Имидированный биополимерный адгезив и гидрогель
Иллюстрации
Показать всеИзобретение относится к выделенному имидированному биологически совместимому полимеру, функционализированному имидной группой. Причем указанный полимер выбран из группы, состоящей из полиэтиленоксида, частично или полностью гидролизованного поливиниловым спиртом, поливинилпирролидона, полиэтилоксазолина, блок-сополимеров полипропиленоксида (полоксамеров и мероксаполов), сополимера полиэтиленоксида и полоксамина, карбоксиметилцеллюлозы и гидроксиалкилированной целлюлозы, полипептидов, полисахаридов, углеводов, полисахарозы, гиалуроновой кислоты, декстрана, гепарин-сульфата, кератан-сульфата, хондроитин-сульфата, гепарина, альгината, желатина, коллагена, альбумина, овальбумина, сложных полифосфоэфиров, полилактидов, полигликолидов, поликапролактонов, полиамидов, полиуретанов, сложных полиэфирамидов, полиортоэфиров, полидиоксанонов, полиацеталей, поликеталей, поликарбонатов, полиортокарбонатов, полифосфазенов, полигидроксибутиратов, полигидроксивалератов, пблиалкиленоксалатов, полиалкиленсукцинатов, полималеиновых кислот, полиаминокислот, поливинилового спирта, поливинилпирролидона, полигидроксицеллюлозы, хитина, хитозана, и сополимеров, тройных сополимеров или комбинаций или смесей вышеназванных материалов. Также изобретение относится к композиции для тканевого адгезива, медицинскому устройству и фармацевтической композиции. Предложенное изобретение предоставляет дополнительно модифицированные или функционализированные имидированные полимеры. 4 н. и 5 з.п. ф-лы, 2 пр., 20 ил.
Реферат
УРОВЕНЬ ТЕХНИКИ
Биополимеры природного происхождения не всегда имеют структурные или функциональные характеристики, требуемые для биомедицинских вариантов применения. Тем не менее, полимерные биоматериалы используются в биомедицинских вариантах применения, включающих покрытия медицинского оборудования, искусственные имплантаты и устройства для доставки лекарственных средств. Полимерные сетчатые структуры могут быть сформированы, например, путем сшивания растворов водорастворимых полимеров с образованием нерастворимой в воде полимерной сетчатой структуры. Механические и структурные характеристики можно регулировать, модифицируя плотность сшивания, от которой зависит размер пор сетчатой структуры, содержание воды и механические свойства.
Полимеры, матрицы или гели являются предпочтительными для тканевой инженерии, поскольку их материалы могут инкапсулировать клетки. Некоторые полимеры или гели имеют высокое содержание воды, сравнимое с тканевым влагосодержанием, которое обеспечивает возможность транспорта питательных веществ и отходов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В частности, описание настоящего изобретения представляет композицию, содержащую, по меньшей мере, одно мономерное звено биологически совместимого полимера, функционализированного имидом для формирования тканевого адгезива, гидрогеля или того и другого.
В еще одном варианте осуществления, по меньшей мере, одно из мономерных звеньев биологически совместимого полимера сопряжено со второй функциональной группой, которая может представлять собой имид. Вторая функциональная группа, если не является имидом, может быть любой известной функциональной группой и может придавать полимеру направленность.
Мономер может быть функционализирован, по меньшей мере, двумя функциональными группами. В общем и целом, когда полимер содержит несколько видов функциональных групп, полимер может содержать в основном равномолярные количества различных функциональных групп, или же соотношения могут варьировать согласно выбранной структуре.
Далее, функционализированные биологически совместимые полимерные композиции могут содержать по меньшей мере второй биосовместимый полимер, который реагирует с первым имидированным биологическим полимером. Таким образом, второй полимер может содержать функциональные группы, реакционноспособные по отношению к имиду или еще одной функциональной группе в первом имидированном полимере. Функциональная группа во втором полимере может представлять собой, например, аминогруппу.
Композиции согласно описанию настоящего изобретения могут дополнительно содержать биологически активный агент, такой как питательное вещество, клетка, такая как кровяная клетка или хондроцит, или недифференцированная клетка, такая как стволовая клетка, такая как гематопоэтическая стволовая клетка или мезенхимальная стволовая клетка.
В некоторых вариантах осуществления описываемые композиции представляют собой гидрогели с адгезивными свойствами.
Настоящее изобретение представляет композицию, содержащую биологически совместимый первый полимер, функционализированный имидной группой, и, необязательно, мостиковую молекулу, такую как функционализированный второй полимер, для создания медицинского адгезива. В некоторых вариантах осуществления первый полимер содержит по меньшей мере 10 мономерных звеньев, по меньшей мере, 100 мономерных звеньев или, по меньшей мере, 1000 или более мономерных звеньев. Мостиковая молекула может содержать множество функциональных групп для обеспечения реакции по меньшей мере с двумя молекулами первого полимера.
В полимере не все мономеры должны быть функционализированы реакционноспособным фрагментом.
Первый полимер может быть реакционноспособным по отношению к поверхности структуры, такой как биологическая структура, такая как орган, ткань или клетка, такие как поверхность хряща или кости, или искусственная структура, такая как протез. Второй функциональный фрагмент в первом имидированном полимере, который может представлять собой имид, также может быть реакционноспособным по отношению к поверхности. Первый полимер может быть реакционноспособным по отношению к мостиковой молекуле. Реакции могут протекать любыми способами, которые обеспечивают уровень адгезии, такими, как формирование ковалентной связи, физическое сшивание, ионное связывание или другой молекулярный механизм, который фиксирует молекулы на поверхности, структуре или организме, реакционноспособных по отношению к таковым, и связывает их с мостиковой молекулой.
В некоторых вариантах осуществления многообразные полимеры реагируют между собой с образованием многослойной полимерной структуры с открытыми поверхностями, реакционноспособными по отношению к поверхности, такой как ткань, и к мостиковой молекуле. Мостиковая молекула также может представлять собой многослойную структуру.
Дополнительные признаки и преимущества настоящего изобретения представлены в нижеследующем Подробном Описании Изобретения и будут очевидными из такового.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1-20 изображают разнообразные имиды, которые могут быть использованы в качестве реактантов для дериватизации описываемых мономера или полимера.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение отчасти относится к способу пластики или устранения дефекта ткани или органа, такому как герметизация разреза или раны. Способ включает наложение на поверхность биологически совместимого полимера, содержащего имид. Необязательно, поверхность может быть сначала обработана для создания реакционноспособных функциональных групп, которые могут реагировать с описываемым первым имидированным полимером.
Представляющие интерес гели, сетчатые структуры, конструкционные носители (скаффолды), пленки и тому подобные, изготовленные из описываемой(-ых) композиции(-ций), содействуют интеграции и росту клетки, ткани и органа. Необязательное присутствие клеток, таких как стволовые клетки, усиливает интеграцию и рост клетки, ткани и органа.
Существенным для описываемого продукта является улучшенная интеграция с окружающей тканью для повышения стабильности и связывания с биологической поверхностью и для формирования новой ткани. Исследования in vitro подтвердили эффективность химического механизма реагирования с поверхностью и повышенную механическую прочность на поверхности раздела между материалом и клеткой/тканью/органом.
Настоящее изобретение разрешает проблему формирования волокнистой хрящевой ткани в хирургической практике. Настоящее изобретение применимо, например, на ранней стадии остеоартрита суставов путем применения повязок и гелей для профилактики энзиматического разложения синовиальной жидкости во время и после имплантации. Настоящее изобретение также обеспечивает возможность стимуляции костного мозга без нарушения целостности субхондральной кости. Описываемые соединение или соединения могут быть использованы, например, в глазу, в позвоночнике, в костно-мышечной системе, в местах, где находится хрящ, и так далее.
Настоящее изобретение представляет способ полимеризации in situ для формирования конструкционных носителей (скаффолдов) и тому подобных, которые могут быть сформированы с приданием желательной формы согласно дефекту, способствуют развитию ткани путем стимулирования восстановления нативных клеток, и потенциально могут быть имплантированы с помощью минимальной инвазивной инъекции.
Это описание изобретения направлено, по меньшей мере отчасти, на полимеры, матрицы и гели, и способы получения и применения матриц, полимеров и гелей. Один из таких названных полимеров содержит имид.
Например, данное описание представляет функционализированный биологически совместимый первый полимер, такой как гиалуронат, кератан-сульфат, хондроитин-сульфат и тому подобные, замещенные имидом. Например, см. патентные заявки WO 2006089119, WO 2004029137, WO 2006105161 и WO 2006036681, приведенные в настоящем описании для сведения, о разнообразных вариантах применения подобных, но не имеющих отношения к описываемым соединениям. В таковых не упоминаются никакие имиды, или же изложение явно не касается употребления имидов.
Биологическая поверхность относится к наружной, открытой в окружающую среду части биологического материала или организма, такого как микроб, вирус, клетка, ткань, орган и тому подобные, с которыми биологически совместимый полимер может взаимодействовать, реагировать и/или к которым прилипать.
Биологически совместимый полимер относится к полимеру, который функционализирован для того, чтобы служить в качестве композиции для нанесения на поверхность. Полимер представляет собой полимер природного происхождения, или который нетоксичен для реципиента. Полимер содержит по меньшей мере имид. Полимер может быть гомополимером, где все мономеры являются одинаковыми, или гетерополимером, содержащим два или более типов мономеров. Термины «биосовместимый полимер», «биосовместимая сшитая полимерная матрица» и «биосовместимость», будучи использованными в отношении данных полимеров, являются общепринятыми в технологии и рассматриваются как эквивалентные друг другу, включая биологически совместимый полимер. Например, биосовместимые полимеры содержат полимеры, которые как нетоксичны для реципиента (например, животного или человека), так и не разлагаются (если полимер разлагается) в такой степени, при которой в реципиенте образуются мономерные или олигомерные субъединицы или прочие побочные продукты в токсических концентрациях.
Понятия «активный агент» и «биологически активный агент» употребляются в настоящем описании взаимозаменяемо для обозначения химического или биологического соединения, которое создает желательный фармакологический и/или физиологический эффект, который может быть профилактическим или терапевтическим. Термины также охватывают фармацевтически приемлемые, фармакологически активные производные таковых активных агентов, конкретно упоминаемых в настоящем описании, содержащие, но не ограничивающиеся таковыми, соли, сложные эфиры, амиды, пролекарства, активные метаболиты, аналоги и тому подобные. Когда употребляются термины «активный агент», «фармакологически активный агент» и «лекарственное средство», то это должно пониматься так, что изобретение содержит активный агент как таковой, а также фармацевтически приемлемые, фармакологически активные соли, сложные эфиры, амиды, пролекарства, метаболиты, аналоги и т.д. Активный агент может быть биологическим организмом, таким как вирус или клетка, будь то встречающимся в природе или искусственно измененным, таким как трансформированный.
Понятия «биосовместимый полимер», «биосовместимая сшитая полимерная матрица» и «биосовместимость» являются общепринятыми в технологии. Например, биосовместимые полимеры содержат полимеры, которые не токсичны сами по себе для реципиента (например, животного или человека), не деградируют (если полимер разлагается) в такой степени, при каковой в реципиенте образуются мономерные или олигомерные субъединицы или прочие побочные продукты в токсических концентрациях. В некоторых вариантах осуществления настоящего изобретения биодеградация в общем включает разложение полимера в организме, например, на его мономерные структурные субъединицы, которые могут быть известны как практически нетоксичные. Однако промежуточные олигомерные продукты, образовавшиеся в результате такого разложения, могут иметь различные токсикологические характеристики, или биодеградация может содержать окисление или прочие биохимические реакции, которые формируют молекулы, иные, нежели мономерные структурные субъединицы полимера. Таким образом, в некоторых вариантах осуществления токсикология биоразложимого полимера, предполагаемого для применения in vivo, такого как имплантация или инъекция пациенту, может быть определена после одного или более анализов на токсичность. Нет необходимости в 100%-ной чистоте исследуемой композиции, чтобы считать ее биосовместимой; на самом деле, необходимо только, чтобы исследуемые композиции были биосовместимыми, как изложено выше. Так, исследуемая композиция может содержать полимеры, содержащие 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75% или даже менее биосовместимых полимеров, например, включая описываемые в настоящем описании полимеры и прочие материалы и эксципиенты, и по-прежнему быть биосовместимой.
Чтобы определить, является ли полимер или другой материал биосовместимым, может быть необходимым проведение анализа на токсичность. Такие тестирования хорошо известны в уровне техники. Один пример такого анализа может быть выполнен на живых клетках, таких как HeLa, 293, СНО и тому подобных. Образец частично или полностью разлагают, как известно в уровне техники, с использованием, например, химического реагента или ферментного препарата. Аликвоту продуктов обработки образца помещают в культуральные планшеты с предварительно высеянными клетками. Образцы продуктов инкубируют с клетками. Результаты анализа могут быть нанесены на график в виде процентов (%) относительного роста в зависимости от концентрации деградированного образца.
В дополнение, мономеры, полимеры, полимерные матрицы и композиции согласно настоящему изобретению также могут быть оценены хорошо известными тестами in vivo, такими как подкожные имплантации крысам, для подтверждения того, что они не вызывают значительных уровней раздражения или воспаления в местах подкожной имплантации.
Понятие «биоразложимые» является общепризнанным в технологии и включает мономеры, полимеры, полимерные матрицы, гели, композиции и составы, такие как описываемые в настоящем описании, которые предполагаются деградирующими во время употребления, такого как in vivo. Биоразложимые полимеры и матрицы типично отличаются от биологически неразложимых полимеров тем, что первые могут разлагаться во время употребления. В некоторых вариантах осуществления такое употребление включает применение in vivo, такое как терапию in vivo, и в других определенных вариантах осуществления такое употребление включает применение in vitro. В общем деградация, относимая к биоразложимости, включает деградацию биоразложимого полимера на его составные структурные субъединицы, или расщепление полимера, например, в результате биохимического процесса, на более мелкие неполимерные субъединицы. В некоторых вариантах осуществления в общем могут быть идентифицированы два различных типа биодеградации. Например, один тип биодеградации может содержать расщепление связей (будь то ковалентных или каких-то иных) в каркасе полимера. В таком биоразложении типично образуются мономеры и олигомеры, и, даже более типично, такая биодеградация происходит путем расщепления связи, соединяющей одну или более структурных субъединиц в полимере. Напротив, еще один тип биодеградации может содержать расщепление связи (будь то ковалентной или какой-то иной), находящейся в боковой цепи, или такой, каковая связывает боковую цепь, функциональную группу и тому подобные с каркасом полимера. Например, терапевтический препарат, биологически активный агент или другое химическое вещество, присоединенные в качестве боковой цепи к каркасу полимера, могут быть высвобождены в результате биодеградации. В некоторых вариантах осуществления во время применения полимера могут иметь место один или другой или оба общих типа биоразложения. Как используется в настоящем описании, термин «биодеградация» охватывает оба общих типа биологического разложения.
Скорость деградации биоразложимого полимера часто зависит в некоторой степени от множества факторов, в том числе химической природы связи, ответственной за любое разложение, молекулярной массы, кристалличности, биостойкости и степени сшивания такого полимера, физических характеристик имплантата, формы и размеров, и способа и местоположения введения. Например, чем больше молекулярная масса, чем выше степень кристалличности и/или чем выше биостойкость, тем обычно медленнее биодеградация любого биоразложимого полимера. Термин «биоразложимый» предполагается содержащим материалы и процессы, также называемые как «биологически эродируемые».
В определенных вариантах осуществления скорость биодеградации такого полимера может быть охарактеризована присутствием ферментов, например, хондроитиназы. При таких обстоятельствах скорость биодеградации может зависеть не только от химической природы и физических характеристик полимерной матрицы, но и от природы любого такого фермента.
В определенных вариантах осуществления полимерные составы согласно настоящему изобретению биологически деградируют в течение периода, который является приемлемым в желательном варианте применения. В определенных вариантах осуществления, таких как терапия in vivo, такая деградация происходит в течение периода времени, обычно меньшего, чем примерно пять лет, один год, шесть месяцев, три месяца, один месяц, пятнадцать дней, пять дней, три дня или даже один день воздействия физиологического раствора с величиной рН между 6 и 8, имеющего температуру между около 25 и 37°С. В других вариантах осуществления полимер разлагается в течение периода между примерно одним часом и несколькими неделями, в зависимости от желательного варианта употребления. В некоторых вариантах осуществления полимер или полимерная матрица могут содержать детектируемое средство, которое высвобождается при деградации.
Понятие «сшитый» в настоящем описании относится к композиции, содержащей межмолекулярные сшивки и, необязательно, внутримолекулярные сшивки, возникающие, в общем, в результате формирования ковалентных связей. Ковалентное связывание двух сшиваемых компонентов может быть прямым, в каковом случае атом в одном компоненте непосредственно соединяется с атомом в другом компоненте, или может быть опосредованным, через группу-связку. Сшитый гель или полимерная матрица, в дополнение к ковалентным связям, могут также содержать межмолекулярные и/или внутримолекулярные нековалентные связи, такие как водородные связи и электростатические (ионные) связи.
Понятие «функционализированный» относится к модификации существующего молекулярного сегмента или группы для формирования или для введения новой реакционноспособной или более реакционноспособной группы (например, имидной группы), которая способна вступать в реакцию с еще одной функциональной группой (например, аминогруппой) с образованием ковалентной связи. Например, карбоксильные кислотные группы могут быть функционализированы реакцией с карбодиимидным и имидным реагентом при использовании известных методик для формирования новой реакционноспособной функциональной группы в виде имидной группы, при замещении атома водорода в гидроксильной группе карбоксильной функции.
Понятие «гель» относится к состоянию объекта между жидким и твердым, и в общем определяется как сшитая полимерная сетчатая структура, набухшая в жидкой среде. Типично гель представляет собой двухфазную коллоидальную дисперсию, содержащую как твердое вещество, так и жидкость, в которой количество твердого вещества превышает таковое, которое в двухфазной коллоидальной дисперсии называется как «золь». Как таковой, «гель» имеет некоторые свойства жидкости (то есть форма является упругой и деформируемой) и некоторые свойства твердого тела (то есть форма является достаточно дискретной, чтобы поддерживать трехмерную конфигурацию на двумерной поверхности).
Понятие «время желатинирования», также называемое в настоящем описании как «время гелеобразования», относится к времени, которое затрачивается на то, чтобы композиция стала нетекучей в условиях умеренного напряжения. В общем это проявляется как достижение физического состояния, в котором модуль упругости, G', становится равным или превышает модуль вязкости, G”, то есть коэффициент затухания механических колебаний (тангенс дельта) становится равным 1 (как может быть определено с использованием общеупотребительных реологических методов).
Гидрогель представляет собой набухающую в воде полимерную матрицу, которая может поглощать воду с образованием упругого геля, в котором «матрицы» представляют собой трехмерные сетчатые структуры из макромолекул, удерживаемых вместе ковалентными или нековалентными связками. При помещении в водную окружающую среду сухие гидрогели набухают в результате захватывания в них жидкости до уровня, допускаемого степенью сшивки.
Гидрогели состоят из гидрофильных полимеров, сшитых с образованием набухающей в воде, нерастворимой полимерной сетчатой структуры. Сшивание может быть инициировано многими физическими или химическими механизмами. Фотополимеризация представляет собой метод ковалентного сшивания полимерных цепей, в котором фотоинициатор и раствор полимера (называемый как раствор «предгеля») подвергаются облучению источником света, специфическим для фотоинициатора. При активации фотоинициатор реагирует с конкретными функциональными группами в полимерных цепях, сшивая их с образованием гидрогеля. Реакция протекает быстро (3-5 минут) и проходит при комнатной температуре и температуре тела. Фотоиндуцируемое желатинирование обеспечивает возможность пространственного и временного контроля формирования конструкционного носителя (скаффолда), позволяя корректирование формы после инъекции и во время желатинирования in vivo. Клетки и биоактивные факторы могут быть легко внедрены в гидрогелевый скаффолд простым смешением с раствором полимера перед фотожелатинированием.
Альтернативно, реактанты могут содержать комплиментарные реакционноспособные группы, такие как имидная и аминогруппа, которые производят сшивание без необходимости применения внешнего инициатора.
Описываемые гидрогели могут представлять собой частично взаимопроникающие сетчатые структуры, которые способствуют восстановлению клеток, ткани и органа, в то же время препятствуя образованию шрама. Описываемые гидрогели являются дериватизированными, чтобы содержать имид, реакционноспособный по отношению к поверхности и/или второму представляющему интерес полимеру. Описываемые гидрогели также конфигурированы так, чтобы иметь вязкость, которая будет позволять желатинированному гидрогелю оставаться закрепленным в или на клетке, ткани или органе, или на поверхности. Вязкость может контролироваться используемыми мономерами и полимерами, уровнем воды, захваченной гидрогелем, и введенными загустителями, такими как биополимеры, такие как белки, липиды, сахариды и тому подобные. Пример такого загустителя представляет гиалуроновая кислота или коллаген.
Термин «полимер» применяется для обозначения молекул, составленных повторяющимися мономерными звеньями, включая гомополимеры, блок-сополимеры, гетерополимеры, статистические сополимеры, привитые сополимеры и так далее. «Полимеры» также включают линейные полимеры, а также разветвленные полимеры, причем разветвленные полимеры включают высокоразветвленные, дендритные и звездчатые полимеры.
Мономер представляет базовое повторяющееся звено в полимере. Мономер сам по себе может быть мономером или может быть димером или олигомером по меньшей мере из двух различных мономеров, каждый димер или олигомер повторяется в полимере.
Инициатор полимеризации относится к любому веществу, которое может инициировать полимеризацию мономеров или макромеров, например, генерированием свободных радикалов. Инициатор полимеризации часто представляет собой окисляющий реагент. Примерные инициаторы полимеризации включают таковые, которые активируются при воздействии, например, электромагнитного излучения или теплоты.
Понятия «введенный», «инкапсулированный» и «захваченный» являются общепризнанными в технологии, когда речь идет о терапевтическом препарате, красителе или другом материале и полимерной композиции, такой как композиция согласно настоящему изобретению. В определенных вариантах осуществления эти термины включают введение, приготовление состава или иным образом внедрение такого препарата в композицию, которая обеспечивает возможность длительного высвобождения такого препарата в желательном варианте применения. Термины могут предполагать любой образ действий, которым терапевтический препарат или другой материал вводится в полимерную матрицу, включая, например, присоединение к мономеру такого полимера (взаимодействием с образованием ковалентной связи или иными типами связывания) и вовлечение такого мономера в полимеризацию для получения полимерного состава, распределенного по всей полимерной матрице, закрепленного на поверхности полимерной матрицы (ковалентным или иными типами связывания), инкапсулированного внутри полимерной матрицы и т.д. Термин «совместное введение» или «совместное инкапсулирование» относится к введению терапевтического препарата или другого материала и по меньшей мере одного иного терапевтического агента или иного материала в описываемую композицию.
Более конкретно, физическая форма, в которой любой терапевтический препарат или иной материал инкапсулируется в полимеры, может варьировать в зависимости от конкретного варианта исполнения. Например, терапевтический агент или другой материал может быть сначала инкапсулирован в микросфере и затем скомбинирован с полимером таким образом, что сохраняется по меньшей мере часть структуры микросфер. Альтернативно, терапевтический препарат или другой материал может быть совершенно несмешивающимся с полимером согласно изобретению, то есть диспергируется в виде мелких капелек, но не растворяется в полимере. В настоящем изобретении любая форма инкапсулирования или введения рассматривается в такой мере, насколько длительное высвобождение любого инкапсулированного терапевтического агента или иного материала определяет, достаточно ли приемлема форма инкапсулирования для любого конкретного употребления.
Понятие «лечение» или «терапия» является общепризнанным в технологии термином, который включает исцеление, а также уменьшение интенсивности по меньшей мере одного симптома любого состояния или заболевания. Лечение включает профилактику заболевания, расстройства или состояния против возникновения у животного, которое может быть предрасположено к заболеванию, расстройству и/или состоянию, но еще не было диагностировано как заболевшее; подавление болезни, расстройства или состояния, например, препятствованием его развитию; и облегчение течения болезни, расстройства или состояния, например, обеспечением любой степени регрессии заболевания, расстройства или состояния. Далее, лечение болезни или состояния включает снижение интенсивности по меньшей мере одного симптома конкретного заболевания или состояния, даже если обусловливающая таковые патофизиология не затрагивается, или же прочие симптомы остаются на прежнем уровне.
Понятие «фармацевтически приемлемые соли» является общепризнанным в технологии и включает относительно нетоксичные соли, образованные присоединением неорганических и органических кислот к композициям согласно настоящему изобретению, содержащим, без ограничения, терапевтические препараты, эксципиенты, прочие материалы и тому подобные. Примеры фармацевтически приемлемых солей включают производные минеральных кислот, таких как соляная кислота и серная кислота, и производные органических кислот, таких как этансульфоновая кислота, бензолсульфоновая кислота, пара-толуолсульфоновая кислота и тому подобные. Примеры пригодных неорганических оснований для формирования солей включают гидроксиды, карбонаты и бикарбонаты аммония, натрия, лития, калия, кальция, магния, алюминия, цинка и тому подобных. Соли могут быть также образованы с использованием пригодных органических оснований, включая такие, которые являются нетоксичными и сильными в достаточной мере, чтобы образовывать такие соли. В плане иллюстрации, класс таких органических оснований может содержать моно-, ди- и триалкиламины, такие как метиламин, диметиламин и триметиламин; моно-, ди- или тригидроксиалкиламины, такие как моно-, ди- и триэтаноламин; аминокислоты, такие как аргинин и лизин; гуанидин; N-метилглюкозамин; N-метилглюкамин; L-глутамин; N-метилпиперазин; морфолин; этилендиамин; N-бензилфенэтиламин; три(гидроксиметил)аминоэтан; и тому подобные, например, см. статью в J. Pharm. Sci., том 66: стр. 1-19 (1977).
Понятие «профилактическое или терапевтическое лечение» является общепризнанным в технологии и включает введение реципиенту одной или более описываемых композиций. Если таковая вводится до клинического обнаружения неблагоприятного состояния (например, заболевания или иного нежелательного состояния у животного-реципиента), то лечение является профилактическим, то есть оно защищает реципиента от развития нежелательного состояния, тогда как если она вводится после обнаружения неблагоприятного состояния, лечение является терапевтическим (то есть оно предназначено для уменьшения, ослабления или стабилизирования существующего неблагоприятного состояния или побочных эффектов такового).
Термин «алифатический» является общепризнанным в технологии и включает линейные, разветвленные и циклические алканы, алкены или алкины. В определенных вариантах осуществления алифатические группы в настоящем изобретении являются линейными или разветвленными и имеют от 1 до около 20 атомов углерода.
Термин «алкил» является общепризнанным в технологии и включает насыщенные алифатические группы, содержащие линейноцепочечные алкильные группы, разветвленные алкильные группы, циклоалкильные (алициклические) группы, алкилзамещенные циклоалкильные группы и циклоалкилзамещенные алкильные группы. В определенных вариантах осуществления алкил с линейной цепью или разветвленной цепью имеет около 30 или менее атомов углерода в своем каркасе (например, С1-С30 для линейной цепи, С3-С30 для разветвленной цепи), и, альтернативно, около 20 или менее атомов углерода. Подобным образом, циклоалкильные фрагменты имеют от около 3 до около 10 атомов углерода в своей циклической структуре, и альтернативно около 5, 6 или 7 атомов углерода в кольцевой структуре.
Более того, термин «алкил» (или «низший алкил») включает как «незамещенные алкильные группы», так и «замещенные алкильные группы», последние из которых относятся к алкильным фрагментам, имеющим заместители, замещающие атомы водорода у одного или более атомов углерода углеводородного скелета. Такие заместители могут содержать, например, галоген, гидроксил, карбонил (такой как карбоксил, алкоксикарбонил, формил или ацил), тиокарбонил (такой как сложный тиоэфир, тиоацетат или тиоформиат), алкоксил, фосфорил, фосфонат, фосфинат, аминогруппу, амидную группу, амидиновый фрагмент, иминогруппу, цианогруппу, нитрогруппу, азидную группу, сульфгидрильную группу, алкилтиогруппу, сульфат, сульфонат, сульфамоильный фрагмент, сульфонамидный фрагмент, сульфонил, гетероциклический фрагмент, арилалкил, или ароматический или гетероароматический фрагмент. Квалифицированным специалистам в этой области технологии будет понятно, что фрагменты, служащие заместителями в углеводородной цепи, сами могут быть замещенными, если это приемлемо. Например, заместители в замещенном алкиле могут содержать замещенные и незамещенные формы аминогруппы, азидную группу, иминогруппу, амидную группу, фосфорил (в том числе фосфонат и фосфинат), сульфонил (в том числе сульфат, сульфонамидогруппа, сульфамоил и сульфонат), и силильные группы, а также простые эфиры, алкилтиогруппы, карбонильные группы (в том числе кетоны, альдегиды, карбоксилаты и сложные эфиры), -CF3, -CN и тому подобные. Примерные замещенные алкилы описаны ниже. Циклоалкильные фрагменты могут быть далее замещены алкильными, алкенильными, алкоксильными фрагментами, алкилтиогруппами, аминоалкильными, карбонилзамещенными алкильными группами, -CF3, -CN и тому подобными.
Термин «аралкил» является общепризнанным в технологии и включает арильные группы (например, ароматическую или гетероароматическую группу).
Термины «алкенил» и «алкинил» являются общепризнанными в технологии и включают ненасыщенные алифатические группы, аналогичные по длине и возможной замещенности вышеописанным алкильным группам, но которые содержат по меньшей мере одну двойную или тройную связь, соответственно.
Термин «гетероатом» является общепризнанным в технологии, и в органической молекуле в общем включает атом любого элемента, отличного от углерода или водорода. Иллюстративные гетероатомы включают бор, азот, кислород, фосфор, серу и селен.
Термин «арил» является общепризнанным в технологии и включает 5-, 6- и 7-членные моноциклические ароматические группы, которые могут содержать от нуля до четырех гетероатомов, например, фрагменты бензола, пиррола, фурана, тиофена, имидазола, оксазола, тиазола, триазола, пиразола, пиридина, пиразина, пиридазина и пиримидина, и тому подобные. Таковые арильные группы, имеющие гетероатомы в циклической структуре, могут также называться как «арилгетероциклы» или «гетероароматические группы». Ароматический цикл может быть замещен в одном или более положениях кольца такими заместителями, каковые описаны выше, например, галогеном, азидной группой, алкильной, арилалкильной, алкенильной, алкинильной, циклоалкильной, гидроксильной, алкоксильной группой, аминогруппой, нитрогруппой, сульфгидрильной группой, иминогруппой, амидным, фосфонатным, фосфинатным фрагментом, карбонильной, карбоксильной, силильной группой, простым эфирным фрагментом, алкилтиогруппой, сульфонильной, сульфонамидной, кетоновой, альдегидной, сложноэфирной группой, гетероциклическим фрагментом, ароматическими или гетероароматическими фрагментами, -CF3, -CN или тому подобными. Термин «арил» также включает полициклические кольцевые системы, имеющие две или более циклических структур, в которых два или более атомов углерода являются общими для двух примыкающих друг к другу циклов (циклы называются «конденсированными циклами»), в которых по меньшей мере одно из колец является ароматическим, например, прочие циклические фрагменты могут представлять собой циклоалкильные, циклоалкенильные, циклоалкинильные, арильные и/или гетероциклические фрагменты, или циклы соединены нециклическими фрагментами.
Термины «орто-», «мета-» и «пара-» являются общепризнанными в технологии и применяются для 1,2-, 1,3- и 1,4-дизамещенных циклогексанов, соответственно. Например, наименования «1,2-диметилбензол» и «орто-диметилбензол» являются синонимами.
Термины «гетероцикл» и «гетероциклическая группа» являются общепризнанными в технологии и включают циклические структуры от 3- до 10-членных, такие как циклы от 3- до 7-членных, кольцевые структуры которых содержат от одного до четырех гетероатомов. Гетероциклы могут быть также полициклическими. Гетероциклические группы включают, например, фрагменты тиофена, тиантрена, фурана, пирана, изобензофурана, хромена, ксантена, феноксантина, пиррола, имидазола, пиразола, изотиазола, изоксазола, пиридина, пиразина, пиримидина, пиридазина, индолизина, изоиндола, индола, индазола, пурина, хинолизина, изохинолина, хинолина, фталазина, нафтиридина, хиноксалина, хиназолина, циннолина, птеридина, карбазола, карболина, фенантридина, акридина, фенантролина, феназина, фенарсазина, фенотиазина, фуразана, феноксазина, пирролидина, оксолана, тиолана, оксазола, пиперидина, пиперазина, морфолина, лактонов, лактамов, таких как азетидиноны и пирролидиноны, сультамы, сультоны и тому подобные. Гетероциклическое кольцо может быть замещено в одном или более положениях такими заместителями, каковые описаны выше, как, к примеру, галогеном, алкильной, арилалкильной, алкенильной, алкинильной, циклоалкильной, гидроксильной группой, аминогруппой, нитрогруппой, сульфгидрильной группой, иминогруппой, амидным, фосфонатным, фосфинатным фрагментом, карбонильной, карбоксильной, силильной группой, простым эфирным фрагментом, алкилти