Способы имитации разрыва пласта-коллектора и его оценки и считываемый компьютером носитель
Иллюстрации
Показать всеГруппа изобретений относится к методологии сбора данных для оценки и анализа подземных ресурсов на пригодность хранения ценных флюидов или минералов. Изобретения содержат варианты способа имитации разрыва пласта-коллектора и носитель информации, считываемый компьютером. Обеспечивает повышение эффективности способа и надежности устройства. Сущность изобретения: в соответствии с изобретениями собирают данные, связанные со свойствами пласта-коллектора, а также свойствами разрыва в пласте-коллекторе. Эти данные затем используют в сочетании с корреляционной матрицей для определения параметров модификации модели пласта-коллектора. Обеспечивают возможность соответствия корреляционной матрицы эмпирическому функциональному соотношению между параметрами модификации и данными на основе множества экспериментальных разрывов, заданных в пласте-коллекторе. Эффекты разрыва затем эмулируют путем селективной модификации модели пласта-коллектора с использованием параметров модификации для генерирования модифицированной модели пласта-коллектора. Затем пласт-коллектор моделируют с разрывом, используя модифицированную модель пласта-коллектора для генерирования результата. 3 н. и 17 з.п. ф-лы, 13 ил.
Реферат
Перекрестная ссылка на родственную заявку
В настоящей заявке согласно 35 U.S.C. § 119(е) испрашивается приоритет по дате подачи заявки на патент США № 60/984,704 под названием "SYSTEM AND METHOD FOR PERFORMING OILFIELD OPERATIONS", поданной 1 ноября 2007 г., которая полностью включена в настоящее описание путем ссылки.
УРОВЕНЬ ТЕХНИКИ
Для обнаружения и добычи ценных скважинных флюидов обычно выполняют такие операции, как разведка, бурение, исследование на кабеле, заканчивание, добыча, планирование и анализ. Разведки геологических формаций часто выполняются с использованием методологий сбора данных, например с помощью сейсмических сканеров или приборов сейсморазведки для создания карт подземных формаций (например, пластов-коллекторов). Такие формации часто подвергают анализу, чтобы определить наличие подземных ресурсов, таких как ценные флюиды или минералы. Эта информация используется для получения доступа к подземным формациям и обнаружения формаций, содержащих желаемые подземные ресурсы. Эта информация также может использоваться для определения, имеют ли формации характеристики, пригодные для хранения флюидов. Данные, собранные по таким методологиям сбора данных, можно оценивать и анализировать для определения, присутствуют ли такие ценные ресурсы и насколько легко они доступны.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Одна примерная реализация имитации разрыва пласта-коллектора относится к способу оценки пласта-коллектора. Этот способ включает в себя получение данных, содержащих свойства пласта-коллектора и свойства разрыва пласта-коллектора. Параметры модификации модели пласта-коллектора определяют на основе данных, используя корреляционную матрицу, соответствующую эмпирическому функциональному отношению между параметрами модификации и данными, при этом корреляционную матрицу получают на основе множества экспериментальных разрывов, заданных в пласте-коллекторе. Эффекты разрыва эмулируются путем селективной модификации модели пласта-коллектора с использованием параметров модификации для генерирования модифицированной модели пласта-коллектора. Для генерирования результата пласт-коллектор моделируют с разрывом, используя модифицированную модель пласта-коллектора.
Другие аспекты имитации разрыва пласта-коллектора будут очевидны из нижеследующего описания и приложенной формулы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Описание нескольких вариантов осуществления имитации разрыва пласта-коллектора может содержать ссылки на варианты осуществления, которые проиллюстрированы на приложенных чертежах. Следует отметить, однако, что приложенные чертежи иллюстрируют только примерные варианты осуществления настоящего изобретения и, следовательно, они не должны рассматриваться как ограничивающие объем изобретения, поскольку имитация разрыва пласта-коллектора может допускать использование других, равно эффективных вариантов осуществления.
Фиг.1А-1D показывают примерные схематические виды нефтяного месторождения, имеющего подземные структуры, включающие в себя пласты-коллекторы, и различные операции, выполняемые на пластах-коллекторах.
Фиг.2А-2D - примерные графические изображения данных, собранных инструментами по фиг.1А-1D, соответственно.
Фиг.3 показывает примерный схематический вид, частично в поперечном сечении, нефтяного месторождения, имеющего множество инструментов сбора данных, расположенных в разных местоположениях вдоль нефтяного месторождения для сбора данных о подземной формации.
Фиг.4А-4С - схематические 3D виды статических моделей, основанных на данных собранных инструментами сбора данных по фиг.3.
Фиг.5 - графическое представление графика распределения вероятностей статических моделей по фиг.4.
Фиг.6-8 показывают блок-схемы последовательности операций способа, описывающие различные аспекты имитации разрыва пласта-коллектора.
Фиг.9 показывает 2D сечение скважины в соответствии с одной возможной реализацией имитации разрыва пласта-коллектора.
Фиг.10 показывает 3D сечение скважины в соответствии с другой возможной реализацией имитации разрыва пласта-коллектора.
Фиг.11А показывает имитацию грубого масштаба в соответствии с другой возможной реализацией имитации разрыва пласта-коллектора.
Фиг.11В показывает имитацию точного масштаба в соответствии с возможной реализацией имитации разрыва пласта-коллектора.
Фиг.12 показывает применение коэффициентов к ограничивающему прямоугольнику в соответствии с другой возможной реализацией имитации разрыва пласта-коллектора.
Фиг.13 показывает компьютерную систему в соответствии с одним или более вариантов осуществления изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
Примерные варианты осуществления имитации разрыва пласта-коллектора показаны на вышеобозначенных чертежах и подробно описаны ниже. В описании вариантов осуществления сходные или идентичные ссылочные позиции используются для обозначения общих или похожих элементов. Чертежи не обязательно выполнены в масштабе и некоторые признаки или некоторые виды на чертежах могут быть показаны в увеличенном масштабе или схематично в интересах ясности и краткости.
В общем, имитация разрыва пласта-коллектора направлена на имитацию разрыва в пласте-коллекторе. Имитации разрывов могут использоваться в различных моделях пласта-коллектора и могут повышать эффективность и точность таких моделей.
Фиг.1А-1D изображают упрощенные, репрезентативные, схематические виды нефтяного месторождения (100), имеющего подземную формацию (102), содержащую в себе пласт-коллектор (104), и изображающего различные операции, выполняемые на нефтяном месторождении (100). Фиг.1А изображает операцию разведки, выполняемую прибором разведки, таким как передвижная сейсмическая станция (106а) для измерения свойств подземной формации. Операция разведки является операцией сейсморазведки для создания звуковых колебаний (112). На фиг.1А одно такое звуковое колебание (112) генерируется источником (110) и отражается от множества горизонтов (114) в земной формации (116). Звуковое колебание (колебания) 112 принимается (принимаются) датчиками (S), такими как сейсмоприемники (118), расположенными на поверхности земли, а сейсмоприемники (118) создают электрические выходные сигналы, которые на фиг.1А обозначены как "принятые данные" (120).
В ответ на принятое звуковое колебание (колебания) (112), представляющее различные параметры (например, амплитуду и/или частоту) звукового колебания (колебания) (112), сейсмоприемники (118) создают электрические выходные сигналы, содержащие данные относительно подземной формации (102). Принятые данные (120) предоставляются как входные данные на компьютер (122а) в передвижную сейсмическую станцию (106а) и на основе этих входных данных компьютер (122а) генерирует выходную запись (124) сейсмических данных. Сейсмические данные могут храниться, передаваться или дополнительно обрабатываться, по необходимости, например, предварительной обработкой данных.
Фиг.1В изображает операцию бурения, выполняемую буровыми инструментами (106b), подвешенными буровой вышкой (128), и входящим в подземные формации (102) для формирования ствола (136) скважины. Для подачи бурового раствора в буровые инструменты (106b) по напорной линии (132) используют амбар (130) для бурового раствора для создания циркуляции бурового раствора через буровые инструменты (106b), вверх по стволу скважины и обратно на поверхность. Буровые инструменты (106b) подают в подземные формации (102) для достижения пласта-коллектора (104). Каждая скважина может иметь один или более пластов-коллекторов. Буровые инструменты (106b) предпочтительно выполнены с возможностью измерять свойства в скважинных условиях с использованием инструментов (106b) для каротажа во время бурения. Эти инструменты (106b) для каротажа во время бурения также могут быть выполнены с возможностью отбора образцов (133) керна, как показано, или с возможностью извлечения так, чтобы образцы (133) керна отбирались с использованием другого инструмента.
Для установления связи с буровыми инструментами (106b) и/или с удаленными операциями используется наземный блок (134). Наземный блок (134) выполнен с возможностью установления связи с буровыми инструментами (106b) для посылки команд на буровые инструменты (106b) и для приема от них данных. Наземный блок (134) предпочтительно снабжен компьютерными средствами для приема, хранения, обработки и/или анализа данных с нефтяного месторождения (100). Наземный блок (134) собирает данные, генерируемые во время операции бурения, и создает выходные данные (135), которые можно хранить или передавать. Компьютерные средства, например, имеющиеся в наземном блоке (134), могут располагаться в разных местоположениях, как на самом месторождении (100), так и в удаленных местоположениях.
Датчики (S), такие как средства измерения, могут быть расположены вокруг месторождения для сбора данных, относящихся к различным операциям на нефтяном месторождении, описанным выше. Как показано, датчик (S) расположен в одном или более местоположениях в буровых инструментах и/или на вышке для измерения параметров бурения, таких как вес на головке бура, крутящий момент на головке бура, давления, температуры, расходы, химические составы, частота вращения и/или другие рабочие параметры. Датчик (S) также может быть расположен в одном или более местоположениях в системе циркуляции.
Данные, собранные датчиками (S), для анализа или другой обработки можно собирать наземным блоком (134) и/или другими источниками сбора данных. Данные, собранные датчиками (S), можно использовать самостоятельно или в комбинации с другими данными. Данные можно собирать в одну или более базу данных и/или передавать все данные или часть данных на другие локальные или удаленные средства. Все данные или выбранные части данных можно селективно использовать для операций анализа и/или прогнозирования по текущему стволу скважины и/или другим стволам скважин, включая пласт-коллектор. Данные могут быть историческими данными, данные реального времени, или их комбинацией. Данные реального времени можно использовать в реальном времени или хранить для последующего использования. Данные также можно комбинировать с историческими данными или с другими входными данными для последующего анализа. Данные можно хранить в отдельных базах данных или объединять в одну базу данных.
Собранные данные можно использовать для выполнения анализа, например, в операциях моделирования. Например, сейсмические выходные данные можно использовать для выполнения геологических, геофизических разработок и/или разработок пласта-коллектора. Данные о пласте-коллекторе, стволе скважины, поверхности и/или процессе можно использовать для выполнения имитаций пласта-коллектора, ствола скважины, геологических, геофизических и других имитаций. Выходные данные от операций можно генерировать непосредственно от датчиков (S), или после какой-либо предварительной обработки или моделирования. Эти выходные данные могут служить в качестве входных данных для дальнейшего анализа.
Данные собираются и хранятся в наземном блоке (134). Один или более наземных блоков (134) могут быть размещены на нефтяном месторождении (100) либо соединены удаленно с ним. Наземный блок 134 может быть одним блоком или сложной сетью блоков, используемых для выполнения необходимых функций управления данными на всем нефтяном месторождении (100). Наземный блок (134) может быть автоматической системой или системой с ручным управлением. Наземный блок (134) может приводиться в действие и/или регулироваться пользователем.
Наземный блок (134) может быть снабжен приемопередатчиком (137) для поддержания связи между наземным блоком (134) и различными частями нефтяного месторождения (100) или другими местоположениями. Наземный блок (134) также может быть снабжен одним или более контроллерами, или функционально соединен с одним или более контроллерами для запуска механизма на нефтяном месторождении (100). Наземный блок (134) может посылать команды на нефтяное месторождение (100) в ответ на принятые данные. Наземный блок (134) может принимать команды через приемопередатчик или может сам выполнять команды, подаваемые на контроллер. Может предоставляться процессор (не показан) для анализа данных (локально или удаленно) и принятия решений и/или запуска контроллера. Таким образом, нефтяное месторождение (100) может селективно корректироваться на основе собранных данных. Такая технология может использоваться для оптимизации частей операции, например, для управления бурением, весом на голове бура, расходом насосов или другими параметрами. Такие модификации могут вводиться автоматически на основе компьютерного протокола и/или вручную оператором. В некоторых случаях планы расположения скважин могут корректироваться для выбора оптимальных рабочих условий или во избежание появления проблем.
Фиг.1С изображает операцию, выполняемую инструментом (106с), спускаемым в скважину на тросе, подвешенным буровой вышкой (128) и опущенным в ствол (136) скважины с фиг.1В. Инструмент (106с), спускаемый в скважину на тросе, предпочтительно выполнен с возможностью спуска в ствол (136) скважины для генерирования каротажных диаграмм, выполнения скважинных исследований и/или для сбора проб. Инструмент (106с), спускаемый в скважину на тросе, можно использовать для предоставления другого способа и устройства для выполнения операций сейсморазведки. Инструмент (106с), спускаемый в скважину на тросе, по фиг.1С может, например имеет взрывчатый, радиоактивный, электрический или акустический источник (144) энергии, который посылает и/или принимает электрические сигналы в окружающие подземные формации (102) и находящиеся в ней флюиды.
Инструмент (106с), спускаемый в скважину на тросе, может быть оперативно соединен, например, с сейсмоприемниками (118), хранящимися в компьютере (122а) передвижной сейсмической станции (106а) по фиг.1А. Инструмент (106с), спускаемый в скважину на тросе, также может предоставлять данные в наземный блок (134). Наземный блок(134) собирает данные, генерируемые во время операции спуска, и создает выходные данные (135), которые можно хранить или передавать. Инструмент (106с), спускаемый в скважину на тросе, может располагаться на разных глубинах в стволе (136) скважины для предоставления информации о разведке или другой информации, относящейся к подземной формации (102).
Около месторождения могут быть расположены датчики (S), например средства измерения, для сбора данных, относящихся к описанным ранее различным операциям. Как показано, датчик (S) расположен в инструменте (106с), спускаемом в скважину на тросе, для измерения скважинных параметров, которые относятся, например, к пористости, проницаемости, составу флюида и/или к другим параметрам операции.
Фиг.1D изображает операцию добычи, выполняемую инструментом (106d) добычи, спущенным с блока добычи или с фонтанной арматуры (129) в законченный ствол (136) скважины по фиг.1С для отбора флюида из скважинных пластов-коллекторов в наземные установки (142). Флюид течет из пласта-коллектора (104) сквозь перфорации в обсадной колонне (не показана) и в технологический инструмент (106d), спущенный в ствол (136) скважины и в наземные установки (142), через собирательную сеть (146).
На месторождении могут быть расположены датчики (S), например средства измерения, для сбора данных, относящихся к описанным ранее различным операциям. Как показано, датчик (S) может быть расположен в инструменте (106d) добычи или на сопутствующем оборудовании, например на фонтанной арматуре (129), собирательной сети (146), на наземных установках (142) и/или на установке добыче, для измерения параметров флюида, таких как химический состав флюида, расход, давления, температуры и/или другие параметры операции добычи.
Хотя на чертежах показаны лишь упрощенные конфигурации буровых площадок, следует понимать, что нефтяное месторождение может охватывать участок суши, морские и/или водные местоположения, на которых расположены одна или более буровых площадок. Добыча может включать в себя нагнетательные скважины (не показаны) для дополнительной отдачи. Одна или более собирательных установок могут быть оперативно соединены с одной или более из буровых площадок для селективного сбора скважинных флюидов с буровой площадки (буровых площадок).
Хотя фиг.1В-1D изображают инструменты, используемые для измерения свойств нефтяного месторождения (100), следует понимать, что такие инструменты могут использоваться в связи с операциями не на нефтяном месторождении, например в шахтах, на водоносных пластах, хранилищах или других подземных сооружениях. Кроме того, хотя изображены только некоторые инструменты сбора данных, следует понимать, что можно использовать разнообразные измерительные приборы, способные измерять параметры, например полное время пробега сейсмической волны, плотность, сопротивление, текущий дебит и пр. в подземной формации (102) и/или в геологических формациях. Различные датчики (S) можно размещать в различных положениях вдоль ствола скважины и/или в инструментах контроля для сбора и/или контроля требуемых данных. Кроме того, могут предоставляться другие источники данных, находящиеся в удаленных местоположениях.
Конфигурации нефтяного месторождения по фиг.1А-1D предназначены для того, чтобы предоставить краткое описание примера нефтяного месторождения, пригодного для имитации разрыва пласта-коллектора. Часть нефтяного месторождения (100) или все нефтяные месторождения (100) может находиться на суше и/или в море. Кроме того, когда изображено одно нефтяное месторождение, измеряемое в одном местоположении, имитация разрыва пласта-коллектора может использоваться с любой комбинацией одного или более нефтяных месторождений (100), одной или более обрабатывающих установок или одной или более буровых площадок.
Фиг.2А-2D являются графическими изображениями примеров данных, собираемых инструментами по фиг.1А-1D, соответственно. Фиг.2А изображает дорожку (202) сейсмограммы подземной формации по фиг.1А, снятой передвижной сейсмической станцией (106а). Дорожка сейсмограммы может использоваться для предоставления данных, например полный ответ за период времени. Фиг.2В изображает керн (133), отобранный бурильными инструментами (106b). Керн может использоваться для предоставления данных, например графика плотности, пористости, проницаемости или других физических свойств керна (133) на длине керна. Исследование на плотность и вязкость можно выполнять на флюидах в керне при изменяющихся давлениях и температурах. Фиг.2С изображает каротажную диаграмму (204) подземной формации (102) по фиг.1С, полученную инструментом (106с), спускаемым в скважину на тросе. Каротажная диаграмма предоставляет измерения о сопротивлении или о других измерениях формаций на разных глубинах. Фиг.2D изображает кривую или график (206) падения добычи флюида, текущего сквозь подземную формацию (102) по фиг.1D, измеренного на наземных установках (142). Кривая (206) падения добычи обычно предоставляет текущий дебит (Q) как функцию времени (t).
Соответствующие графы на фиг.2А-2С изображают примеры статических измерений, которые могут описать информацию о физических характеристиках формации и содержащихся в нем пластов-коллекторов. Эти измерения можно проанализировать для лучшего задания свойств формации (формаций) и/или для определения точности измерений и/или для проверки на ошибки. Диаграммы каждого из соответствующих измерений можно совместить и привести к одному масштабу для сравнения и проверки свойств.
Фиг.2D изображает пример динамических измерений свойств флюида через ствол скважины. Когда флюид течет через ствол скважины, измеряются свойства флюида, такие как расход, давление, химический состав и пр. Как описано ниже, статические и динамические измерения можно анализировать и использовать для генерирования моделей подземной формации для определения ее характеристик. Подобные измерения можно использовать для измерения изменений в различных аспектах формации во времени.
Фиг.3 изображает схематический вид, частично в поперечном сечении, нефтяного месторождения (300), имеющего инструменты (302a), (302b), (302c) и (302d) сбора данных, расположенные в разных местоположениях вдоль нефтяного месторождения о подземной формации (304). Инструменты (302а-302d) сбора данных могут быть такими же, что и инструменты (106а-106d) сбора данных по фиг.1А-1D, соответственно, или другими, не изображенными на чертежах. Как показано, инструменты (302а-302d) сбора данных генерируют диаграммы данных или измерения (308а-308d) соответственно. Эти диаграммы данных изображены вдоль нефтяного месторождения для демонстрации данных, генерируемых разными операциями.
Диаграммы (308а-308с) данных являются примерами диаграмм статических данных, которые могут генерироваться инструментами (302а-302d) сбора данных соответственно. Диаграмма (308а) статических данных является диаграммой полного времени пробега сейсмической волны и может совпадать с дорожкой (202) сейсмограммы по фиг.2А. Статическая диаграмма (308b) является измеренными данными по керну формации, аналогичному керну (133) по фиг.2В. Диаграмма (308с) статических данных является каротажной диаграммой, подобной диаграмме (204) по фиг.2С. Кривая или график (308d) падения добычи является диаграммой динамических данных движения флюида во времени, аналогичной графику (206) по фиг.2D. Можно собирать и другие данные, например исторические данные, данные, введенные пользователем, экономическую информацию и/или данные других измерений и другие интересующие параметры.
Подземная формация (304) имеет множество геологических формаций (306а-306d). Как показано, структура имеет несколько формаций или слоев, включающих в себя сланцевый слой (306а), карбонатный слой (306b), сланцевый слой (306с) и песчаный слой (306d). Линия (307) сброса проходит через слои (306а, 306b). Инструменты сбора статических данных предпочтительно выполнены с возможностью проводить измерения и детектировать характеристики формаций.
Хотя изображена конкретная подземная формация 304 с конкретными геологическими структурами, следует понимать, что нефтяное месторождение может содержать разнообразные геологические структуры и/или формации, иногда чрезвычайно сложные. В некоторых местоположениях, типично ниже контура водоносности, в порах формаций может содержаться флюид. Каждое из измерительных устройств может использоваться для измерения свойств формаций и/или их геологических строений. Хотя каждый инструмент сбора показан находящимся в конкретных местоположениях нефтяного месторождения, следует понимать, что в одном или более местоположении одного или более нефтяных месторождений или в других местоположениях можно выполнять один или более тип измерения для сравнения и/или анализа.
Данные, собранные с разных источников, например от инструментов сбора данных по фиг.3, затем могут обрабатываться и/или оцениваться. Типично, сейсмические данные, отображенные на диаграмме (308а) статических данных, полученные от инструмента (302а) сбора данных, используются геофизиками для определения характеристик и строения подземных формаций (304). Данные керна, показанные на статической диаграмме (308b) и/или данные каротажа с каротажной диаграммы (308с), обычно используются геологами для определения различных характеристик подземной формации (304). Данные о добыче, приведенные на графике (308d), обычно используются инженерами-эксплуатационниками для определения характеристик движения флюидов в пласте-коллекторе. Данные, анализируемые геологами, геофизиками и инженерами-эксплуатационниками, можно анализировать с использованием технологий моделирования. Примеры технологий моделирования приведены в Патентах/Публикациях/Заявках №№ US 5992519, WO 2004/049216, WO 1999/064896, US 6313837, US 2003/0216897, US 72488259, US 2005/0149307 и US 2006/0197759. Системы для выполнения таких технологий моделирования описаны, например, в выданном патенте США № 7248259, все содержание которого включено в настоящее описание путем ссылки.
Фиг.4А-4С изображают трехмерные графические представления подземной формации, именуемые статической моделью. Статическую модель можно сгенерировать на основе одной или более моделей, сгенерированных, например, на основе данных, собранных с использованием инструментов (302а-302d) сбора. На приведенных чертежах статические модели (402а-402с) сгенерированы инструментами (302а-302с) сбора данных по фиг.3, соответственно. Эти статические модели могут предоставлять двухмерный вид подземной формации на основе данных, собранных в данном местоположении.
Статические модели могут иметь разную точность на основе доступного типа измерений, качества данных, местоположения и других факторов. Хотя статические модели по фиг.4А-4С созданы с использованием определенных инструментов сбора данных в одном местоположении нефтяного месторождения, для проведения измерений в одном или более местоположениях на нефтяном месторождении для генерирования различных моделей можно использовать один или более одинаковых или разных инструментов сбора данных. В зависимости от требуемого типа данных и/или местоположения можно выбрать различные способы анализа и моделирования.
Каждая из статических моделей (402А-402С) изображена как волюметрическая репрезентация нефтяного месторождения с одним или более пластами-коллекторами и окружающими структурами формации. Эти волюметрические репрезентации являются прогнозом геологической структуры подземной формации в конкретном местоположении, созданные на основе доступных измерений. Предпочтительно, эти репрезентации являются вероятными сценариями, созданными с использованием тех же входных данных (исторических и/или в реальном времени), но с использованием разных интерпретаций, интерполяций и технологий моделирования. Как показано, модели содержат геологические слои в подземной формации. В частности, сброс (307) по фиг.3 проходит через каждую из моделей. Каждая статическая модель также имеет опорные точки А, В и C, размещенные в конкретных положениях на каждой из статических моделей. Эти статические модели и конкретные опорные точки на статических моделях можно проанализировать. Например, сравнение разных статических моделей может показать различия в структуре сброса (307) и в прилегающем слое. Каждая из опорных точек может помочь в сравнении между различными статическими моделями. В модели можно вносить модификации на основе анализа разных статических моделей по фиг.4А-4С и сгенерировать скорректированный слой формации, как будет описано ниже.
Фиг.5 изображает графическое представление графика распределения вероятностей множества статических моделей, например моделей (402а)-(402с) по фиг.4А-4С. График изображает диапазон величин (V) атрибута пласта-коллектора, например объемные характеристики, текущий дебит, валовую толщину породы, эффективную мощность залежи, добычу нарастающим итогом и пр. Величина (V) атрибута пласта-коллектора может меняться благодаря любому оцениваемому статическому или динамическому компоненту (компонентам), такому как структура, пористость, проницаемость, уровни контакта флюида и пр. Переменные при моделировании обычно ограничиваются так, чтобы находиться в пределах обоснованных прогнозов свойств реального пласта-коллектора (пластов-коллекторов), или в соответствии с тем, что наблюдалось в подобных пластах-коллекторах. Этот график является гистограммой, показывающей множество реализаций модели, которые могут быть сгенерированы представленными данными. Изменяя многочисленные параметры модели, можно генерировать различные результаты. График можно генерировать путем обзора и оценки вероятности моделей и построения их на графике.
Как показано, все реализации модели, образующие график распределения, в терминах геологии являются равновероятными. Гистограмма указывает, что статическая модель (402а) предоставляет 90-процентную вероятность наличия, по меньшей мере, этой величины переменной (V). Приведенная гистограмма также указывает, что статическая модель (402b) имеет 50-процентную вероятность наличия, по меньшей мере, этой величины переменной (V), а статическая модель (402с) - 10-процентную вероятность наличия этой более высокой величины. Этот график показывает, что статическая модель (402с) является более оптимистической оценкой переменной (V). Статические модели и связанные с ними вероятности можно использовать, например, при определении планов разработки месторождения и схем размещения наземных установок. Для оценки риска и/или экономического допуска планов разработки месторождения используют и анализируют комбинации представлений статических моделей, например, (402а) - (402с).
Возвращаясь к статическим моделям по фиг.4А-4С, эти модели были скорректированы на основе динамических данных, представленных при построении графика (308d) по фиг.3. Эти динамические данные, либо собранные инструментами сбора данных, либо полученные на основе прогнозов с использованием технологий моделирования (302d), применяются к каждой из статических моделей (402а)-(402с). Как показано, динамические данные указывают, что сброс (307) и слой (306а), спрогнозированные статическими моделями, могут потребовать модификации. Слой (306а) в каждой модели скорректирован, как показано пунктирными линиями. Модифицированный слой изображен позициями (306a'), (306a''), (306a''') для статических моделей по фиг.4А-4С соответственно.
Динамические данные могут указывать, что некоторые статические модели предоставляют лучшее представление нефтяного месторождения. Возможность согласования статической модели с историческими данными о текущем дебите может считаться хорошим указанием на то, что она может дать точные прогнозы добычи в будущем. В одной возможной реализации можно выбрать предпочтительную статическую модель. В этом случае хотя статическая модель по фиг.4С может иметь наивысшую общую вероятность, точность которой основана только на статической модели, показанной на фиг.5, анализ динамической модели показывает, что модель по фиг.4В согласуется лучше. Как показано на фиг.4А-4С, сравнение слоев (306а) со слоями (306a'), (306a''), (306a''') указывает, что сброс (307) с сопутствующей пропускаемостью флюида через сброс лучше всего согласуется с прогнозом, предоставляемым статической моделью (402b).
В этом примере выбранная статическая модель (402b) модифицируется на основе динамических данных. Полученная скорректированная модель (402b') была скорректирована для лучшего соответствия эксплуатационным данным. Как показано, положение геологической структуры (306а) сдвинуто к (306а'') для учета различий, показываемых динамическими данными. В результате статическая модель может быть адаптирована для лучшего соответствия и статическим и динамическим данным.
При определении наилучшей общей модели можно учитывать статические и/или динамические данные. В этом случае, при учете и статических и динамических данных, статическая модель (402b) по фиг.4В выбирается как модель земли с наивысшей вероятностью точности на основе и статических вероятностей и динамического ввода. Для получения наилучшей общей модели может потребоваться учет и статических и динамических данных из множества источников, местоположений и/или разных типов данных.
Оценка разных статических и динамических данных по фиг.3 требует рассмотрения статических данных, таких как сейсмических данных, учитываемых геофизиком (308а), геологических данных, учитываемых геологом (308b, 308c), и эксплуатационных данных, учитываемых эксплуатационником (308d). Каждый специалист типично учитывает данные, относящиеся к конкретной функции, и предоставляет модели на основе этой конкретной функции. Однако, как изображено на фиг.4А-С, информация от каждой из отдельных моделей может влиять на решение о выборе наилучшей общей модели земли. Кроме того, информация от других моделей или источников также может влиять на модификации модели и/или выбор наилучшей общей модели земли. Модель земли, сгенерированная как описано на фиг.4А-5, является базовой моделью земли, определенной из анализа различных представленных моделей.
Фиг.6 показывает блок-схему (600) последовательности операций способа, описывающую способ имитации разрыва пласта-коллектора. Способ включает в себя получение данных из пласта-коллектора, включающего в себе (602) разрыв. Эти данные включают в себя данные о пласте-коллекторе (например, свойства пласта-коллектора, такие как пористость пласта-коллектора, проницаемость пласта-коллектора, геометрия грубой сетки для моделирования пласта-коллектора и пр.), а также данные о разрыве (например, свойства разрыва, такие как пористость разрыва, проницаемость разрыва, проводимость разрыва, геометрия разрыва и пр.) внутри пласта-коллектора. В общем виде пласт-коллектор имеет гетерогенные свойства, и данные меняются в зависимости от местоположения в пласте-коллекторе и разрыве.
Коэффициенты для моделирования пласта-коллектора определяются с использованием данных, а также корреляционной матрицы (604). Здесь термин "коэффициент" относится к параметру модификации, который может использоваться для модификации модели пласта-коллектора на основе заранее определенной схемы, например умножением (или модификацией) значения в модели пласта-коллектора с использованием коэффициента (или параметра модификации). Термин "корреляционная матрица" относится к функции получения коэффициентов, используя данные в качестве входных данных для функции. Типично, функция является дискретной функцией с дискретным входом и выходом. В одном или более вариантах осуществления имитации разрыва пласта-коллектора корреляционная матрица может быть организована как многомерная таблица. В таких вариантах осуществления данные можно использовать как многомерные вводы в справочные (например, используя процедуру интерполяции) коэффициенты (или параметр модификации) из записей в многомерной таблице. Создание корреляционной матрицы описано ниже со ссылкой на фиг.7, а определение коэффициентов для использования в модели пласта-коллектора описано со ссылками на фиг.8.
Затем моделируется пласт-коллектор с использованием коэффициентов и данных для генерирования результата (606). Затем на основе результата (608) можно выполнять операцию, связанную с пластом-коллектором.
В одном или более вариантах осуществления имитации разрыва пласта-коллектора разрыв является гидроразрывом, сформированным или подлежащим формированию вокруг скважины в пласте-коллекторе. В одной возможной реализации модель пласта-коллектора в грубом масштабе используется для повышения эффективности моделирования (например, таких ресурсов, как время имитации, запоминающее устройство компьютера, вычислительная мощность и пр.) так, что в моделирование пласта-коллектора можно одновременно включить большое количество (например, тысячи) стволов скважины. Однако эффекты разрыва часто нуждаются в имитации с использованием модели пласта-коллектора в точном масштабе исходя из требований к точности.
В одном или более вариантах имитации разрыва пласта-коллектора эффекты разрыва можно эмулировать путем селективной модификации модели пласта-коллектора в грубом масштабе, используя коэффициенты (или параметры модификации) в ограничивающем прямоугольнике, окружающем разрыв. В общих терминах модель пласта-коллектора в грубом масштабе можно создавать, применяя свойства пласта-коллектора (без учета свойств разрыва) на грубую сетку, представляющую пласт-коллектор, в то время как модель пласта-коллектора в точном масштабе можно создавать, применяя как свойства пласта-коллектора, так и свойства разрыва (по меньшей мере, внутри ограничивающего прямоугольника), на точную сетку, извлеченную из грубой сетки. В одном сценарии моделирование пласта-коллектора с использованием коэффициентов включает в себя применение коэффициентов (или параметров модификации) ко всем грубым ячейкам (грубой сетки), окружающим центральную ячейку ограничивающего прямоугольника.
Ссылаясь на фиг.12, три вида (1201)-(1203) 2D ограничивающего прямоугольника изображают стрелки, представляющие величины векторов коэффициентов, примененных к поперечным заштрихованным грубым ячейкам внутри ограничивающего прямоугольника. Например, компоненты X, Y, Z величины вектора каждого коэффициента применены к компоненту X, X, Z пропускаемости поперечных заштрихованных грубых ячеек. В одном или более ва