напряжения Vисточника на данный источник света в импульсном режиме (например, выдавая управляющий сигнал, приводящий в действие один или несколько переключателей, на подачу напряжения на источник света), предпочтительно на частоте, которая больше той, что может быть воспринята человеческим глазом (например, больше приблизительно 100 Гц). Таким образом, человек, наблюдающий за светом, генерируемым источником света, не воспринимает дискретных циклов включения-выключения (как правило, называемых «эффектом мерцания»), вместо этого интегрирующая функция глаз воспринимает по существу непрерывную генерацию света. Регулируя длительность импульса (т.е. «продолжительность импульса», или «скважность») циклов включения-выключения управляющего сигнала, контроллер меняет среднее количество времени, в течение которого источник света находится под напряжением в любой данный период времени, и, следовательно, меняет среднюю рабочую мощность источника света. Таким образом, воспринимаемая яркость генерируемого света с каждого канала, в свою очередь, может быть изменена.

Как отмечается более подробно ниже, контроллер 105 может быть выполнен с возможностью управления каждым отдельным каналом источника света многоканального осветительного устройства на заданной средней рабочей мощности, чтобы обеспечить соответствующую мощность излучения света, генерируемого каждым каналом. Кроме того, контроллер может принимать инструкции (например, «команды управления освещением») от различных источников, таких как пользовательский интерфейс 118, источник 124 сигнала, либо один или несколько коммуникационных портов 120, которые определяют предписанную рабочую мощность для одного или нескольких каналов и, следовательно, соответствующую мощность излучения света, генерируемого соответствующими каналами. При изменении соответствующей рабочей мощности одного или нескольких каналов (например, в соответствии с ра