Способ получения керамики на основе алюмомагнезиальной шпинели
Изобретение относится к способам получения керамических материалов на основе двойных оксидов и может быть использовано в огнеупорной промышленности, металлургии, радиотехнике, энергетике и теплотехнике. Техническим результатом изобретения является повышение прочности на сжатие и изгиб и электросопротивления изделий. Способ получения керамики на основе алюмомагнезиальной шпинели включает смешивание порошков оксида алюминия и оксида магния в стехиометрическом соотношении, сушку, формование, обжиг при режимах, обеспечивающих шпинелеобразование. Причем после образования шпинели проводят ее измельчение, добавляют порошок наноразмерных фракций оксида магния и порошок оксида галлия, при следующем соотношении компонентов, мас.%: алюмомагнезиальная шпинель - 53,5-74,5; оксид магния - 25-45; оксид галлия - 0,5-1,5. Затем полученную массу одновременно сушат и гранулируют в потоке газа, после чего осуществляют повторное формование и отжиг, который проводят при температуре не более 1500°С. 3 з.п. ф-лы, 1 табл.
Реферат
Изобретение относится к способам получения керамических материалов на основе двойных оксидов и может быть использовано в огнеупорной промышленности, металлургии, радиотехнике, энергетике и теплотехнике.
Известен способ получения изделий из корундосодержащих материалов, включающий синтез алюмомагнезиальной шпинели путем измельчения стехиометрической смеси исходных оксидов алюминия и магния с последующим брикетированием и обжигом при 1250-1300°С. Смесь смешивают с огнеупорной глиной при содержании шпинели 30-70 мас.% в шаровой мельнице в течение 2 ч, при соотношении шаров и материала 2:1, затем в массу добавляют 25-30% воды для роспуска глины и оставляют вылеживаться не менее 1 суток. Полученную массу высушивают и просеивают через сито 063. Изделия формуют полусухим прессованием и обжигают при 1200-1300°С (Патент РФ №2100316, опуб. 27.12.97 г., МПК С04В 35/443, 33/00). Недостатком известного способа является высокая открытая пористость (25%) и низкая прочность на изгиб (35 МПа), а температурный интервал обжига изделий не позволяет использовать их при более высоких температурах, так как происходит структурная перестройка материала, приводящая к деградации эксплуатационных характеристик.
Известен способ получения керамики из алюмомагнезиальной шпинели, включающий приготовление шихты из порошков оксида магния и нитрида алюминия состава, масс.%: оксид магния - 32-35%; нитрид алюминия - 65-68% путем их смешения, ее помол, формование заготовок, их сушку и обжиг в кислородсодержащей атмосфере до прекращения изменения массы обжигаемых заготовок. Получают спеченную однофазную керамику из алюмомагнезиальной шпинели с тонкозернистой структурой и пределом прочности при сжатии 340-500 МПа (заявка 92015466/33 от 30.12.92 г., опуб. 09.06.95, МПК С04В 35/10). Недостатком способа является недостаточно высокая прочность.
Наиболее близким к заявляемому является способ изготовления изделий из корундовой керамики, включающий изготовление мелкодисперсной смеси, содержащей тальк и глиноземистый компонент, введение в состав шихты фракционированного корунда и временного связующего, формование, сушку, обжиг и охлаждение изделий. При изготовлении мелкодисперсной смеси в качестве глиноземсодержащего компонента используют глинозем, при следующем соотношении компонентов смеси, мас.%: тальк - 5-20, глинозем - 80-95 в качестве корунда-электрокорунд, при следующем соотношении компонентов шихты, мас.%: электрокорунд фр. 3,0-0,5 мм - 50-60, указанная мелкодисперсная смесь - 40-50 и в качестве связующего - лигносульфонат. Обжиг изделий осуществляют при температуре 1600±50°С с изотермической выдержкой в течение времени, необходимого для образования равновесного количества алюмомагнезиальной шпинели. (Патент РФ №2198860, опуб. 20.02.2003, МПК С04B 35/101). Недостатком способа является низкая прочность материала при сжатии (45-50 МПа). Этот недостаток связан с тем, что изделия изготавливают одностадийным способом, при котором происходит линейное и объемное расширение материала, обусловленное реакцией шпинелеобразования. Известно, что таким образом невозможно получить изделия на основе алюмомагнезиальной шпинели с нулевой открытой пористостью, плотностью, близкой к теоретической, и высоким уровнем прочности.
Задачей изобретения является получение высокоплотного керамического материала на основе алюмомагнезиальной шпинели с высокими физико-механическими и электроизоляционными характеристиками.
Поставленная задача и технический результат достигаются тем, что в способе получения керамики на основе алюмомагнезиальной шпинели, включающем смешивание порошков оксида алюминия и оксида магния в стехиометрическом соотношении, сушку, формование, обжиг при режимах, обеспечивающих шпинелеобразование, после образования шпинели проводят ее измельчение, добавляют порошки оксида магния и оксида галлия при следующем соотношении компонентов, мас.%:
алюмомагнезиальная шпинель - 53,5-74,5;
оксид магния - 25-45;
оксид галлия - 0,5-1,5,
при этом оксид магния используют в виде наноразмерных фракций, затем полученную массу одновременно сушат и гранулируют в потоке газа, после чего осуществляют повторное формование и отжиг, который проводят при температуре не более 1500°С.
Возможно использование оксида магния в виде наноразмерных порошков, фракций длиной от 1 мкм до 5 мкм и проведение сушки с гранулированием в распылительной сушилке, имеющей коническую рабочую камеру.
Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем. Двухстадийное получение керамического материала позволяет исключить объемное расширение заготовок при повторном обжиге, что исключает образование пористости и трещин, наноразмерный порошок оксида магния, а также модифицирующая добавка оксида галлия, добавляемые в алюмомагнезиальную шпинель, необходимы для активации процесса спекания. Сушка суспензии в распылительной сушилке обеспечивает гранулирование частиц порошка, что обеспечивает оптимальную укладку частиц на стадии формования и снижает упругое расширение прессовки. Снижение температуры обжига, в сравнении с прототипом, позволяет увеличить срок службы нагревательных элементов печного оборудования, что повышает экономический эффект технологического процесса.
На основании проведенных авторами многочисленных опытов и экспериментов было выявлено, что использование совокупности признаков, найденной и заявленной авторами, приводит к новому техническому результату, а именно получению плотного, прочного керамического материала на основе алюмомагнезиальной шпинели с высокими электроизоляционными свойствами.
Предлагаемый способ получения керамического материала на основе алюмомагнезиальной шпинели иллюстрируется следующим примером.
Пример
Для осуществления заявленного способа использовали глинозем марки Г-000 (ГОСТ 30558-98) и оксид магния марки «суперлегкий». Исходные порошки обжигали на воздухе: глинозем - при 1250°С в течение 5 часов, оксид магния - при 800°С в течение 1 часа. Затем исходные компоненты, взятые в следующих количествах, мас.%: оксид алюминия - 71,7%, оксид магния - 28,3%, смешивали в фарфоровом барабане валковой мельницы с использованием мелющих тел из оксида алюминия при соотношении материал:шары:вода=1:2:2 в течение 24 часов. Сушка шихты осуществлялась в сушильном шкафу при температуре 120°С. Затем полученную смесь формовали под давлением 40-50 МПа и обжигали при 1500°С в течение 2 часов. Спеченные брикеты дробились и просеивались через капроновое сито. Крупка измельчалась в среде спирта при соотношении материал:мелющие тела:спирт=1:2:1 в течение 24 часов. Затем в барабан мельницы добавлялся порошок оксида магния в количестве 40% мас. и порошок оксида галлия в количестве 0,5 мас.% и смешивание продолжалось при соотношении материал:мелющие тела:спирт=1:2:2 в течение 24 часов. Сушку спиртовой суспензии осуществляли в распылительной сушилке типа «Минор». Полученный порошок имел удельную поверхность 3,6 м2/г. Заготовки формовали методом холодного изостатического прессования усилием прессования - 100 МПа. Отжиг заготовок осуществлялся в вакууме при температуре 1500°C с выдержкой 0,5 часа.
Выход за пределы заявляемых качественных и количественных режимных характеристик не позволяет получить указанный технический результат, о чем свидетельствуют данные, представленные в таблице.
Таблица | |||||||
Материал | Температура спекания материала до 3,58 г/см3 | Прочность на изгиб, МПа Тсп=1500°С | Прочность на сжатие, МПа Тсп=1500°С | Электросопротивление ма-лов, спеченных при 1500°С, Ом·см | Микротвердость материалов, спеченных при 1500°С, кг/мм2 | ||
Содержание MgO в АМШ, % | Содержание Ga2O3, % | Удельная поверхность порошка MgO, м2/г | |||||
20 | 1 | 62 | 1600 | 200 | 490 | 3,5·1012 | 800 |
40 | 1 | 62 | 1500 | 360 | 850 | 7·10 14 | 1050 |
50 | 1 | 62 | 1500 | 350 | 830 | 2,7·1011 | 960 |
40 | 1 | 0,6 | 1650 | 80 | 150 | 1,2·1011 | 570 |
40 | 0 | 62 | 1550 | 220 | 600 | 9,5·1013 | 850 |
40 | 2 | 62 | 1550 | 340 | 820 | 2,1·1015 | 990 |
Анализ полученных результатов показывает, что полученный керамический материал обладает совокупностью более высоких, чем керамика по прототипу, значений характеристик.
1. Способ получения керамики на основе алюмомагнезиальной шпинели, включающий смешивание порошков оксида алюминия и оксида магния в стехиометрическом соотношении, сушку, формование, обжиг при режимах, обеспечивающих шпинелеобразование, отличающийся тем, что после образования шпинели проводят ее измельчение, добавляют порошки оксида магния и оксида галлия при следующем соотношении компонентов, мас.%:
алюмомагнезиальная шпинель | 53,5-74,5 |
оксид магния | 25-45 |
оксид галлия | 0,5-1,5, |
2. Способ по п.1, отличающийся тем, что оксид магния используют в виде наноразмерных порошков.
3. Способ по п.1, отличающийся тем, что оксид магния используют в виде фракций длиной от 1 мкм до 5 мкм.
4. Способ по п.1, отличающийся тем, что сушку с гранулированием проводят в распылительной сушилке, имеющей коническую рабочую камеру.