Резервирование временных слотов для сценария доминирующих помех в сети беспроводной связи путем прямой связи между вызывающей помехи базовой станцией и подвергаемой помехам базовой станцией

Иллюстрации

Показать все

Изобретение относится к технике связи и может быть использовано в беспроводных сетях. Технический результат - повышение производительности. Способ беспроводной связи заключается в том, что сообщают состояние помех, наблюдаемых в терминале; резервируют временные интервалы для обслуживающей базовой станции посредством установки заранее определенного временного интервала, который априори известен обслуживающей базовой станции и вызывающей помехи базовой станции, или посредством осуществления обмена сообщениями с обслуживающей базовой станцией или вызывающей помехи базовой станцией, или обеими базовыми станциями, и осуществляют связь с обслуживающей базовой станцией во временных интервалах, зарезервированных для обслуживающей базовой станции на основании сообщенного состояния помех, причем упомянутые зарезервированные временные интервалы имеют пониженные помехи от вызывающей помехи базовой станции. 6 н. и 20 з.п. ф-лы, 13 ил.

Реферат

Настоящая заявка испрашивает приоритет предварительной заявки США №60/988,662 "Разделение длинных чередований для противодействия десенсибилизации", поданной 16 ноября 2007 г., переуступленной правопреемнику настоящей заявки и включенной в настоящий документ посредством ссылки.

Область техники

Настоящее раскрытие относится к связи и, в частности, к способам передачи для сетей беспроводной связи.

Уровень техники

Сети беспроводной связи повсеместно внедряются для предоставления различных услуг связи, таких как голосовая связь, передача видеоданных, передача пакетных данных, широковещательная рассылка, передача сообщений и т.п. Эти беспроводные сети могут представлять собой сети множественного доступа, которые способны поддерживать связь для множества пользователей путем совместного использования доступных сетевых ресурсов. Примеры таких сетей множественного доступа включают в себя сети Множественного Доступа с Кодовым Разделением (CDMA), сети Множественного Доступа с Временным Разделением (TDMA), сети Множественного Доступа с Частотным Разделением (FDMA), сети Множественного Доступа с Ортогональным Частотным Разделением (OFDMA) и сети FDMA с Одной Несущей (SC-FDMA).

Сеть беспроводной связи может включать в себя некоторое количество базовых станций, которые могут поддерживать связь для некоторого количества терминалов. Терминал может осуществлять связь с обслуживающей базовой станцией через прямую и обратную линии связи. Термин «прямая линия связи» (или нисходящая линия связи) обозначает линию связи от базовой станции к терминалу, а термин «обратная линия связи» (или восходящая линия связи) обозначает линию связи от терминала к базовой станции.

Обслуживающая базовая станция может передавать данные в терминал по прямой линии связи и/или может принимать данные от терминала по обратной линии связи. В прямой линии связи терминал может подвергаться сильным помехам от соседней базовой станции и может быть не в состоянии корректно декодировать передачу данных от обслуживающей базовой станции. В обратной линии связи передача данных из терминала может вызвать сильные помехи в соседней базовой станции, из-за чего последняя может не иметь возможность корректно декодировать передачи данных, осуществляемые другими терминалами в базовую станцию.

Следовательно, существует необходимость в способах для противодействия сильным помехам в целях улучшения производительности.

Сущность изобретения

В настоящем документе описаны способы для противодействия сильным помехам в сценарии доминирующих помех. В сценарии доминирующих помех терминал может подвергаться сильным помехам от вызывающей помехи базовой станции. Эти помехи могут быть так сильны, что терминал может не иметь возможности принять требуемый сигнал от обслуживающей/выбранной базовой станции.

В одном аспекте контрмера против сильных помех в сценарии доминирующих помех может заключаться в резервировании временных интервалов для обслуживающей базовой станции. Эти зарезервированные временные интервалы могут соответствовать кадрам в одном или более чередованиях, и они могут сократить (например, уменьшить или свести к нулю) помехи от вызывающей помехи базовой станции. Терминал может осуществлять связь с обслуживающей базовой станцией в зарезервированных временных интервалах, и он может получить возможность избежать помех, которые приводят к потере чувствительности приемника в терминале.

В одном варианте осуществления терминал может измерять принятую мощность базовых станций и сообщать состояние помех. Обслуживающая базовая станция может принять отчет о состоянии помех, наблюдаемых в терминале, и может зарезервировать для себя временные интервалы, если упомянутый отчет указывает, что терминал подвергается сильным помехам. Обслуживающая базовая станция может передать запрос резервирования в вызывающую помехи базовую станцию, чтобы зарезервировать временные интервалы. Вызывающая помехи базовая станция может удовлетворить этот запрос и передать ответ в обслуживающую базовую станцию. Далее, обслуживающая базовая станция может осуществлять связь с терминалом в зарезервированных временных интервалах.

Терминал может не иметь возможности детектирования обслуживающей базовой станции или открытия соединения с обслуживающей базовой станцией до резервирования временных интервалов. В одном варианте осуществления терминал может детектировать сильные помехи от вызывающей помехи базовой станции и инициировать освобождение некоторых временных слотов для детектирования и установления связи с обслуживающей базовой станцией. Терминал может передать сообщение в вызывающую помехи базовую станцию, чтобы запросить освобождение некоторых временных интервалов. Далее, интервал может выполнить обмен сообщениями с обслуживающей базовой станцией в освобожденных временных интервалах, чтобы открыть соединение с обслуживающей базовой станцией. Обслуживающая базовая станция или терминал может инициировать резервирование временных интервалов для обслуживающей базовой станции. Освобожденные временные интервалы могут быть действительны в течение короткого периода, тогда как зарезервированные временные интервалы могут быть действительны в течение более длительного периода.

Различные аспекты и отличительные признаки раскрытия более подробно описаны ниже.

Краткое описание чертежей

Фиг.1 - иллюстрация сети беспроводной связи;

Фиг.2 - иллюстрация структуры чередования передачи;

Фиг.3A - иллюстрация передачи данных по прямой линии связи;

Фиг.3B - иллюстрация передачи данных по обратной линии связи;

Фиг.4 - иллюстрация примера зарезервированных чередований для базовой станции;

Фиг.5 - иллюстрация процедуры резервирования чередования;

Фиг.6 - иллюстрация процедуры освобождения чередования;

Фиг.7 и 8 - иллюстрации процесса и устройства, соответственно, для терминала, функционирующего в сценарии доминирующих помех;

Фиг.9 и 10 - иллюстрации процесса и устройства, соответственно, для обслуживающей базовой станции в сценарии доминирующих помех;

Фиг.11 и 12 - иллюстрации процесса и устройства, соответственно, для вызывающей помехи базовой станции в сценарии доминирующих помех;

Фиг.13 - иллюстрация структурной схемы терминала, обслуживающей базовой станции и вызывающей помехи базовой станции.

Подробное описание

Описанные в настоящем документе способы могут быть использованы для различных сетей беспроводной связи, таких как CDMA, TDMA, FDMA, OFDMA, SC-FDMA и другие. Термины "система" и "сеть" используются в настоящем документе как взаимозаменяемые. Сеть CDMA может реализовывать радио технологию, такую как Универсальный Наземный Радиодоступ (UTRA), cdma2000 и т.п. UTRA включает в себя стандарт Широкополосного CDMA (W-CDMA) и другие разновидности CDMA. cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может реализовывать такую радио технологию, как Глобальная Система Мобильной Связи (GSM). Сеть OFDMA может реализовывать такую радио технологию, как Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM® и т.п. UTRA и E-UTRA являются частью стандарта Универсальной Системы Мобильной Связи (UMTS). Долгосрочная Эволюция (LTE) 3GPP является предстоящим выпуском UMTS, в котором используется E-UTRA, где на нисходящей линии связи применяется OFDMA, а на восходящей линии связи применяется SC-FDMA. Стандарты UTRA, E-UTRA, UMTS, LTE и GSM описаны в документах "Проекта Партнерства 3-го поколения" (3GPP). Стандарты cdma2000 и UMB описаны в документах "Второго Проекта Партнерства 3-го поколения" (3GPP2).

Фиг.1 представляет собой иллюстрацию сети 100 беспроводной связи, которая может включать в себя некоторое количество базовых станций и других сетевых объектов. Для простоты на Фиг.1 показаны только две базовые станции 120 и 122, а также один сетевой контроллер 150. Базовая станция может представлять собой стационарную станцию, которая осуществляет связь с терминалами. Базовая станция также может упоминаться как точка доступа, Узел B (Node B), Усовершенствованный Узел В (eNB) и т.п. Базовая станция может обеспечивать покрытие связи для определенной географической зоны. Общая зона покрытия базовой станции может быть разделена на меньшие области, и каждая из этих меньших областей может обслуживаться соответствующей подсистемой базовой станции. В зависимости от контекста термин "ячейка" (сота) может обозначать зону покрытия базовой станции и/или подсистему базовой станции, которая обслуживает эту зону покрытия.

Базовая станция может обеспечивать покрытие связи для макро-ячейки, пико-ячейки, фемто-ячейки или некоторого другого типа ячейки. Макро-ячейка может охватывать относительно большую географическую область (например, в радиусе нескольких километров) и может поддерживать связь для всех терминалов с абонентной подпиской беспроводной сети. Пико-ячейка может охватывать относительно малую географическую область и может поддерживать связь для всех терминалов с абонентской подпиской. Фемто-ячейка может охватывать относительно малую географическую область (например, дом) и может поддерживать связь для терминалов, имеющих ассоциацию с этой фемто-ячейкой (например, терминалы жильцов упомянутого дома). Терминалы, поддерживаемые фемто-ячейкой, могут входить в Закрытую Группу Абонентов (CSG). Базовая станция для макро-ячейки может обозначаться термином "макро базовая станция". Базовая станция для пико-ячейки может обозначаться термином "пико-базовая станция". Базовая станция для фемто-ячейки может обозначаться термином "фемто-базовая станция" или "домашняя базовая станция".

Сетевой контроллер 150 может быть соединен с несколькими базовыми станциями и может обеспечивать координацию и управление для этих базовых станций. Сетевой контроллер 150 может осуществлять связь с базовыми станциями 120 и 122 через транспортную сеть. Базовые станции 120 и 122 также могут осуществлять связь друг с другом, например, напрямую или косвенно через беспроводной или проводной интерфейс.

Терминал 110 может представлять собой один из множества терминалов, поддерживаемых беспроводной сетью 100. Терминал 110 может быть стационарным или мобильным и также может упоминаться как Терминал Доступа (AT), Мобильная Станция (MS), Пользовательское Оборудование (UE), абонентский узел, станция и т.п. Терминал 110 может представлять собой сотовый телефон, Персональный Цифровой Секретарь (PDA), беспроводной модем, устройство беспроводной связи, карманное устройство, портативный компьютер, бесшнуровой телефон, станцию Беспроводной Местной Линии (WLL) и т.п.

Терминал 110 может осуществлять связь с обслуживающей базовой станцией и может вызывать помехи и/или подвергаться помехам от одной или более вызывающих помехи базовых станций. Обслуживающая базовая станция является базовой станцией, которая обслуживает терминал по прямой и/или обратной линии связи. Вызывающая помехи базовая станция является базовой станцией, которая вызывает помехи в терминале по прямой линии связи и/или подвергается помехам от терминала по обратной линии связи. На Фиг.1 базовая станция 120 является выбранной базовой станцией для терминала 110 до доступа к системе, и она является обслуживающей базовой станцией для терминала 110 после доступа к системе. Базовая станция 122 является вызывающей помехи базовой станцией для терминала 110.

Фиг.2 представляет собой структуру 200 передачи чередований, которая может быть использована для прямой и обратной линий связи. Временная линия передачи может быть разделена на единицы кадров. Каждый кадр может охватывать определенный временной промежуток, например, 1 миллисекунду (мс). На кадр также могут ссылаться как на подкадр, слот и т.п.

Можно задать M чередований с индексами от 0 по M-1, где M может быть равно 4, 6, 8 или некоторой другой величине. Каждое чередование может включать в себя кадры, которые отделены друг от друга M кадрами. Например, чередование 0 может включать в себя кадры 0, M, 2M и т.д., чередование 1 может включать в себя кадры 1, M+1, 2M+1 и т.д., как показано на Фиг.2. Эти чередование могут быть использованы для Гибридных Автоматических Повторных Передач (HARQ), и они также могут называться чередованиями HARQ. Согласно схеме HARQ для одного пакета может быть выполнена одна или более передач до тех пор, пока этот пакет не будет корректно декодирован, либо пока не будет достигнуто некоторое другое условие завершения. Все передачи пакета могут быть осуществлены в разных кадрах одного чередования.

Эти чередования для прямой линии связи также могут называться чередованиями прямой линии связи (FL), а чередования для обратной линии связи также могут называться чередованиями обратной линии связи (RL). В одном варианте осуществления M FL чередований могут быть ассоциированы с M чередованиями RL по схеме взаимно-однозначного соответствия. Например, FL чередование m может быть ассоциировано с RL чередованием r={(m+Q) mod M}, где Q представляет собой сдвиг (в количестве кадров) между FL чередованием и соответствующим RL чередованием, а "mod" обозначает операцию по модулю (возврата остатка целочисленного деления). В одном варианте осуществления Q может быть равно M/2, и каждое FL чередование может быть ассоциировано с соответствующим RL чередованием, которое сдвинуто на M/2 кадров.

Пара чередований, состоящая из FL чередования и соответствующего RL чередования, может поддерживать передачу данных как по прямой линии связи, так и по обратной линии связи. Для передачи данных по прямой линии связи данные и управляющая информация могут быть переданы в кадрах FL чередования, а управляющая информация/информация обратной связи может быть передана в кадрах соответствующего RL чередования. Для передачи данных по обратной линии связи данные и управляющая информация могут быть переданы в кадрах RL чередования, а управляющая информация/информация обратной связи может быть передана в кадрах соответствующего FL чередования. В целом, управляющая информация может содержать любую информацию, которая используется для поддержки передачи данных, например, информацию о канале, информацию о предоставлении ресурсов, информацию обратной связи и т.п.

Фиг.3A представляет собой иллюстрацию передачи данных по прямой линии связи посредством пары чередований, например, RL чередования m и FL чередования m+Q. Терминал 110 может периодически оценивать качество канала прямой линии связи для обслуживающей базовой станции 120 и может передавать информацию Индикатора Качества Канала (CQI) в кадре m RL чередования m. Базовая станция 120 может использовать информацию CQI и/или другую информацию, чтобы планировать терминал 110 для передачи данных по прямой линии связи и чтобы выбирать Схему Модуляции и Кодирования (MCS). Базовая станция 120 может передать разрешение и данные FL в кадре m+Q FL чередования m+Q. Разрешение FL может включать в себя выбранную MCS, назначенные ресурсы и т.п. Терминал 110 может обработать передачу данных из базовой станции 120 согласно разрешению ПСЛ и, в зависимости от результата декодирования, он может передать квитирование (ACK) или негативное квитирование (NAK) в кадре m+M. Базовая станция 120 может повторно передать эти данные, если принимается NAK, и может передать новые данные, если принимается ACK. Передача данных по прямой линии связи и обратная связь ACK/NAK по обратной линии связи может продолжаться схожим образом.

Фиг.3B представляет собой иллюстрацию передачи данных по обратной линии связи посредством одной пары чередований, например, RL чередования m и FL чередования m+Q. Терминал 110 может иметь некоторые данные для передачи обслуживающей базовой станции 120, и он может передать запрос ресурсов в кадре m RL чередования m. Базовая станция 120 может выполнить планирование терминала 110 для передачи данных по обратной линии связи и может передать разрешение RL в кадре m+Q FL чередования m+Q. Разрешение RL может включать в себя выбранную MCS, назначенные ресурсы и т.п. Терминал 110 может выполнить передачу данных согласно разрешению ОСЛ в кадре m+M. Базовая станция 120 может обработать эту передачу данных от терминала 110 и, в зависимости от результата декодирования, передать ACK или NAK в кадре m+M+Q. Терминал 110 может повторно передать данные, если принимается NAK, либо он может передать новые данные, если принимается ACK. Передача данных по обратной линии связи и обратная связь ACK/NAK по прямой линии связи может продолжаться схожим образом.

Как показано на Фиг.3A и 3B пара чередований может поддерживать передачу данных по прямой и/или обратной линиям связи. В одном варианте осуществления передача данных по прямой линии связи и обратной линии связи может иметь место в разных кадрах. В еще одном варианте осуществления передача данных по прямой линии связи и обратной линии связи может иметь место в одном и том же кадре, например, путем использования Мультиплексирования с Частотным Разделением (FDM), Мультиплексирования с Временным Разделением (TDM) и т.п.

В целом, передача данных по первой линии связи может поддерживаться посредством (i) одного или более чередований по первой линии связи для передачи данных и управляющей информации и (ii) одного или более чередований по второй линии связи для передачи управляющей информации/информации обратной связи. Количество используемых по каждой линии чередований может зависеть от объема данных и управляющей информации, передаваемых по этой линии, доступности чередований для этой линии и т.п. Данные могут быть переданы по одному или множеству чередований по первой линии связи, а управляющая информация/ информация обратной связи может быть передана по одному чередованию по второй линии связи.

Терминал 110 может работать в сценарии доминирующих помех, который может возникнуть по различным причинам. Например, сценарий доминирующих помех может иметь место из-за базовых станций, передающих на сильно отличающихся уровнях мощностей, например при уровне 20 Вт для макро базовых станций и уровне 1 Вт для пико- и фемто-базовых станций. Терминал 110 может принимать сигналы от двух базовых станций 120 и 122, причем уровень принимаемой мощности для базовой станции 120 может быть меньше, чем уровень для базовой станции 122. Тем не менее, терминалу 110 может потребоваться установить соединение с базовой станцией 120, если потери в канале для базовой станции 120 меньше потерь в канале для базовой станции 122. Это может иметь место, если базовая станция 120 является пико- или фемто-базовой станцией (не показана на Фиг.1) и имеет существенно меньшую мощность передачи по сравнению с базовой станцией 122, которая может представлять собой макро базовую станцию (не показана на Фиг.1). Для терминала 110 может быть предпочтительным установление соединения с базовой станцией 120 с меньшей принимаемой мощностью, поскольку в этом случае для достижения заданной скорости передачи данных, в сети будет меньше помех.

Сценарий доминирующих помех также может возникнуть из-за ограниченной ассоциации. Терминал 110 может быть расположен очень близко к базовой станции 122, вследствие чего для базовой станции 122 обеспечивается наиболее эффективный канал и наивысшая принимаемая мощность. Тем не менее терминал 110 может не входить в CSG базовой станции 122 и не иметь доступ к базовой станции 122. Тогда, терминал 110 может установить соединение с базовой станцией 120, которая обеспечивает более низкий уровень принимаемой мощности, и терминал 110 может подвергаться сильным помехам от базовой станции 122.

Терминал 110 может подвергаться сильным помехам в сценарии доминирующих помех. Уровень этих помех может быть таким высоким, что они могут привести к потере чувствительности приемника в терминале 110. Терминал 110 может выполнить Автоматическое Регулирование Усиления (AGC) и отрегулировать усиление приемника таким образом, чтобы входной сигнал, предоставляемый в аналого-цифровой преобразователь (АЦП) в приемнике, был на уровне целевого сигнала, чтобы избежать обрезания импульсов в АЦП. Входной сигнал АЦП может содержать желаемый сигнал от обслуживающей/выбранной базовой станции 120, а также сильные помехи от вызывающей помехи базовой станции 122. Эти сильные помехи могут быть значительно сильней входного сигнала АЦП, и желаемый уровень сигнала может быть ниже уровня шума дискретизации АЦП. В этом случае, даже если вызывающая помехи базовая станция 122 осуществляет передачу по разным частотным ресурсам (например, разным наборам поднесущих) относительно обслуживающей базовой станции 120, терминал 110 будет не в состоянии принять желаемый сигнал от базовой станции 120, поскольку желаемый сигнал будет замаскирован шумом дискретизации АЦП. Таким образом, упомянутые сильные помехи могут привести к потере чувствительности АЦП терминала 110. Терминал 110 может быть не в состоянии принять желаемый сигнал от обслуживающей базовой станции 120 в подобном сценарии десенсибилизации.

Терминал 110 может быть соединен с обслуживающей базовой станцией 120 и может быть подвержен потере чувствительности из-за базовой станции 122, вызывающей помехи по прямой линии связи. Существует вероятность, что базовая станция 122 в свою очередь будет подвержена десенсибилизации из-за терминала 110 по обратной линии связи. Таким образом, терминал 110 может быть жертвой на прямой линии связи и агрессором на обратной линии связи. В другом случае базовая станция 122 может быть агрессором на прямой линии связи и жертвой на обратной линии связи. В подобном симметричном сценарии десенсибилизации ни терминал 110, ни базовая станция 122 не смогут осуществлять передачу данных по прямой линии связи или обратной линии связи. Это обусловлено тем, что передача данных по одной линии связи, как правило, требует передачи управляющей информации/информации обратной связи (например, ACK/NAK) по другой линии связи, как показано на Фиг.3A и 3B. Например, хотя терминал 110 может быть жертвой только на прямой линии связи, терминал 110 также может не иметь возможности передачи данных по обратной линии связи, поскольку он не сможет принимать управляющую информацию/информацию обратной связи по прямой линии связи.

В одном аспекте, десенсибилизация терминала 110 в сценарии доминирующих помех может быть предотвращена путем резервирования временных интервалов (например, группы чередований) для обслуживающей базовой станции 120. Эти зарезервированные временные интервалы могут иметь низкие помехи или отсутствие помех от вызывающей помехи базовой станции 120, и они могут быть использованы для связи между терминалом 110 и обслуживающей базовой станцией 120. Это может позволить терминалу 110 принимать желаемый сигнал от обслуживающей базовой станции 120 и избежать сильных помех от вызывающей помехи базовой станции 122.

В целом, для базовой станции 120 может быть зарезервировано время, заданное в любых единицах. Для ясности, ниже приведено описание для резервирования набора чередований, который можно назвать зарезервированным набором. Зарезервированный набор может включать в себя одно или более FL чередований, которые резервируются для базовой станции 120. В одном варианте осуществления, вызывающая помехи базовая станция 122 может избежать использования (то есть, выполнения передач) зарезервированных FL чередований, так что на зарезервированных чередованиях в терминале 110 могут отсутствовать помехи от базовой станции 122. В еще одном варианте осуществления, вызывающая помехи базовая станция 122 может осуществлять передачи по зарезервированным FL чередованиям таким образом, что на зарезервированных чередованиях в терминале 110 могут отсутствовать помехи от базовой станции 122 либо эти помехи могут иметь низкий уровень. Например, вызывающая помехи базовая станция 122 может сократить свою мощность передачи по зарезервированным FL чередованиям. Вызывающая помехи базовая станция 122 также может изменить направление передачи, например, установив терминал 110 в пространственный ноль.

Изменение направления передачи может быть выполнено на основании пространственной информации, которая может содержать весовые коэффициенты предварительного кодирования (например, матрицу или вектор предварительного кодирования), оценки канала и/или другую информацию, используемую передатчиком для изменения направления распространения мощности передачи. Пространственная информация может быть получена или предоставлена различными способами. В одном варианте осуществления, пространственный канал между вызывающей помехи базовой станцией 122 и терминалом может быть известен базовой станции 122, например, на долговременной основе. В еще одном варианте осуществления, терминал 110 может передавать в вызывающую помехи базовую станцию 110 сообщение, содержащее информацию о пространственном канале или о предпочтительном направлении луча между базовой станцией 122 и терминалом 110. В еще одном варианте осуществления может быть использована взаимность между прямой и обратной линиями связи, например, из-за использования дуплексного режима с временным разделением (TDD). Тогда вызывающая помехи базовая станция 122 может оценить обратную линию связи для терминала 110 и может использовать оценку канала обратной линии связи, как оценку канала прямой линии связи. Для всех этих вариантов осуществления вызывающая помехи базовая станция 122 может вывести весовые коэффициенты предварительного кодирования на основании информации о пространственном канале, либо эти коэффициенты могут быть предоставлены базовой станции 122. Тогда вызывающая помехи базовая станция 122 может выполнить изменение направления передачи посредством упомянутых весовых коэффициентов предварительного кодирования.

Зарезервированный набор может включать в себя одно или более RL чередований, которые резервируются для терминала 110/обслуживающей базовой станции 120. Терминал 110 может передать данные и/или управляющую информацию в зарезервированных RL чередованиях в обслуживающую базовую станцию 120. Вызывающая помехи базовая станция 122 может избежать использования зарезервированных RL чередований, поскольку по зарезервированным RL чередованиям она может подвергаться сильным помехам от терминала 110.

В одном варианте осуществления зарезервированные FL чередования и зарезервированные RL чередования могут быть спарены друг с другом. В одном варианте осуществления количество зарезервированных FL чередований равно количеству зарезервированных FL чередований. Пары могут быть реализованы таким образом, что зарезервированное FL чередование может нести данные, а зарезервированное RL чередование может нести управляющую информацию/информацию обратной связи для поддержки передачи данных, и наоборот, как показано на Фиг.3A и 3B. Зарезервированное FL чередование может быть отделено от зарезервированного RL чередования на M/2 кадров. Например, когда M=8, FL чередование 0 может быть ассоциировано с RL чередованием 4, FL чередование 1 может быть ассоциировано с RL чередованием 5 и т.д.

Фиг.4 представляет собой пример резервирования чередования. В этом примере M=8 и доступно восемь FL чередований с 0 по 7 и восемь RL чередований с 0 по 7. Могут быть определены восемь пар чередований. Пара A может включать в себя FL чередование 0 и RL чередование 4, пара B может включать в себя FL чередование 1 и RL чередование 5,..., а пара H может включать в себя FL чередование 7 и RL чередование 3.

В примере по Фиг.4, пары A и D чередований резервируются для базовой станции 120. Базовая станция 120 может передавать данные и управляющую информацию по FL чередованиям 0 и 3, а также принимать данные и управляющую информацию по RL чередованиям 4 и 7 в зарезервированных парах A и D. Пары B, C, E, F, G и H чередований не резервируются для базовой станции 120. Базовая станция 120 и/или 122 может передавать данные и управляющую информацию по FL чередованиям 1, 2, 4, 5, 6 и 7, а также может принимать данные и управляющую информацию по RL чередованиям 0, 1, 2, 3, 5 и 6 в парах B, C, E, F, G и H.

Для варианта осуществления с Фиг.4 гранулярность резервирования может быть задана в единицах чередований для прямой линии связи и обратной линии связи. Для случая 8 чередований, гранулярность резервирования может быть равна 1/8=12,5%. В одном варианте осуществления резервирование чередований может быть симметричным, так что количество зарезервированных FL чередований равно количеству зарезервированных RL чередований. В еще одном варианте осуществления резервирование чередований может быть выполнено независимым образом для каждой линии связи. Для этого варианта осуществления количество зарезервированных FL чередований может быть равно или неравно количеству зарезервированных RL чередований. В целом, для каждой линии связи может быть зарезервировано любое количество чередований, что может зависеть от различных факторов, таких как загрузка всех задействованных базовых станций, приоритет передачи данных и/или управляющей информации и т.п.

В одном варианте осуществления для базовых станций 120 и 122 могут быть зарезервированы разные наборы чередований. Каждая базовая станция может планировать передачи данных и управляющей информации для своих терминалов по набору чередований, который зарезервирован для этой базовой станции. Кроме того, каждая базовая станция также может избежать выполнения передач, сократить количество передач или изменить направление передачи по набору чередований, который зарезервирован для другой базовой станции.

В еще одном варианте осуществления набор чередований может быть зарезервирован для обслуживающей базовой станции 120. Вызывающая помехи базовая станция также может избежать выполнения передач, сократить количество передач или изменить направление передачи по набору чередований, который зарезервирован для другой базовой станции. Нерезервированные чередования могут быть использованы любой другой базовой станцией для передачи. В примере с Фиг.4 только базовая станция 120 может использовать пары A и D чередований, а базовые станции 120 и 122 могут использовать пары B, C, E, F, G и H чередований. При необходимости для базовой станции 122 могут быть зарезервированы одна или более пар чередований.

Резервирование чередований может быть выполнено различными способами. В одном варианте осуществления базовые станции могут осуществлять связь друг с другом (например, через транспортную сеть или через терминал), чтобы резервировать чередования. В одном варианте осуществления резервирование чередований может быть реализовано путем использования сообщений высшего уровня, таких как сообщения Уровня 3 (L3). Уровень 3 может нести ответственность за разделение и назначение ресурсов в беспроводной сети 100.

Фиг.5 представляет собой иллюстрацию процедуры 500 резервирования чередований. Терминал 110 может принимать сигналы прямой линии связи (например, пилот-сигналы) от базовых станций 120 и 122, и измерять принятую мощность каждой базовой станции (этап 1). Терминалу 110 может потребоваться установить соединение с выбранной базовой станцией 120, и он будет подвергаться сильным помехам от базовой станции 122. Например, выбранная базовая станция 120 может представлять собой макро базовую станцию, а вызывающая помехи базовая станция 122 может представлять собой близкорасположенную фемто-базовую станцию с высоким уровнем мощности передачи и ограниченной ассоциацией. Помехи от базовой станции 122 могут быть настолько сильными, что они могут привести к потере чувствительности приемника в терминале 110. Терминал 110 может сообщить о состоянии помех выбранной базовой станции 120 (этап 2). Состояние помех может быть сообщено посредством отчета об измерении пилот-сигнала, в котором может присутствовать принятая мощность для каждой базовой станции, детектированной терминалом 110. Терминал 110 может иметь возможность обмена сообщениями с выбранной базовой станцией 120 по определенным ресурсам, которые могут быть защищены от помех базовой станции 122, как описано ниже.

Выбранная базовая станция 120 может принять от терминала 110 отчет о помехах и может определить, что терминал 110 подвергается сильным помехам. Тогда, базовая станция 120 может передать запрос резервирования в вызывающую помехи базовую станцию 122 (этап 3). Этот запрос может указывать, что базовая станция 120 хочет зарезервировать одно или более чередований по каждой линии связи, а также предоставлять информацию относительно срочности этого запроса, количестве резервируемых чередований, конкретных чередованиях, которые требуется зарезервировать, и т.п. Вызывающая помехи базовая станция 122 может принять этот запрос и принять решение об удовлетворении или отклонении этого запроса (этап 4). Это решение может быть основано на различных факторах, таких как информация приоритета в запросе, нагрузка в вызывающей помехи базовой станции и т.п. Вызывающая помехи базовая станция 122 может удовлетворить запрос по всем, некоторым или ни одному из чередований, запрошенных базовой станцией 120. Эти чередования, если таковые есть, могут быть зарезервированы для базовой станции 120 и они не могут быть использованы вызывающей помехи базовой станции 122.

Вызывающая помехи базовая станция 122 может передать ответ резервирования, содержащий ее решение, в выбранную базовую станцию 120 (этап 5). Этот ответ может указывать зарезервированные чередования для базовой станции 120, временной период, в течение которого зарезервированные чередования будут действительны, и т.п. Тогда, выбранная базовая станция 120 может осуществить связь с терминалом 110 по зарезервированным чередованиям (этап 6).

Фиг.5 представляет собой иллюстрацию одного варианта осуществления, в котором выбранная базовая станция 120 передает запрос резервирования чередований. В еще одном варианте осуществления терминал 110 может инициировать резервирование чередований путем передачи сообщения в выбранную базовую станцию 120 или вызывающую помехи базовую станцию 122.

Резервирование чередований может быть действительно в течение определенного периода времени, которое можно назвать периодом резервирования. В одном варианте осуществления период резервирования может представлять собой предварительно заданный временной период, который априори известен обеим базовым станциям 120 и 122 и который не требуется сообщать в запросе резервирования или ответе резервирования. В еще одном варианте осуществления период резервирования может быть определен выбранной базовой станцией 120 (например, на основании требований данных и/или других факторов), и он может быть передан в запросе резервирования. В еще одном варианте осуществления период резервирования может быть определен вызывающей помехи базовой станцией 122 и передан в ответе резервирования. Например, запрос резервирования может предоставлять запрошенный период резервирования, а ответ резервирования может предоставлять разрешенный период резервирования, который может быть равен части или всему запрошенному периоду резервирования. В любом случае, после истечения периода резервирования вызывающая помехи базовая станция 122 может передавать по зарезервированным чередованиям. Процедура резервирования чередований может быть повторена для резервирования чередований для обслуживающей базовой станции 120.

В процедуре резервирования чередований с Фиг.5 предполагается, что терминал 110 может осуществлять связь с выбранной базовой станцией 120, так что терминал 110 может передавать свое состояние помех. Помехи от вызывающей помехи базовой станции 122 могут иметь достаточно высокий уровень, и они могут привести к потере чувствительности требуемого сигнала от выбранной базовой станции 120. Сверх того, если терминал 110 просыпается из ждущего режима в сценарии доминирующих помех, то терминал 110 может быть не в состоянии детектировать базовую станцию 120 или установить соединение с базовой станцией 120.

Чтобы предоставить возможность терминалу 110 осуществлять связь с выбранной базовой станцией 120 в присутствии сильных помех от базовой станции 122, может быть использована схема самонастройки. При данной схеме может быть освобождена (то есть, очищена или аннулирована) пара чередований, которую терминал 110 может использовать для начальной связи с выбранной базовой станцией 120, например, чтобы установить соединение, инициировать резервирование чередований и т.п. Установление соединения, как правило, обозначает установление сессии связи, которая позволяет выполнять обмен данными, а также сообщениями сигнализации на высших