Способ засыпки продольного участка контактной трубы

Изобретение касается способа засыпки продольного участка контактной трубы единообразной частью твердого слоя катализатора. Способ засыпки продольного участка контактной трубы единообразной частью твердого слоя катализатора, активная масса которого представляет собой, по меньшей мере, один мультиэлементный оксид, который содержит a) элементы Мо, Fe и Bi, или b) элементы Мо и V, или c) элемент V, а также дополнительно Р и/или Sb, или активная масса которого содержит элементарное серебро на оксидном изделии-носителе, и который состоит из одного единственного сорта Si или из гомогенизированной смеси нескольких отличных друг от друга сортов Si каталитически активных формованных изделий определенной геометрической формы или каталитически активных формованных изделий и инертных формованных изделий определенной геометрической формы, причем медиана максимальных продольных размеров LSi изделий определенной геометрической формы сорта Si характеризуется значением DSi, по меньшей мере, в пределах одного сорта Si формованных изделий определенной геометрической формы выполняется следующий комплекс условий М, что от 40 до 70% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер LSi, для которого справедливо неравенство 0,98·DSi≤LSi≤1,02·DSi, по меньшей мере, 10% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер LSi, для которого справедливо неравенство 0,94·DSi≤LSi<0,98·DSi, по меньшей мере, 10% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер LSi, для которого справедливо неравенство 1,02·DSi<LSi≤1,10·DSi, менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер LSi, для которого справедливо неравенство 0,94·DSi>LSi, и менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер LSi, для которого справедливо неравенство 1,10·DSi<LSi, причем сумма всех формованных изделий определенной геометрической формы, принадлежащих к Si, составляет 100%. Описаны также способ загрузки контактной трубы твердым слоем катализатора, кожухотрубный реактор, способ частичного окисления органического соединения и способ синтеза отдельных органических соединений. Технический результат - повышение селективности формирования итогового продукта синтеза. 5 н. и 12 з.п. ф-лы, 3 пр.

Реферат

Настоящее изобретение касается способа засыпки продольного участка контактной трубы единообразной частью твердого слоя катализатора, активная масса которого представляет собой, по меньшей мере, один мультиэлементный оксид, который содержит

a) элементы Мо, Fe и Bi, или

b) элементы Мо и V, или

c) элемент V, а также дополнительно Р и/или Sb,

или активная масса которого содержит элементарное серебро на оксидном изделии-носителе, и который состоит из одного единственного (предпочтительно гомогенизированного) сорта Si или из гомогенизированной смеси нескольких отличных друг от друга сортов Si каталитически активных формованных изделий определенной геометрической формы или каталитически активных формованных изделий и инертных формованных изделий определенной геометрической формы, причем медиана максимальных продольных размеров L S i изделий определенной геометрической формы сорта Si характеризуется значением D S i .

Проведение реакций частичного окисления в газовой фазе на твердом слое катализатора, находящемся в расположенных по большей части вертикально трубах (так называемых контактных трубах) кожухотрубных реакторов (реакторов, внутри реакционной емкости которых находится пучок труб), общеизвестно.

Под полным окислением органического соединения молекулярным кислородом в настоящем тексте подразумевают, что органическое соединение под воздействием реакции с молекулярным кислородом преобразуется так, что весь содержащийся в органическом соединении углерод превращается в оксиды углерода, а весь содержащийся в органическом соединении водород преобразуется в оксиды водорода. Все отличающиеся от этого экзотермические преобразования органического соединения под воздействием реакции с молекулярным кислородом здесь совокупно называют частичным окислением органического соединения.

В частности, под вариантами частичного окисления в настоящей публикации следует понимать такие экзотермические преобразования органических соединений под воздействием реакции с молекулярным кислородом, при которых подлежащее частичному окислению органическое соединение по окончании преобразования содержит, по меньшей мере, на один химически связанный атом кислорода больше, чем до проведения частичного окисления.

Необходимые для вышеописанного частичного окисления в газовой фазе с гетерогенным катализом кожухотрубные реакторы также известны (ср., например, немецкую заявку DE-A 4431949, европейскую заявку ЕР-А 700714).

При этих реакциях реакционную газовую смесь направляют в твердый слой катализатора, находящийся в контактных трубах кожухотрубного реактора, а во время пребывания реагентов на поверхности катализатора происходит их реакция.

Температуру реакции в контактных трубах регулируют, в т.ч. обеспечивая в целях отведения энергии из реакционной системы циркуляцию текучего теплоносителя (агента теплообмена) вокруг расположенных в емкости контактных труб пучка. При этом перемещение теплоносителя и реакционной газовой смеси по кожухотрубному реактору может иметь место как в одинаковом направление потоков, так и в противотоке.

При этом, помимо варианта с направлением агента теплообмена в основном непосредственно вдоль контактных труб, эту продольную циркуляцию можно осуществлять, ограничиваясь лишь реакционной емкостью целиком, а в пределах реакционной емкости наложить на это продольное течение второе, поперечное, течение с помощью охватывающих (направляющих) дисков, оставляющих свободные протоки определенного сечения и расположенных последовательно на протяжении контактных труб, так что в результате в продольном сечении пучка труб получают траекторию потока агента теплообмена, напоминающую меандры (немецкие и европейские заявки и публикации DE-A 4431949, ЕР-А 700714, DE-PS 2830765, DE-A 2201528, DE-A 2231557, а также DE-A 2310517).

При необходимости вдоль отличающихся друг от друга продольных участков труб можно обеспечивать циркуляцию вокруг контактных труб в основном разделенных теплоносителей.

Участок трубы, на который распространяется данный теплоноситель, обычно представляет собой отдельную реакционную зону. Предпочтительно применяемый вариант такого многозонного кожухотрубного реактора - это двухзонный кожухотрубный реактор, который описан, например, в немецких заявках DE-C 2830765, DE-C 2513405, патенте США US 3,147,084, немецких и европейских заявках DE-A 2201528, ЕР-А 383224 и DE-A 2903582.

В качестве агентов теплообмена можно применять, например, расплавы солей, как то: нитрата калия, нитрита калия, нитрита натрия и/или нитрата натрия, легкоплавких металлов, как то: натрия, ртути, а также сплавов различных металлов, ионные жидкости (в которых, по крайней мере, один из противоположно заряженных ионов содержит, по меньшей мере, один атом углерода), но также и обычные жидкости, как, например, воду или органические растворители с высокой температурой кипения (например, смеси Diphyl® и диметилфталата).

Обычно контактные трубы изготовлены из ферритной стали или из нержавеющей стали, а толщина их стенок часто составляет несколько миллиметров, например, 1-3 мм. По большей части внутренний диаметр труб составляет несколько сантиметров, например 10-50 мм, нередко 20-30 мм. В длину трубы в норме простираются на несколько метров (обычно длина контактной трубы находится в пределах 1-8 м, нередко 2-6 м, во многих случаях 2-4 м). С технической точки зрения целесообразно, чтобы количество контактных труб (рабочих труб), размещенных в емкости, составляло, по меньшей мере, 1000, нередко, по меньшей мере, 3000 или 5000, а во многих случаях - по меньшей мере, 10000. Нередко количество контактных труб, размещенных в реакционной емкости, достигает 15000-30000 или до 40000. Кожухотрубные реакторы с количеством контактных труб, превышающим 50000, составляют скорее исключение. В пределах емкости контактные трубы обычно распределены равномерно, причем распределение целесообразно выбирать так, чтобы расстояние между центральными осями ближайших друг к другу контактных труб (так называемое разделение контактных труб) составляло от 25 до 55, нередко от 35 до 45 мм (ср., например, европейскую заявку ЕР-В 468290).

Обычно, по меньшей мере, часть контактных труб (рабочие трубы) кожухотрубного реактора изготавливают в рамках возможностей производства одинаковыми, а с точки зрения техники применения целесообразно, чтобы одинаковы были все. Т.е. их внутренний диаметр, толщина стенки и длины труб должны быть идентичны в рамках малых допусков (ср. международную заявку WO 03/059857).

Нередко подобные же требования предъявляют и к заполнению таких единообразных контактных труб формованными изделиями с каталитической активностью (ср., например, международную заявку WO 03/057653), чтобы обеспечить беспрепятственную работу кожухотрубного реактора в оптимальном режиме. В частности, для обеспечения оптимального выхода и селективности реакций, проходящих в кожухотрубном реакторе, существенно, чтобы рабочие трубы реактора (предпочтительно все) были по возможности одинаково заполнены, т.е. загружены твердым слоем катализатора.

Рабочие трубы обычно отличают от термотруб, что изложено, например, в европейской заявке ЕР-А 873783. В то время как рабочие трубы представляют собой те контактные трубы, в которых и проходит собственно подлежащая проведению химическая реакция, термотрубы служат в первую очередь цели отслеживания и регулировки температуры реакции в контактных трубах. Для этого внутри термотруб (по центру, продольно) в дополнение к твердому слою катализатора обычно располагается термометрическая гильза (втулка), в которой находится только термометрический датчик. Количество термотруб в кожухотрубном реакторе обычно значительно меньше, чем количество рабочих труб. Обычно количество термотруб не превышает 20.

В качестве примеров реакций частичного окисления органических соединений с гетерогенным катализом можно назвать преобразование пропена в акролеин и/или акриловую кислоту (ср., например, немецкую заявку DE-A 2351151), преобразование трет-бутанола, изобутена, изобутана, изобутирового альдегида или метилового эфира трет-бутанола в метакролеин и/или метакриловую кислоту (ср., например, немецкую заявку DE-A 2526238, европейские заявки ЕР-А 92097, ЕР-А 58927, немецкие заявки DE-A 4132263, DE-A 4132684 и DE-A 4022212), преобразование акролеина в акриловую кислоту, метакролеина - в метакриловую кислоту (ср., например, немецкую заявку DE-A 2526238), преобразование орто-ксилола или нафталина в ангидрид фталевой кислоты (ср., например, европейскую заявку ЕР-А 522871) или соответствующих кислот, а также преобразование бутадиена в ангидрид малеиновой кислоты (ср., например, немецкие заявки DE-A 2106796 и DE-А 1624921), преобразование н-бутана в ангидрид малеиновой кислоты (ср., например, британские заявки GB-A 1464198 и GB-A 1291354), преобразование инданов, например, в антрахинон (ср., например, немецкую заявку DE-A 2025430), преобразование этилена в этиленоксид или пропилена - в пропиленоксид (ср., например, немецкие заявки DE-AS 1254137, DE-A 2159346, европейскую заявку ЕР-А 372972, международную заявку WO 89/07101, немецкую заявку DE-A 4311), преобразование пропилена и/или акролеина в акрилонитрил (ср., например, немецкую заявку DE-A 2351151), преобразование изобутена и/или метакролеина в метакрилонитрил (т.е. в настоящем тексте понятие частичного окисления включает в себя также и частичное аммоксидирование, т.е. частичное окисление в присутствии аммиака), окислительное дегидрирование углеводородов (ср., например, немецкую заявку DE-A 2351151), преобразование пропана в акрилонитрил или в акролеин и/или акриловую кислоту (ср., например, немецкую заявку DE-А 10131297, европейские заявки ЕР-А 1090684, ЕР-А 608838, немецкую заявку DE-A 10046672, европейскую заявку ЕР-А 529853, международную заявку WO 01/96270 и немецкую заявку DE-А 1000228582) и т.д.

Активные массы катализаторов, подлежащих применению в экзотермическом частичном окислении органических соединений в газовой фазе с гетерогенным катализом, обычно представляют собой, по меньшей мере, один мультиэлементный оксид, содержащий

a) элементы Мо, Fe и Bi, или

b) элементы Мо и V, или

c) элемент V, а также дополнительно Р и/или Sb,

или системы, содержащие элементарное серебро на оксидном носителе.

Для создания твердого слоя катализатора в трубах кожухотрубного реактора (заполнения контактных труб твердым слоем катализатора) эти активные массы применяют после формования в формованные изделия различной геометрической формы (так называемые геометрические формованные изделия с каталитической активностью). В качестве примеров таких формованных изделий определенной геометрической формы можно назвать шары, таблетки, полоски, кольца, спирали, пирамиды, цилиндры, призмы, параллелепипеды, кубы и т.д.

При этом в простейшем случае формованное изделие определенной геометрической формы может состоять только из каталитически активной массы, которую при необходимости можно разбавить инертным материалом. Такие каталитически активные формованные изделия определенной геометрической формы обычно называют сплошными катализаторами.

В случае сплошных катализаторов определенную геометрическую форму можно придавать, например, прессовкой каталитически активной порошковой массы (например, порошкообразной мультиэлементной оксидной активной массы) в желательную форму (например, таблетированием, спеканием, экструзией или ленточным прессованием). При этом можно добавлять вспомогательные агенты формообразования. В качестве альтернативы можно прессовать с образованием желательной геометрической формы порошкообразную массу-предшественник, а полученные формованные изделия преобразовывать в каталитически активные формованные изделия из мультиэлементных оксидов путем термической обработки (при необходимости - в атмосфере, содержащей молекулярный кислород, ср., например, патент США US 2005/0263926).

Разумеется, возможно также осуществлять формообразование, покрывая активной массой формованное изделие определенной геометрической формы, изготовленное из материала, не обладающего каталитической активностью (инертного материала); такие изделия ниже называют "формованными изделиями-носителями" или кратко "изделиями-носителями". В качестве альтернативы можно также проводить покрытие массой-предшественником и осуществлять преобразование в активный катализатор путем последующей термической обработки (при необходимости в атмосфере, содержащей молекулярный кислород). Простой способ покрытия состоит, например, в том, что поверхность инертного изделия-носителя увлажняют жидким связывающим агентом, а затем обеспечивают сцепление с увлажненной поверхностью порошкообразной активной массы или порошкообразной массы-предшественника. Катализаторы, получаемые таким образом, называют оболочечными катализаторами.

Инертные изделия-носители, пригодные для многих процессов частичного окисления в газовой фазе с гетерогенным катализом, - это пористые или не имеющие пор оксиды алюминия, оксид кремния, диоксид тория, оксид циркония, карбид кремния или силикаты, как, например, силикат магния или алюминия (например, Steatit С 220 производства фирмы CeramTec), но также и металлы, как, например, нержавеющая сталь или алюминий (ср., например, патент США US 2006/0205978).

Вместо того чтобы покрывать инертные ("инертный", как правило, означает, что если реакционную газовую смесь в условиях реакции проводят через контактную трубу, засыпанную только инертными изделиями-носителями, то конверсия реагентов составляет не более 5% мол., в большинстве случаев - не более 2% мол.) изделия-носители порошкообразной активной массой или порошкообразной массой-предшественником, во многих случаях изделия-носители можно пропитывать раствором каталитически активного вещества или раствором вещества-предшественника, а затем испарять растворитель, после чего при необходимости проводить химическое восстановление и/или химическую обработку (при необходимости - в атмосфере, содержащей молекулярный кислород). Формованные изделия с каталитической активностью определенной геометрической формы, получаемые таким образом, обычно называют катализаторами на носителях или пропитываемыми катализаторами.

Под наибольшим продольным размером L таких формованных изделий с каталитической активностью определенной геометрической формы (как и вообще формованных изделий определенной геометрической формы в настоящей публикации) подразумевают самый длинный отрезок прямой, соединяющий две точки, находящиеся на поверхности формованного изделия с каталитической активностью. Он составляет (в том числе и в случае инертных формованных изделий определенной геометрической формы) большей частью 1-20 мм, часто 2-15 мм, а во многих случаях от 3 либо 4 до 10 либо же до 8 или до 6 мм. Кроме того, в случае колец толщина стенки обычно составляет от 0,5 до 6 мм, нередко от 1 до 4 или же до 3 или до 2 мм.

Не во всех случаях частичного окисления в газовой фазе с гетерогенным катализом на твердом слое катализатора, находящемся в трубах кожухотрубного реактора, твердый слой катализатора состоит из единообразной на протяжении данной контактной трубы засыпки из одного единственного сорта формованных изделий с каталитической активностью определенной геометрической формы. Гораздо чаще твердый слой катализатора может на всем протяжении контактной трубы состоять и из гомогенизированной смеси нескольких (т.е., по меньшей мере, двух) отличных друг от друга сортов Si формованных изделий с каталитической активностью определенной геометрической формы или из формованных изделий с каталитической активностью определенной геометрической формы и инертных формованных изделий определенной геометрической формы (т.е. такая смесь может состоять, по меньшей мере, из двух отличных друг от друга сортов формованных изделий с каталитической активностью определенной геометрической формы, или из одного единственного сорта формованных изделий с каталитической активностью определенной геометрической формы и одного единственного сорта инертных формованных изделий определенной геометрической формы, или, по меньшей мере, из двух отличных друг от друга сортов формованных изделий с каталитической активностью и одного единственного сорта инертных формованных изделий определенной геометрической формы, или, по меньшей мере, из двух сортов отличных друг от друга формованных изделий с каталитической активностью определенной геометрической формы и, по меньшей мере, двух сортов отличных друг от друга инертных формованных изделий определенной геометрической формы). Возможные признаки, позволяющие отличить сорта Si друг от друга - это геометрические характеристики, вид активной массы, вид материала-носителя и т.д. В качестве материалов для изготовления инертных формованных изделий можно применять те же материалы, которые уже были рекомендованы для инертных формованных изделий-носителей в случае оболочечных катализаторов и которые в основном не участвуют в процессе частичного окисления в газовой фазе. В принципе, все инертные формованные изделия-носители можно также использовать и как инертные формованные изделия определенной геометрической формы для разведения формованных изделий с каталитической активностью определенной геометрической формы в твердом слое катализатора. Такое разбавление позволяет отрегулировать удельную объемную активность твердого слоя катализатора в соответствии с конкретным видом частичного окисления в газовой фазе с гетерогенным катализом.

При этом выражение "гомогенизированная смесь" означает, что были приняты меры, направленные на то, чтобы гомогенно перемешать друг с другом отличные друг от друга сорта формованных изделий (либо же изделия различных максимальных продольных размеров в пределах одного сорта). В идеальном случае при гомогенном смешивании добиваются статистического усреднения по всему продольному участку, причем в том числе и в отношении конкретного сорта.

Во многих случаях, однако, засыпка (заполнение) контактной трубы твердым слоем катализатора состоит и из нескольких продольных участков, отличных друг от друга и расположенных друг над другом (друг за другом); их именуют (продольными) участками твердого слоя катализатора или участками катализаторной засыпки. При этом каждый отдельный участок может быть организован по длине так, как это уже было изложено в отношении контактной трубы, единообразно загруженной по всей своей длине. При переходе от одного участка засыпки, единообразного как таковой, к следующему единообразному как таковому участку засыпки состав засыпки меняется скачкообразно. Таким образом, вдоль конкретной контактной трубы формируют засыпки твердого слоя катализатора, имеющие гетерогенную структуру. Используют также понятие структурированного заполнения (структурированной засыпки) контактных труб. В начале (при взгляде в направлении потока реакционного газа, протекающего по контактной трубе) и/или в конце контактной трубы твердый слой катализатора нередко завершают засыпкой, состоящей только из инертных формованных изделий определенной геометрической формы.

Примеры таких структурированных засыпок контактных труб описаны в числе прочего в таких публикациях, как патент США US 2006/0161019, европейских заявках ЕР-А 979813, ЕР-А 090744, ЕР-А 456837, ЕР-А 1106598, патентах США US 5,198,581 и US 4,203,903.

Как правило, засыпка контактной трубы структурированным твердым слоем катализатора организована так, что удельная объемная активность твердого слоя катализатора возрастает в направлении потока через этот слой. Считают, что удельная объемная активность единообразного как такового продольного участка засыпки твердого слоя катализатора в контактной трубе возрастает тогда, когда в случае сплошной засыпки контактной трубы, выполненной так же, как и на соответствующем продольном участке контактной трубы, получают повышенную конверсию исходных компонентов (относительно однократного прохождения реакционной смеси по контактной трубе) при в остальном идентичных условиях реакции (т.е. при идентичном составе реакционной газовой смеси, идентичной нагрузке засыпки твердого слоя катализатора реакционной газовой смесью, а также при идентичной температуре теплоносителя на входе и идентичных условиях его течения).

Под «нагрузкой твердого слоя катализатора, катализирующего этап реакции, реакционным газом или компонентом реакционного газа» при этом подразумевают количество реакционного газа в нормолитрах (=NI; объем в литрах, который соответствующее количество реакционного газа или компонента реакционного газа занимало бы при нормальных условиях, т.е. при 25°С и 1 бар), которое за один час проходит через один литр твердого слоя катализатора. При этом участки засыпки, состоящие только из инертного материала, не учитывают.

В соответствии с теорией нынешнего уровня техники, при частичном окислении органического соединения в газовой фазе с гетерогенным катализом геометрические параметры одного сорта формованных изделий с каталитической активностью определенной геометрической формы или одного сорта инертных формованных изделий, применяемых для засыпки продольного участка контактной трубы единообразным твердым слоем катализатора, должны быть по возможности единообразны в рамках конкретного сорта (ср. патент США US 2006/0205978 и международную заявку WO 2005/113123).

Собственные исследования, однако, показали, что определенным образом заданное разнообразие вышеуказанных параметров благоприятно влияет на селективность формирования конечного продукта.

Следовательно, настоящее изобретение предлагает способ засыпки продольного участка контактной трубы единообразной частью твердого слоя катализатора, активная масса которого представляет собой, по меньшей мере, один мультиэлементный оксид, который содержит

a) элементы Мо, Fe и Bi, или

b) элементы Мо и V, или

c) элемент V, а также дополнительно Р и/или Sb,

или активная масса которого содержит элементарное серебро на оксидном изделии-носителе, и который состоит из одного единственного (предпочтительно гомогенизированного как таковой, т.е. предпочтительно со статистическим распределением) сорта Si, или из гомогенизированной смеси нескольких отличных друг от друга сортов Si формованных изделий с каталитической активностью определенной геометрической формы или формованных изделий с каталитической активностью и инертных формованных изделий определенной геометрической формы, причем медиана максимальных продольных размеров L S i изделий определенной геометрической формы сорта Si характеризуется значением D S i , и данный способ отличается тем, что, по меньшей мере, в пределах одного сорта Si формованных изделий определенной геометрической формы выполняется следующий комплекс условий М, что

от 40 до 70% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,98 ⋅ D S i ≤ L S i ≤ 1,02 ⋅ D S i ,

по меньшей мере, 10% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i ≤ L S i < 0,98 ⋅ D S i ,

по меньшей мере, 10% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,02 ⋅ D S i < L S i ≤ 1,10 ⋅ D S i ,

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i , и

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Согласно изобретению предпочтительно, чтобы менее 3% общего количества формованных изделий, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i .

Сверх того, согласно изобретению предпочтительно, чтобы менее 3% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Согласно изобретению крайне предпочтительно, чтобы менее 1% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i .

Сверх того, согласно изобретению крайне предпочтительно, чтобы менее 1% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Целесообразно, чтобы вышеуказанные условия (комплексы условий) были выполнены для большинства, а особо целесообразно - для всех различных сортов Si в пределах участка твердого слоя катализатора.

Особо благоприятно, если способ согласно изобретению отличается тем, что, по меньшей мере, в пределах одного сорта Si формованных изделий определенной геометрической формы участка твердого слоя катализатора справедлив комплекс условий М*, что

от 50 до 60% (предпочтительно 55%) общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,98 ⋅ D S i ≤ L S i ≤ 1,02 ⋅ D S i ,

по меньшей мере, 15% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i ≤ L S i < 0,98 ⋅ D S i ,

по меньшей мере, 15% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,02 ⋅ D S i < L S i ≤ 1,10 ⋅ D S i ,

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i , и

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Согласно изобретению предпочтительно, чтобы в вышеуказанной схеме менее 3% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i .

Сверх того, согласно изобретению предпочтительно, чтобы в вышеуказанной схеме менее 3% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Согласно изобретению крайне предпочтительно, чтобы в вышеуказанной схеме менее 1% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i .

Сверх того, согласно изобретению целесообразно, чтобы в вышеуказанной схеме менее 1% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имели максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i < L S i .

Целесообразно, чтобы вышеуказанные условия схемы (комплексы условий) были выполнены для большинства, а особо целесообразно - для всех различных сортов Si в пределах участка твердого слоя катализатора.

Крайне благоприятно, если способ согласно изобретению отличается тем, что, по меньшей мере, в пределах одного сорта Si формованных изделий определенной геометрической формы участка твердого слоя катализатора справедлив комплекс условий М**, гласящий, что

от 50 до 60% (предпочтительно 55%) общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,98 ⋅ D S i ≤ L S i ≤ 1,02 ⋅ D S i ,

по меньшей мере, 20% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i ≤ L S i < 0,98 ⋅ D S i ,

по меньшей мере, 20% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,02 ⋅ D S i < L S i ≤ 1,10 ⋅ D S i ,

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 0,94 ⋅ D S i > L S i , и

менее 5% общего количества формованных изделий определенной геометрической формы, принадлежащих к Si, имеют максимальный продольный размер L S i , для которого справедливо неравенство 1,10 ⋅ D S i <