Жидкокристаллическая панель

Иллюстрации

Показать все

Изобретение относится к устройствам отображения информации. Жидкокристаллическая панель содержит множество пикселей, расположенных в матричной конфигурации, имеющей строки и столбцы. Также панель содержит: запоминающий конденсатор, расположенный в каждом пикселе; множество шин запоминающих конденсаторов, проложенных в направлении строк и подсоединенных к запоминающим конденсаторам, скомпонованным в направлении строк; множество отводных шин, проложенных в направлении столбцов через пиксельную область, где скомпоновано множество пикселей; и секцию подачи управляющих сигналов, соединенную с отводными шинами, для посылки управляющих сигналов на запоминающие конденсаторы из отводных шин через шины запоминающих конденсаторов, при этом жидкокристаллическая панель включает в себя множество опорных шин, проложенных, по меньшей мере, в одном краевом участке в направлении строк, причем шины запоминающих конденсаторов соединены с опорными шинами; и опорные шины соединены с секцией подачи управляющих сигналов, а управляющие сигналы посылаются на запоминающие конденсаторы из опорных шин через шины запоминающих конденсаторов. Технический результат заключается в упрощении конструкции. 3 н. и 16 з.п. ф-лы, 30 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к жидкокристаллической панели, в которой множество пикселей расположены в матричной конфигурации, имеющей строки и столбцы. Заметим, что эта заявка претендует на приоритет согласно Парижской конвенции или законам и правилам стран назначения патентной заявки Японии №2009-123630, поданной 21 мая 2009 года. Содержание базовой заявки включено сюда по ссылке.

Уровень техники

Предложенная авторами настоящей заявки жидкокристаллическая панель относится к способам, известным как способ многопиксельного возбуждения (также известен как «дисплей с модуляцией перекрываемой зоны», «возбуждение с модуляцией перекрываемой зоны» или «многопиксельный дисплей»), раскрытым, например, в WO 2006/098449 (Международная публикация WO 06098449 (Патентный документ 1)) и т.д.

В указанной жидкокристаллической панели множество пикселей расположены в матричной конфигурации, имеющей строки и столбцы. При таком способе компоновки в одном пикселе обеспечено два подчиненных пикселя для подачи отличных друг от друга действующих напряжений на жидкокристаллический слой. Для каждого подчиненного пикселя обеспечен отличный от других запоминающий конденсатор. К запоминающему конденсатору прикладывают пульсирующее напряжение. При указанном многопиксельном возбуждении яркость/темнота определяется для каждого подчиненного пикселя путем инвертирования полярности напряжения, приложенного к запоминающему конденсатору.

В этом случае запоминающие конденсаторы подчиненных пикселей соединены с множеством шин запоминающих конденсаторов (называемых также «шины Cs» и т.д.), идущих, например, в направлении строк. Шины запоминающих конденсаторов соединены с опорными шинами (называемыми также «опорными шинами Cs»), идущими по обеим сторонам в направлении строк. Затем через опорные шины и шины запоминающих конденсаторов на запоминающие конденсаторы посылают управляющие сигналы.

Из опубликованных материалов следует, что имеет место сглаживание формы сигнала из-за электрического сопротивления и т.д. для управляющих сигналов запоминающих конденсаторов (смотри, например, документ WO 2006/098449, параграфы 0120-0121). Для решения проблемы сглаживания формы сигнала в данной публикации утверждается, что улучшение достигается путем увеличения частоты колебаний управляющих сигналов, приложенных к шинам запоминающих конденсаторов.

Список цитирования

Патентный документ

Патентный документ 1: Международная публикация WO06/098449 (описание)

Сущность изобретения

Техническая проблема

В настоящее время в таких приложениях, как дисплеи для телевизионных приемников, размер экрана жидкокристаллического дисплейного устройства увеличен. При увеличении размера экрана длина проводных соединений к запоминающим конденсаторам, описанным выше, возрастает. Следовательно, весьма вероятно появление вышеописанного эффекта сглаживания формы сигнала. В таких приложениях, как дисплеи телевизионных приемников, передняя поверхность панели окружена обрамляющей рамкой. Для достижения меньшей ширины дисплея при сохранении того же размера экрана требуется уменьшить ширину обрамляющей рамки (требование утончения обрамления). Один из способов уменьшения вышеописанного эффекта сглаживания формы сигнала состоит в утолщении опорных шин, предусмотренных по обеим сторонам в направлении строк жидкокристаллической панели, с тем чтобы уменьшить сопротивление опорных шин. Однако утолщение опорных шин противоречит требованию утончения обрамления. При утончении опорных шин для удовлетворения требования утончения обрамления возрастает сопротивление проводных соединений к запоминающим конденсаторам, и возрастает вероятность появления эффекта сглаживания формы сигнала. В свете указанной проблемы в настоящем изобретении предложена новая структура шин для посылки управляющих сигналов на запоминающие конденсаторы жидкокристаллического дисплейного устройства.

Решение проблемы

Жидкокристаллическая панель согласно настоящему изобретению включает в себя множество пикселей, расположенных в матричной компоновке, имеющей строки и столбцы. В каждом пикселе обеспечен запоминающий конденсатор. В направлении строк проходит множество шин запоминающих конденсаторов, которые соединены с запоминающими конденсаторами, скомпонованными в направлении строк. В направлении столбцов через пиксельную область, где скомпоновано множество пикселей, проходит множество отводных шин. Отводные шины соединены с секцией подачи управляющих сигналов для посылки управляющих сигналов на запоминающие конденсаторы из отводных шин через шины запоминающих конденсаторов. При такой жидкокристаллической панели не всегда требуется иметь опорные шины на противоположных краевых участках в направлении строк, и даже в том случае, когда опорные шины обеспечены, они могут быть выполнены более тонкими. Следовательно, можно уменьшить пространство на противоположных краевых участках в направлении строк жидкокристаллической панели (утончить обрамление). Через область пикселей можно проложить множество отводных шин. Следовательно, можно укоротить проводные соединения к каждому запоминающему конденсатору и снизить сопротивление проводных соединений к запоминающему конденсатору. Заметим, что используемый здесь термин «отводная шина» определен на основе описания настоящего изобретения.

В этом случае жидкокристаллическая панель может включать в себя множество опорных шин, проложенных по меньшей мере по одному краевому участку в направлении строк, причем с опорными шинами соединены шины запоминающих конденсаторов. В этом случае предпочтительно, чтобы опорные шины были подсоединены к области подачи управляющих сигналов, и управляющие сигналы посылались на запоминающие конденсаторы из опорных шин через шины запоминающих конденстаоров. Жидкокристаллическая панель может включать в себя множество горизонтальных опорных шин, проложенных на краевом участке в направлении столбцов, причем к горизонтальным опорным шинам подсоединены отводные шины.

Множество отводных шин может быть сгруппировано во множество групп, и может быть соединено с секцией подачи управляющих сигналов, с тем чтобы на отводные шины, принадлежащие одной и той же группе, посылался один и тот же управляющий сигнал. В этом случае предпочтительно, чтобы каждая из множества шин запоминающих конденсаторов была подсоединена к отводным шинам, принадлежащим одной группе. В этом случае жидкокристаллическая панель может включать в себя множество опорных шин, проложенных по меньшей мере по одному краевому участку в направлении строк. Предпочтительно, чтобы каждая шина запоминающих конденсаторов была соединена с одной из множества опорных шин, и на опорную шину секцией подачи управляющих сигналов посылался в качестве управляющего сигнала один и тот же управляющий сигнал, посланный в отводные шины, принадлежащие одной группе, к которой подсоединена данная шина управляющих конденсаторов. Кроме того, жидкокристаллическая панель может включать в себя множество горизонтальных опорных шин, проложенных по краевому участку в направлении столбцов. В этом случае предпочтительно, чтобы отводные шины, принадлежащие входной группе, были соединены с одной горизонтальной опорной шиной, отличной от горизонтальных опорных шин, с которыми соединены отводные шины других групп.

Отводные шины могут быть проложены равномерно через разные пиксели. Например, когда каждый пиксель включает в себя R (красный), G (зеленый) и B (синий) субпиксели, отводные шины могут быть проложены так, чтобы они проходили через субпиксели R из числа субпикселей R, G и B. Отводные шины могут быть проложены так, чтобы они проходили через субпиксели G из числа субпикселей R, G и B. Отводные шины могут быть проложены так, чтобы они проходили через субпиксели B из числа субпикселей R, G и B.

Жидкокристаллическая панель может включать в себя: жидкокристаллический слой; пару подложек с жидкокристаллическим слоем, расположенным между ними; противоположный электрод, сформированный на одной из пары подложек; и пиксельный электрод, сформированный на другой подложке напротив противоположного электрода. В этом случае две отводные шины, которые принимают пару управляющих сигналов, напряжение которых изменяется в противоположных направлениях и на одинаковую величину, могут быть проложены так, чтобы они проходили через область, где сформирован пиксельный электрод. Таким образом, между двумя отводными шинами взаимно исключаются воздействия емкостей (емкостные связи), сформированных между отводными шинами и пиксельным электродом, и можно уменьшить воздействие емкостей, сформированных между отводными шинами и пиксельным электродом.

В случае, когда множество отводных шин проложено так, что они проходят через область, где сформирован пиксельный электрод данного пикселя, можно сделать так, чтобы емкости (емкостные связи), сформированные между отводными шинами и пиксельным электродом, стали равными друг другу. Таким образом, если множество отводных шин получили пару управляющих сигналов, чьи напряжения изменяются в противоположных направлениях и на одинаковую величину, имеет место значительный эффект взаимного исключения воздействий емкостей (емкостные связи), сформированных между отводными шинами и пиксельным электродом. Максимальное значение из множества емкостей, сформированных между отводными шинами и пиксельным электродом, может быть меньше или равно их удвоенному минимальному значению. Также в этом случае, если множество отводных шин получило пару управляющих сигналов, чьи напряжения изменяются в противоположных направлениях и на одинаковую величину, воздействия емкостей (емкостных связей), сформированных между отводными шинами и пиксельным электродом, взаимно исключаются, в результате чего уменьшается воздействие емкостей (емкостных связей), сформированных между отводными шинами и пиксельным электродом. Заметим, что более предпочтительно, чтобы максимальное значение из множества емкостей было меньше или равно их полуторному минимальному значению.

Когда множество отводных шин проложено так, что они проходят через зону, где сформирован пиксельный электрод данного пикселя, зоны, где отводные шины, выступающие на пиксельный электрод, перекрывают пиксельный электрод, могут быть сделаны равными по площади друг другу. Например, предпочтительно, чтобы зоны, на которых отводные шины перекрывают пиксельные электроды, если смотреть на подложку сверху, где сформированы пиксельные электроды, были равны по площади между множеством отводных шин. Таким образом, если множество отводных шин получили пару управляющих сигналов, чьи напряжения изменяются в противоположных направлениях и на равную величину, имеет место значительный эффект взаимного исключения воздействий емкостей (емкостные связи), сформированных между отводными шинами и пиксельным электродом. Множество отводных шин может быть проложено так, чтобы они проходили через область, где сформирован пиксельный электрод данного пикселя, и максимальное значение площадей, на которых отводные шины, выступающие на пиксельные электроды, перекрывают пиксельные электроды, может быть меньше или равно их удвоенному минимальному значению. Также в этом случае, если множество отводных шин получило пару управляющих сигналов, чьи напряжения изменяются в противоположных направлениях и на одинаковую величину, воздействия емкостей (емкостных связей), сформированных между отводными шинами и пиксельным электродом, взаимно исключаются, в результате чего уменьшается воздействие емкостей (емкостных связей), сформированных между отводными шинами и пиксельным электродом. Заметим, что более предпочтительно, чтобы максимальное значение площадей, на которых отводные шины, выступающие на пиксельный электрод, перекрывают пиксельный электрод, было меньше или равно их полуторному минимальному значению.

В другом варианте изобретения отводные шины проложены так, чтобы они проходили через область, где сформирован пиксельный электрод данного пикселя; и поддерживается неравенство Cx/(Clc+Cs+Cx)≤0,2, где Clc - емкость, сформированная противоположным электродом и пиксельным электродом, Cs - емкость запоминающего конденсатора и Cx - емкость, сформированная между отводной шиной и пиксельным электродом. В этом случае можно относительно уменьшить воздействие емкости, сформированной между отводной шиной и пиксельным электродом, до такой степени, что не возникнет проблем с точки зрения качества отображения. Заметим, что, когда отводные шины проложены так, что они проходят через область, где сформирован пиксельный электрод данного пикселя, предпочтительно, чтобы поддерживалось неравенство Cx/(Clc+Cs+Cx)≤0,2 для каждой из емкостей Cx, сформированных между отводными шинами и пиксельным электродом.

Между пиксельными электродами может быть сформирован зазор, а отводная шина может быть проложена так, что она будет проходить через зазор между пиксельными электродами. В этом случае можно исключить появление емкостной связи.

Каждый пиксель может включать в себя подчиненные пиксели, имеющие разные уровни яркости. В этом случае предпочтительно, чтобы подчиненные пиксели, имеющие разные уровни яркости, включали в себя запоминающие конденсаторы, соединенные с разными шинами запоминающих конденсаторов. Предпочтительно, чтобы запоминающие конденсаторы, обеспеченные в подчиненных пикселях, имеющих разные уровни емкости, получали пару управляющих сигналов, изменения напряжения которых изменялись в противоположных направлениях и имели одинаковую величину на разных шинах запоминающих конденсаторов.

Краткое описание чертежей

Фиг.1 - вертикальное поперечное сечение жидкокристаллического дисплейного устройства;

фиг.2 - вид в плане, показывающий подложку матрицы жидкокристаллической панели;

фиг.3 - вид в плане, показывающий подложку цветового фильтра жидкокристаллической панели;

фиг.4 - вид в плане, показывающий субпиксель жидкокристаллической панели;

фиг.5 - схема, показывающая конфигурацию субпикселя жидкокристаллической панели;

фиг.6 - схема, показывающая проводную структуру шин запоминающих конденсаторов жидкокристаллической панели;

фиг.7 - схема блока управления жидкокристаллической панели;

фиг.8 - схема, показывающая конфигурацию субпикселя жидкокристаллической панели;

фиг.9 - схема, показывающая изменение заряда пиксельного электрода;

фиг.10 - схема, показывающая изменение заряда пиксельного электрода;

фиг.11 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.12 - схема, показывающая сглаживание формы сигнала, появляющееся в управляющем сигнале;

фиг.13 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.14 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.15 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.16 - вид в плане, показывающий конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.17 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.18 - схема, показывающая эквивалентную схему жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.19 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.20 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.21 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.22 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.23 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.24 - схема, показывающая эквивалентную схему жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.25 - схема, показывающая эквивалентную схему жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.26 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.27 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.28 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.29 - схема, показывающая конфигурацию жидкокристаллической панели согласно варианту настоящего изобретения;

фиг.30 - схема, показывающая пульсации, появляющиеся на шине запоминающих конденсаторов.

Описание вариантов осуществления изобретения

Далее со ссылками на чертежи описывается жидкокристаллическая панель согласно одному варианту настоящего изобретения.

Как показано на фиг.13, жидкокристаллическая панель 10 включает в себя множество отводных шин 310, идущих в направлении столбцов через пиксельную область 10а, в которых шины Cs 43с (шины запоминающих конденсаторов) проходят в направлении строк. Отводные шины 310 соединены с шинами Cs 43с, так что управляющие сигналы подаются на запоминающие конденсаторы от отводных шин 310 через шины Cs 43с. Благодаря такому формированию множества проводных соединений для подачи управляющих сигналов «с» из отводных шин 310 на запоминающие конденсаторы Cs через шины Cs 43с сопротивление проводных соединений для подачи управляющих сигналов «с» на запоминающие конденсаторы Cs уменьшается, и уменьшается эффект «сглаживание формы сигнала» управляющего сигнала «с», поданного на запоминающий конденсатор Cs. При использовании жидкокристаллической панели 10 обрамление жидкокристаллического дисплейного устройства можно сделать более тонким. Далее описываются детали жидкокристаллической панели 10.

Сначала здесь схематически описывается структура жидкокристаллического дисплейного устройства, имеющего жидкокристаллическую панель 10, где отводные шины 310 не сформированы (смотри фиг.11), а затем описывается эффект «сглаживание формы сигнала», появляющийся на шине Cs 43с (шина запоминающих конденсаторов). Далее описывается жидкокристаллическое дисплейное устройство (смотри фиг.13) со сформированными отводными шинами 310, а также описывается, каким образом устраняется «сглаживание формы сигнала» и как утончается упомянутое обрамление. Заметим, что показанное здесь жидкокристаллическое дисплейное устройство является лишь примером, и конкретная конфигурация жидкокристаллического дисплейного устройства не ограничивается последующим вариантом. На чертежах необязательно отражается конфигурация реального изделия. Элементы или части, выполняющие по существу одинаковые функции, обозначены в соответствующих случаях одинаковыми ссылочными позициями. Цифры и символы в скобках, относящиеся к одной и той же ссылочной позиции, используются для того, чтобы отличить элемент или часть из множества элементов или частей, выполняющих одинаковую функцию.

На фиг.1 схематически показана конфигурация в разрезе жидкокристаллического дисплейного устройства 100. Жидкокристаллическое дисплейное устройство 100 включает в себя жидкокристаллическую панель 10 и подсветку 20, как показано на фиг.1. Жидкокристаллическая панель 10 обычно имеет в целом прямоугольную форму и образована из пары светопроницаемых подложек 11 и 12 (стеклянные подложки). В этом варианте находящаяся спереди подложка из пары подложек 11 и 12 является подложкой 11 цветового фильтра (CF подложка), а задняя подложка является подложкой 12 матрицы (TFT подложка).

В этом варианте, как показано на фиг.1, как подложка 11 цифровых фильтров, так и подложка 12 матрицы имеют пиксельную область 10а. Здесь пиксельная область 10а является областью, где сформированы пиксели, и ее также называют дисплейной областью. Подложка 11 цветового фильтра и подложка 12 матрицы скомпонованы друг против друга. Между подложкой 11 цветового фильтра и подложкой 12 матрицы обеспечен герметик, окружающий пиксельную область 10а по ее периферии (внешняя периферийная часть) в направлении по окружности.

Между подложкой 11 цветового фильтра и подложкой 12 матрицы обеспечен жидкокристаллический слой. 13. Жидкокристаллический слой 13 включает в себя жидкокристаллический материал, содержащий жидкокристаллические молекулы. При приложении напряжения между подложкой 11 цветового фильтра и подложкой 12 матрицы происходит управление ориентацией жидкокристаллических молекул для изменения оптических характеристик жидкокристаллического материала. Герметик 15 герметизирует жидкокристаллический материал жидкокристаллического слоя 13.

Далее в указанном порядке описывается подложка 12 матрицы и подложка 11 цветового фильтра. На фиг. 2 и 3 показана пиксельная область 11а жидкокристаллической панели 10 в увеличенном масштабе. На фиг.2 показан вид в плане части пиксельной области подложки 12 матрицы, а на фиг.3 показан вид в плане части пиксельной области подложки 11 цветового фильтра. Область, окруженная пунктирной линией А на фиг.2 и 3, обозначает область, образующую один пиксель жидкокристаллической панели 10. Жидкокристаллическая панель 10 включает в себя пиксели А, показанные на фиг.2 и 3, расположенные в матричной конфигурации, имеющей строки и столбцы. На фиг.4 представлен вид в плане, показывающий один субпиксель AR пикселя А в увеличенном масштабе. На фиг.5 представлена схема, показывающая конфигурацию субпикселей AR, AG, AB пикселя A. Заметим, что на фиг.5 показана конфигурация одного субпикселя, расположенного в i-й строке и j-м столбце (i,j) жидкокристаллической панели 10.

В этом варианте подложка 12 матрицы включает в себя пиксельные электроды 42а и 42b, шины 43а-43с, выравнивающую пленку 46 (вертикальная выравнивающая пленка) и тонкопленочные транзисторы 47а и 47b (TFT), сформированные на передней стороне (сторона жидкокристаллического слоя 13) стеклянной подложки, как показано на фиг.2 и 4. Пиксельные электроды 42а и 42b выполнены из оксида индия и олова (ITO), который является прозрачным проводящим материалом. На эти пиксельные электроды 42а и 42b в заранее определенные моменты времени подаются напряжения в соответствии с изображением через шины 43а-43с и тонкопленочные транзисторы 47а и 47b (смотри фиг.2). Пиксельные электроды 42а и 42b, а также шины 43а-43с (смотри фиг.2) проложены с изолирующим слоем между ними. На подложке 12 матрицы сформирована выравнивающая пленка 46, выполненная из полиимида или т.п. Поверхность выравнивающей пленки 46 притерта, чтобы задать направление выравнивания жидкокристаллических молекул в отсутствие приложенного напряжения. В данном варианте подложка 12 матрицы включает в себя запоминающие конденсаторы Cs. Структура запоминающих конденсаторов Cs подробно описывается ниже.

Подложка 11 цветового фильтра включает в себя черную матрицу 52, цветовые фильтры 53, противоположный электрод 55 и выравнивающую пленку 56 (вертикальная выравнивающая пленка), сформированную на задней стороне (сторона жидкокристаллического слоя 13) стеклянной подложки, как показано на фиг.3. Черная матрица 52 сформирована из металла, такого как Cr (хром), так что свет не проходит через область между пикселями. У цветового фильтра 53 имеется три цвета, а именно: красный (R), зеленый (G) и синий (B). Один из красных (R), зеленых (G) и синих (B) цветовых фильтров находится напротив одного из R, G и B пиксельных электродов 42а и 42b подложки 12 матрицы, как показано на фиг.2 и 3. Противоположный электрод 55, выполненный из оксида индия и олова (ITO), сформирован под черной матрицей 52 и цветовым фильтром 53 (сторона, противоположная подложке 12 матрицы). Под противоположным электродом 55 сформирована выравнивающая пленка (не показана). Поверхность этой выравнивающей пленки (не показана) также притерта.

Кроме того, между подложкой 11 цветового фильтра и подложкой 12 матрицы помещены сферические или цилиндрические распорки (не показаны). Эти распорки формируются, например, из пластмассы, стекла или т.п. Зазор между подложкой 11 цветового фильтра и подложкой 12 матрицы поддерживается герметиком 15, описанным выше, и распорками, в результате чего поддерживается зазор жидкокристаллического слоя 13.

Как показано на фиг.1, к передней стороне подложки 11 цветового фильтра и задней стороне подложки 12 матрицы прикреплены поляризационные платы 17 и 18. Этот вариант относится к жидкокристаллической панели, в которой выравнивающие пленки 46 и 56 сформированы с помощью вертикальных выравнивающих пленок, описанных выше (жидкокристаллическая панель в варианте так называемого вертикального выравнивания). При использовании жидкокристаллической панели в варианте вертикального выравнивания оси поляризации двух поляризационных пластин 17 и 18 ортогональны друг другу. В этом варианте обрамление 30 закреплено на передней стороне жидкокристаллической панели 10, как показано на фиг.1. К задней стороне жидкокристаллической панели 10 прикреплена рамка 32. Обрамление 30 и рамка 32 поддерживают жидкокристаллическую панель 10. Кроме того, рамка 32 поддерживает периферию вокруг зоны, соответствующей пиксельной области 10а жидкокристаллической панели 10. Рамка 32 имеет отверстие, проходящее сквозь зону, соответствующую пиксельной области 10а жидкокристаллической панели 10. К задней стороне жидкокристаллической панели 10 прикреплена подсветка 20 жидкокристаллического дисплейного устройства 100.

Как показано на фиг.1, подсветка 20 представляет собой внешний источник света, скомпонованный на задней стороне (правая сторона на фиг.1) жидкокристаллической панели 10. В этом варианте подсветка 20 включает в себя множество источников 22 света (например, трубка с холодным катодом, светоизлучающие диоды (LED) и т.д.) и шасси 24 подсветки. Шасси 24 подсветки имеет форму короба с окном, обращенным к передней стороне (сторона жидкокристаллической панели 10). На шасси 24 подсветки скомпоновано множество источников 22 света. Оптические листы 26 уложены друг на друга в окне шасси 24 подсветки.

Оптический лист 26 включает в себя, например, светорассеивающую пластину, светорассеивающий лист, линзовый лист и лист, усиливающий яркость, в указанном порядке, начиная с задней стороны. Шасси 24 подсветки закреплено на задней стороне рамки 32 с источниками 22 света, обращенными к жидкокристаллической панели 10, как было описано выше. Оптический лист 26, кроме того, расположен между задней поверхностью рамки 32 жидкокристаллической панели 10 и передней поверхностью шасси 24 подсветки. Жидкокристаллическое дисплейное устройство 100 включает в себя управляющую секцию 200, как показано на фиг.1. Управляющая секция 200 включает в себя схему (например, схему модуляции света, такую как схема инвертора трубки с холодным катодом, для регулировки яркости подсветки 20 в соответствии с отображаемым изображением или видео). Управляющая секция 200 регулирует яркость подсветки 20, например, путем регулирования мощности, подводимой к источникам 22 света.

К подложке 11 цветового фильтра и подложке 12 матрицы жидкокристаллической панели 10 прикладывается регулируемое напряжение. Это приводит в действие жидкокристаллические молекулы в жидкокристаллическом слое 13 жидкокристаллической панели 10. При использовании жидкокристаллической панели 10 жидкокристаллические молекулы в жидкокристаллическом слое 13 приводятся в движение для каждого из пикселей А (в частности субпиксели AR, AG и AB, определенные как R, G и B). Таким образом, свет от подсветки 20 может блокироваться или передаваться, а также может изменяться светопроницаемость для каждого пикселя А (в частности каждого из субпикселей AR, AG и AB, определенных как R, G и B). Кроме того, жидкокристаллическое дисплейное устройство 100 отображает нужное изображение, регулируя яркость подсветки 20 и т.д. Заметим, что каждый из субпикселей AR, AG и AB, определенных как R, G и B, кроме того, делится в этом варианте на два подчиненных пикселя Pa и Pb, как показано на фиг.2.

Далее описывается схема возбуждения жидкокристаллической панели 10.

Как показано на фиг.5, в подложке 12 матрицы шина 43а является шиной истоков (шина сигнала данных) для посылки управляющего сигнала (сигнала данных) на электрод 121 истоков тонкопленочных транзисторов 47а и 47b. Шина 43b является шиной затворов (шина сканирующих сигналов) для посылки управляющего сигнала (сканирующий сигнал) на электрод 122 затворов тонкопленочных транзисторов 47а и 47b. Шина 43с является шиной (шина Cs, шина запоминающих транзисторов) для посылки управляющего сигнала на запоминающие конденсаторы Cs.

В этом варианте шины 43а истоков проложены в направлении столбцов жидкокристаллической панели 10, как показано на фиг.2. Шины 43а истоков скомпонованы так, что они проходят вертикально вблизи субпикселей AR, AG и AB, определенных как R, G и B. В этом варианте шины 43b затворов идут в направлении строк жидкокристаллической панели 10. Шины 43b затворов скомпонованы так, что они проходят горизонтально в центральных частях субпикселей AR, AG и AB. Шины Cs 43с проложены в направлении строк жидкокристаллической панели 10. Шины Cs 43с скомпонованы так, что они проходят горизонтально через интервалы субпикселей AR, AG и AB в направлении столбцов. Шины 43а истоков подсоединены к возбудителю 71 истоков. Шины 43b затворов подсоединены к возбудителю 72 затворов. Шины Cs 43c подсоединены к группе опорных шин 180 (смотри фиг.5, фиг.6), проложенных по обеим сторонам в направлении строк жидкокристаллической панели 10.

В данном варианте в каждом из субпикселей AR, AG и AB на пересечении шины 43а истоков и шины 43b затворов, как показано на фиг.4 и 5, предусмотрены тонкопленочные транзисторы 47а и 47b (TFT). Тонкопленочные транзисторы 47а и 47b включают в себя электрод 121 истока, электрод 122 затвора и электроды 123а и 123b стоков. В этом варианте электрод 121 истока проходит от шины 43а истока к месту, где обеспечены тонкопленочные транзисторы 47а и 47b. Электрод 121 истока совместно используется верхним и нижним тонкопленочными транзисторами 47а и 47b. Электрод 122 затвора предусмотрен на шине 43b затворов. Электроды 123а и 123b стоков предусмотрены в зонах верхнего и нижнего подчиненных пикселей 42а и 42b соответственно. Между электродом 121 истоков, электродом 122 затворов и электродами 123а и 123b стоков находится полупроводник (не показан).

Каждый из подчиненных пикселей Pa и Pb включает в себя запоминающий конденсатор Cs. В варианте, показанном на фиг.4, запоминающий конденсатор Cs включает в себя шину Cs 43с и электрод 142а или 142b запоминающих конденсаторов напротив шины Cs 43с с изолирующей пленкой между ними (не показана). В этом варианте электроды 142а и 142b запоминающих конденсаторов соединены с электродами 123а и 123b стоков тонкопленочных транзисторов 47а и 47b выводными шинами 144а и 144b соответственно. Электроды 142а и 142b запоминающих конденсаторов соединены с пиксельными электродами 42а и 42b подчиненных пикселей Pa и Pb через контактные отверстия 142а1 и 142b1, проходящие через межслойную изолирующую пленку (не показана).

Шины Cs 43с подсоединены к группе опорных шин 180, которая включает в себя множество опорных шин 181-184. Заметим, что группа опорных шин 180 относится к множеству опорных шин 181-184, которые проложены вместе. Группа опорных шин 180 проложена вдоль периферийных участков жидкокристаллической панели 10 (против боковых участков в направлении строк жидкокристаллической панели 10 в данном варианте). На фиг.6 представлена схема, показывающая структуру соединений шин Cs 43с с опорными шинами 181-184.

Шины Cs 43с проложены в направлении строк жидкокристаллической панели 10, как показано на фиг.6. Шины Cs 43с скомпонованы с интервалами между ними в направлении столбцов жидкокристаллической панели 10. Как показано на фиг.2, запоминающие конденсаторы Cs подчиненных пикселей Pa и Pb, каждый из которых скомпонован в направлении строк жидкокристаллической панели 10, соединены с шинами Cs 43с. В противоположность этому, как показано на фиг.6, опорные шины 181-184 проложены в направлении столбцов жидкокристаллической панели 10 в противоположных краевых участках в направлении строк жидкокристаллической панели 10. Например, в варианте, показанном на фиг.6, в группе опорных шин 180 проложены четыре опорные шины 181-184. В этом случае к одной опорной шине подсоединены шины Cs 43с, расположенные в направлении столбцов жидкокристаллической панели 10, которые расположены с регулярными интервалами, состоящими из четырех шин, в направлении столбцов.

В примере, показанном на фиг.6, восемь шин Cs 43с (1)-(8) скомпонованы последовательно в направлении столбцов жидкокристаллической панели 10. В этом случае шины из числа шин Cs 43с, расположенных с регулярными интервалами, состоящими из четырех шин, в направлении столбцов жидкокристаллической панели 10 подсоединены к одной и той же шине из числа опорных шин 181-184. То есть к опорной шине 181 подсоединены шины Cs 43с(1) и 43с(5). К опорной шине 182 подсоединены шины Cs 43с(2) и 43с(6). К опорной шине 183 подсоединены шины Cs 43с(3) и 43с(7). К опорной шине 184 подсоединены шины Cs 43с(4) и 43с(8). Заметим, что, хотя это на данном чертеже не показано, шины Cs 43с, подсоединенные к запоминающим конденсаторам Cs, обеспеченным в подчиненных пикселях Pa и Pb жидкокристаллической панели 10, предпочтительно подсоединять к разным опорным шинам.

Заметим, что, хотя в примере, показанном на фиг.6, шины из числа шин Cs 43с, которые расположены с регулярными интервалами, составляющими четыре шины, в направлении столбцов жидкокристаллической панели 10, подсоединены к одной и той же шине из числа опорных шин 181-184, имеют место реальные случаи, когда в жидкокристаллической панели 10 предусмотрено больше опорных шин (например, 12 опорных шин). Хотя это на данном чертеже не показано, в случае наличия, например, 12 опорных шин, предпочтительно, чтобы шины из числа шин Cs 43с, расположенные с регулярными интервалами, составляющими 12 шин, в направлении столбцов жидкокристаллической панели 10, были подсоединены к одной и той же опорной шине. Причем предпочтительно, чтобы шины Cs 43с были подсоединены к заранее определенным опорным шинам, с тем чтобы на шины Cs 43с посылались намеченные управляющие сигналы. Таким образом, в случае, когда жидкокристаллическая панель 10 имеет 12 опорных шин, не всегда получается, что шины из числа шин Cs 43с, расположенные с регулярными интервалами, составляющими 12 шин, подсоединены к одной и той же опорной шине.

На фиг.7 представлена блок-схема, раскрывающая структуру возбуждения жидкокристаллической панели 10. Жидкокристаллическое дисплейное устройство 100 включает в себя управляющую секцию 200, как показано на фиг.7. Управляющая секция 200 сформирована в виде комбинации интегральных схем (IC), больших интегральных схем (LSI), центрального процессора (CPU), энергонезависимых устройств памяти и т.д. Управляющая секция 20 выполняет необходимые функции посредством выполнения различных электронных процессов в соответствии с предписанной программой. Жидкокристаллическая панель 10 находится под управлением управляющей секции 200. Управляющая секция 200 включает в себя секцию 201 ввода сигналов, секцию 202 управления временными соотношениями, источник 203 питания и секцию 204 управления запоминающими конденсаторами. Заметим, что управление запоминающим конденсатором Cs (смотри фиг.2) на фиг.7 не показано.

Секция 201 ввода сигналов принимает множество управляющих сигналов от внешней системы (не показана). Управляющие сигналы, вводимые от внешней системы, включают в себя сигналы, относящиеся к видео, подлежащему отображению на жидкокристаллической панели 10. В этом варианте управляющие сигналы поступают в возбудитель 71 истоков и возбудитель 72 затворов через секцию 202 управления временными соотношениями на основе управляющих сигналов, введенных в секцию 201 ввода сигналов. На основе множества управляющих сигналов, введенных от внешней системы (не показана), секция 202 управления временными соотношениями создает управляющие сигналы (сканирующий сигнал «а», сиг