Способ обработки железоуглеродистого расплава и материал для его осуществления

Изобретение относится к области металлургии, в частности к внепечной обработке железоуглеродистых расплавов. Способ осуществляют путем вспенивания внутри объема расплава материала, введенного в расплав для его обработки. Материал содержит кальцийсодержащее вещество в виде смеси сплава кальция с кремнием и кальция в металлической фазе, а также легкоплавкий флюс из галоидов щелочных и/или щелочноземельных металлов, карбонаты щелочных и/или щелочноземельных металлов при следующем соотношении компонентов, мас.%: легкоплавкий флюс 5-50, карбонаты 5-20, кальцийсодержащее вещество остальное. Изобретения обеспечивают увеличение температурно-временного интервала взаимодействия материала с расплавом, а также повышают эффективность взаимодействия расплава с материалом. 2 н. и 19 з.п. ф-лы, 3 табл.

Реферат

Изобретение относится к области металлургии, в частности к внепечной обработке железоуглеродистых расплавов.

Существует значительное количество научных работ и монографий, посвященных особенностям процессов кристаллизации модифицированных металлов, а также анализу предлагаемых составов применяемых материалов для обработки железоуглеродистого расплава. Известны также различные способы введения материалов в расплав (в виде брикетов, вдуванием порошков, отдачу на струю и т.д.), но наиболее современным и технологичным является способ введения материала в виде наполнителя порошковой проволоки, подаваемой в ковш трайб-аппаратом. При этом существенно уменьшается пироэффект и пылевыделение, сокращается расход материала, значительно увеличивается усвоение их расплавом и эффективность обработки. Вместе с тем, большинство известных материалов для обработки железоуглеродистого расплава, в том числе и являющихся наполнителями порошковой проволоки, имеют общие недостатки.

Во-первых, это их низкая живучесть. Так, входящие в состав материала щелочноземельные металлы (далее ЩЗМ) характеризуются высокой упругостью паров, низкими температурами кипения и, будучи практически нерастворимыми в расплаве железа, очень быстро испаряются и улетучиваются из расплава, лишь частично рафинируя и модифицируя его. На последующих технологических этапах - при охлаждении расплава и, особенно, при его кристаллизации, когда изменяется агрегатное состояние, рафинирующие составляющие материала практически отсутствуют и в металле выделяются новые включения и сегрегации. Они загрязняют границы образующихся зерен и усиливают ликвационные проявления в металле.

Другой недостаток известных материалов для обработки железоуглеродистого расплава связан с неразвитостью их реакционных поверхностей при взаимодействии с жидким металлом. Сорбционная емкость материала, интенсивность процессов зарождения и связывания фаз и включений катализируется границами раздела «шлак-металл», «газовый пузырь (пар ЩЗМ) - металл» и зависит от размеров межфазной поверхности, а также энергии поверхностного натяжения границ.

В традиционных, известных модификаторах, когда всплывающие в расплаве пузырьки образующегося пара лишь своими поверхностными слоями контактируют с металлом, эффективность их рафинирования недостаточна. Ориентировочно, лишь 5-10% вводимого активного вещества материала осуществляет свои рафинирующие функции. Основная же часть в виде не прореагировавшего газа (пара) выносится из металла. Таким образом, необходимо повышение эффективности и продолжительности рафинирующего и модифицирующего действия материала для обработки железоуглеродистого расплава. Определенные действия в этом направлении предпринимаются.

В качестве материала для обработки железоуглеродистого расплава можно указать, например, материал, известный по патенту РФ №2023044 (кл. С22С 35/00, заявл. 10.09.1992, опубл. 15.11.1994, « Брикет для раскисления и модифицирования стали и чугуна»). Материал брикета включает барийсодержащий материал (в качестве барийсодержащего материала он содержит витеритстронцианитовый концентрат, обожженный при 1200-1250 К), порошок алюминия, плавиковый шпат и порошок 65%-ного ферросилиция при следующем соотношении компонентов, мас.%: продукт обжига витеритстронцианитового концентрата 53-55, порошок алюминия 7-12, порошок 65%-ного ферросилиция 29-32, плавиковый шпат 2-3 и связующие (легкоплавкие окислы и др.) 2-4.

К числу недостатков этого материала относятся:

- необходимость проведения предварительного длительного высокотемпературного (при 1250К) отжига концентрата;

- наличие в концентрате после отжига нежелательных примесных соединений -Al2O3, SiO2 и сульфидов;

- низкая эффективность подобного материала при промышленном использовании, связанная с его применением в виде брикетов, легко окисляемых и сгорающих преимущественно в шлак.

Известен также материал для обработки железоуглеродистого расплава (см. патент РФ №2216603, по кл. С22С 35/00, заявл. 17.04.2001, опубл. 20.11.2003, «Модификатор для стали»), в котором предложен материал, содержащий, мас.%:

порошок лигатур с редкоземельными металлами (далее РЗМ) 10-40, порошок лигатур с ЩЗМ 50-80 и порошок фтористого кальция и/или криолита 5-10. Размер частиц этих компонентов: 0,1-1,5 мм; 0,1-3 мм и 0,01-0,1 мм соответственно.

К недостаткам материала относятся:

- высокое содержание РЗМ, повышающее стоимость модификатора;

- медленное всплывание в расплаве достаточно тяжелых (4-6 г/см2) включений с РЗМ и загрязнение ими структуры стали;

- опасность развития цериевой неоднородности;

- низкая эффективность использования компонентов модификатора из-за неразвитой межфазной поверхности «модификатор-расплав».

Наиболее близким по технической сущности, достигаемому результату и выбранным в качестве прототипа для материала, используемого для осуществления способа, является состав, который служит наполнителем порошковой проволоки, содержащий кальций и кремний. В наполнителе количество кальция составляет 36-56 мас.%, отношение между кальцием и кремнием находится в пределах (0.6-1,3):, а соотношение между содержанием кальция в наполнителе и содержанием самого наполнителя в проволоке составляет величину 0,7-1,2. При этом кальций в наполнителе находится в виде сплава с кремнием или частично в металлической фазе (в количестве 10-50%), а соотношение между наполнителем и стальной оболочкой установлено следующим, мас.%: 45-61 и 39-55 соответственно (см. патент РФ №2234541, по кл. С21С 7/00, заявл. 23.05.2003, опубл. 20.08.2004, «Проволока для внепечной обработки металлургических расплавов»).

Недостатком указанного материала является низкая эффективность взаимодействия расплава с кальцием, поскольку последний, находясь в виде фазы CaSi2 или металлического кальция, имеет низкие температуры кипения (1487°С) и плавления (980°С), а следовательно, высокую упругость паров кальция при температурах обработки стальных расплавов. Вследствие этого, кальций в составе такого наполнителя подвержен большому угару, имеет достаточно короткий температурно-временной интервал нахождения в расплаве. Кроме того, малая суммарная реакционная поверхность границы «газовый пузырь-металл» не обеспечивает интенсивное рафинирование и модифицирование.

При разработке состава материала для обработки железоуглеродистого расплава ставилась задача - повышение качества стали при снижении расхода материала на рафинирующую и модифицирующую обработку железоуглеродистого расплава.

Техническим результатом, получаемым при осуществлении данного изобретения, является расширение температурно-временного интервала взаимодействия материала с расплавом, а также повышение эффективности взаимодействия расплава с материалом.

Указанная задача решается за счет того, что материал для обработки железоуглеродистого расплава, включающий кальцийсодержащее вещество в виде смеси кальция в металлической фазе и сплава кальция с кремнием, согласно изобретению, дополнительно содержит легкоплавкий флюс из галоидов щелочных и/или щелочноземельных металлов, карбонаты щелочных и/или щелочноземельных металлов, при следующем соотношении компонентов, мас.%:

легкоплавкий флюс 5-50
карбонаты 5-20
кальцийсодержащее вещество остальное.

При этом кальцийсодержащее вещество в виде сплава кальция с кремнием и/или кальция в металлической фазе в пределах его содержания в материале может быть частично заменено силикобарием и/или алюмобарием в количестве 3-30 мас.%; в состав легкоплавкого флюса в пределах его содержания в материале могут дополнительно входить AlCl3 и/или Na3AlF6 в количестве 3-10 мас.%; а карбонаты в пределах их содержания в материале могут быть частично заменены на оксид кальция в количестве 2-15 мас.% и/или концентрат барийстронциевого карбоната в количестве 5-30 мас.% от количества карбонатов. Кроме того, материал для обработки железоуглеродистого расплава может дополнительно содержать углерод в количестве 0,25-0,35 долей от доли двуокиси углерода в карбонатах.

Материал для обработки железоуглеродистого состава может быть использован как наполнитель порошковой проволоки, а легкоплавкий флюс может являться флюсом эвтектического состава.

Известен способ обработки железоуглеродистого расплава с применением продувки через расплав инертного газа (см. п. РФ№214564 по кл. С21С 7/00, заявл. 20.08.1998, опубл. 20.02.2000 «Способ внепечной обработки стали»). Способ включает наведение высокоосновного шлака, раскисление стали алюминием, продувку расплава аргоном, обработку металла кальцийсодержащими материалами в виде порошковой проволоки. При этом ввод проволоки осуществляют в 2 этапа. Количество вводимых кальцийсодержащих материалов в пересчете на усвоенный металлом кальций устанавливают на первом этапе в зависимости от количества удаляемой из металла серы, а на втором - в зависимости от содержания остаточного алюминия. В качестве кальцийсодержащего материала возможно использование силикокальция.

Недостатками данного аналога являются низкая эффективность использования модификатора, обусловленная его расходом на десульфурацию, и связанными с этим высокими затратами на модифицирование, а также применение модификатора, имеющего низкую «живучесть» в железном расплаве, ускорению удаления которого из расплава способствует продувка аргоном.

Наиболее близким по технической сущности, достигаемому результату и выбранным в качестве прототипа является способ обработки железоуглеродистого расплава путем введения в расплав материала для его обработки, образующего в расплаве дискретные газовые пузырьки (см. п. РФ №2234541, по кл. С21С 7/00, заявл. 23.05.2003, опубл. 20.08.2004, «Проволока для внепечной обработки металлургических расплавов»). Способ включает введение в расплав материала для его обработки в виде порошковой проволоки, содержащий кальций и кремний. В наполнителе порошковой проволоки количество кальция составляет 36-56 мас.%, отношение между кальцием и кремнием находится в пределах (0.6-1,3):1, а соотношение между содержанием кальция в наполнителе и содержанием самого наполнителя в проволоке составляет величину 0,7-1,2. При этом кальций в наполнителе находится в виде сплава с кремнием или частично в металлической фазе (в количестве 10-50%), а соотношение между наполнителем и стальной оболочкой установлено следующим, мас.%: 45-61 и 39-55 соответственно.

Недостатком указанного способа является низкая эффективность взаимодействия расплава с кальцием, поскольку последний, находясь в виде фазы CaSi2 или металлического кальция, имеет низкие температуры кипения (1487°С) и плавления (980°С), а следовательно, высокую упругость паров кальция при температурах обработки стальных расплавов. Вследствие этого, кальций в составе такого наполнителя подвержен большому угару. Он, образуя отдельные дискретные пузыри, быстро всплывает к поверхности расплава, имея достаточно короткий температурно-временной интервал нахождения в расплаве. Кроме того, малая суммарная реакционная поверхность границы «газовый пузырь-металл» не обеспечивает интенсивное рафинирование и модифицирование.

При разработке способа обработки железоуглеродистого расплава ставилась задача - повышение качества стали при снижении расхода материала на рафинирующую и модифицирующую обработку железоуглеродистого расплава.

Техническим результатом, получаемым при осуществлении данного изобретения, является увеличение температурно-временного интервала взаимодействия материала с расплавом, а также повышение эффективности взаимодействия расплава с материалом.

Поставленная задача решается за счет того, что в известном способе обработки железоуглеродистого расплава путем введения в расплав материала для его обработки, согласно изобретению, обработку расплава осуществляют путем вспенивания материала п.п.1-19 формулы изобретения внутри объема расплава.

Вспенивание материала по п.п.1-19 формулы изобретения внутри объема расплава может быть осуществлено углекислым газом, образующимся при разложении введенного в расплав материала в объеме 8-40 нсм3/г материала.

Исследования, проведенные по источникам патентной и научно-технической информации, показали, что заявляемые способ и материал неизвестны и не следуют явным образом из изученного уровня техники, т.е. соответствуют критериям новизна и изобретательский уровень.

Заявляемый материал может быть получен, а заявляемые способ и материал могут быть использованы на любом предприятии, специализирующемся в данной отрасли, т.к. для этого требуются известные компоненты и стандартное оборудование, т.е. они являются промышленно применимыми.

Теоретическое обоснование заявляемого решения базируется на гранично-катализационных процессах рафинирующей обработки и заключается в следующем:

1. Развитие термически-активируемых процессов зарождения, развития и трансформации фаз протекает тем легче, чем более развита межфазная поверхность «модификатор-расплав» и чем ниже поверхностное натяжение их границ. Поверхностно-активные элементы, а это в первую очередь щелочноземельные и щелочные металлы, практически нерастворимы в расплавах железа, но сегрегируют и обогащают границы, снижая их энергию. Поэтому, и скорость выделения, и способность к адсорбции повышаются пропорционально увеличению протяженности границ. В данном случае - поверхности раздела «расплав - граница газофлюсовых пузырей». Возникающие и прилипающие к таким границам фазы, выделения, примеси в конечном итоге выносятся по механизму флотации с пузырьками к поверхностям и ассимилируют в шлаке. Подобная пузырьково-вспененная структура эмульгированной дисперсионной системы ведет к максимальному эффективному раскислению, рафинированию и модифицированию неметаллических включений. В отличие от этого, флотационное воздействие пузырьков продуваемого через расплав инертного газа происходит дискретно и потому вышеперечисленные процессы протекают менее эффективно.

2. Эффективность вспенивания материала наполнителя преимущественно происходит на выходе расплавленного модификатора из реакционного пространства оболочки порошковой проволоки в металл стальковша. Т.е. при введении порошковой проволоки в металл еще до расплавления стальной оболочки находящийся в нижней части стальковша наполнитель должен быть, в основном, жидким. Однако не все составляющие его компоненты имеют достаточно низкие температуры плавления. Так, силикокальций, фториды плавятся при температурах, превышающих 1000-1100°С. Поэтому требуется наличие компонентов, которые плавятся при достаточно низких температурах, а ими могут быть сплавы как минимум двух галогенидов, при соотношении их концентраций, близких к эвтектической. В качестве примера в табл.1 приведены температуры плавления ряда щелочных и щелочноземельных галоидов и их концентрации при эвтектических составах. Эти данные иллюстрируют возможность существенного (на сотни градусов Цельсия) снижения температуры плавления смесей при их содержаниях, близких к эвтектическим соотношениям.

Таблица 1
Эвтектические составы и температуры плавления сплавов солей щелочных и щелочноземельных металлов.
Состав ТЭВТ, °С
30-40% NaCl+60-70% Na2COa 638
50% NaCl+50% BaCl2 648
40% NaF+60% Na2CO3 660
70-75% NaCl+25-30% NaF 675
80% CaCl2+20% CaF2 650
40% NaCl+60% MgCl2 450
70 мол. % NaF+30 мол. % CaF2 810
25% NaCl+75% CaCl2 500
40% NaCl+60% KCl 650
60% KF+40% NaF 698
50% KCl+50% NaCl 658
70% NaCl+30% NaF 674
30% CaO+70% CaF2 1550

Установлено, что в подобном расплаве способны растворяться высокотемпературные соединения, вступающие в реакции замещения, обмена и др. с ингредиентами расплава. Т.о., в низкотемпературный расплав переходят более высокотемпературные компоненты, способные к растворению. При этом в результате химических взаимодействий различного типа сложные соединения могут менять валентность и восстанавливаться до металла, солевые флюсы становятся более неоднородными, вязкими и кипят в достаточно широком температурном интервале, удлиняют температурно-временной интервал взаимодействия с расплавом, участвуя в активном рафинировании расплава вплоть до температур его кристаллизации.

Ввиду высоких адгезионных свойств такие флюсы легко вспениваются, в частности, при избыточном давлении углекислого газа, образующегося при диссоциации карбонатов щелочных и щелочноземельных металлов, в частности кальция и натрия. В случае подобного смесевого состава карбонатов диссоциация карбонатов начинается при низкой температуре 800-1100°С, и тем самым обеспечивается пузырьковый режим барботажа.

Следует подчеркнуть, что флюс, вспененный за счет разложения карбонатов, входящих в предлагаемый материал, принципиально отличается степенью дисперсности фаз и пористостью этого же материала, в случае его продувки по традиционной используемой в настоящее время технологии инертным газом (аргоном). Кроме того, пена обладает иной структурой и на порядок большей вязкостью. Экспериментально установлено, что металло-солевая пена из расплава обладает пористостью порядка 90% при высокой дисперсности пор (диаметр пузырьков 1-10 мм), что невозможно получить при продувке инертным газом, когда всплывают отдельные дискретные пузыри.

Очевидно, что давление в пузыре пены должно быть относительно стабильным, что регулируется количеством вносимых в наполнитель карбонатов. При этом оно должно превышать сумму атмосферного и гидростатического давлений металла в ковше.

При наличии в составе материала 5-20 мас.% карбонатов образуется углекислый газ в количестве 8-40 нсм3/г введенного материала, что обеспечивает его хорошее вспенивание. При меньшем содержании вспенивание недостаточно, при большем - могут иметь место выплески металла из ковша.

Интенсивность вспенивания можно дополнительно изменять при дополнительном введении в состав материала углерода в количестве 0,25 -0,35 долей от доли двуокиси углерода в карбонатах. В этом случае при разложении карбонатов происходит образование оксида углерода - СО, активного восстановителя и газа для вспенивания.

3. Выбор составляющих компонентов материала, используемого, в частности, как наполнитель порошковой проволоки, обусловлен следующим. Подобно щелочноземельным металлам 2А подгруппы периодической системы, щелочные металлы (натрий, калий и др.) являются чрезвычайно активными и вступают в реакцию с большинством вредных примесей стали: серой, фосфором, цветными, газами (кислородом, азотом, водородом, окисью углерода и т.д.) с образованием простых и сложных соединений, солей и т.д., и в том числе в виде жидких включений и летучих соединении. Для них характерны: высокая рафинирующая способность, низкий удельный вес, низкие температуры плавления и кипения.

Щелочные металлы и их соли пока не находят активного применения в черной металлургии, в отличие от цветной и металлургии редких металлов. Причиной этого является их чрезвычайная активность, пирофорность реакций, протекающих при температурах их введения в железоуглеродистый расплав, а также их нерастворимость в железе. Использование щелочных металлов в виде металлических порошков небезопасно, не технологично и трудно реализуемо.

Предлагается их применять в виде флюсов - сплавов галоидных солей щелочных и щелочноземельных металлов, а также карбонатов, например натрия и кальция. Последнее дает ряд преимуществ:

- при соотношениях галогенидов, близких к эвтектическому составу, флюсы плавятся непосредственно в стальной оболочке - при прогреве порошковой проволоки в процессе введения материала в сталь-ковш;

- флюсы характеризуются высокой смачиваемостью и разрушают пленочные образования на поверхности реагентов, улучшают контакт между ними и интенсифицируют диффузионные процессы;

- флюсы растворяют высокотемпературные фтористые соединения с получением солевой композиции, способной к пенообразованию под воздействием избыточного давления газов (окислов углерода, паров галогенидов). При этом достигаются адгезионные свойства расплавов, достаточные, с одной стороны, для получения и стабилизации рафинирующей газопузырьковой структуры, а с другой стороны, для экстракции примесей и неметаллических включений из жидкого расплава в пенную массу с последующим удалением их в шлак;

- плавятся флюсы как эвтектические смеси, но испаряются и диссоциируют не азеотропно. Поэтому ионы хлора и/или фтора, образующиеся на промежуточных стадиях разложения солей в широком интервале существования эмульгированного пенного модификатора, разрушают образующиеся на поверхности пузырей плены окислов, оксисульфидов и пр., и тем самым, катализируют процессы рафинирования расплава и ошлаковывания включений.

В количественном отношении нижняя граница содержания низкотемпературной составляющей флюса определяется достаточностью для а) вспенивания рафинирующего состава и б) растворимости высокотемпературной металло-флюсовой составляющей. Экспериментально было установлено, что минимальный объем эвтектического сплава должен быть не менее 5 мас.% общего содержания материала наполнителя. В противном случае разжижение материала происходит замедленно и не достигается состояние полной дисперсии. Верхняя граница 50 мас.% низкотемпературных флюсов обеспечивает достаточную жидкотекучесть, но ограничивает содержание других компонентов, в частности, карбонатов, необходимых для вспенивания материала в расплаве.

При регламентированных количествах составляющих достигается:

1. Достаточная продолжительность процесса взаимодействия с металлом -увеличивается «живучесть» модификатора - термическая диссоциация флюсообразующих ингредиентов происходит в расширенном временном интервале. Это, очевидно, является результатом капиллярной термоконцентрационной неустойчивости реальных флюсовых расплавов, проявляющейся, в частности, в обнаруживаемой длительности периодов «испарение-кипение»:

для CaCl2: 1200-1600°С, для CaF2: 1580-2500°С.

2. Появление паро-газовой защиты расплава от насыщения его газами из атмосферы. Подчеркнем, что галогениды характеризуются наивысшей склонностью к связыванию водорода с образованием соединений (типа HF, HCl и др.), нерастворимых в расплаве железа. Практика показала, что присутствие в шлаке диссоциирующих флюсовых солей оказывает эффективную защиту от газонасыщения металла, препятствуя проникновению и кислорода, и азота, и водорода через слой основного шлака в ковше.

3. Защита границ зерен при обогащении их кальцием (продуктом распада CaCl2) от охрупчивающего влияния горофобных выделений и пленочных фаз - оттесняя их от границ. Для достижения этого эффекта содержание флюсов в материале должно быть 5-50 мас.%. Нижний предел связан с достаточностью сегрегационного обогащения границ кальцием, верхний - необходимостью введения в материал кальция или силикокальция.

Экспериментально установлено, что в состав материала без снижения его эффективности, наряду с легкоплавким флюсом, могут входить и другие галоидные соли, в частности, хлорид алюминия (AlCl3) и/или криолит (Na3AlF6) в количестве 3-10 мас.%.

Дополнительное введение окиси кальция в количестве 2-15 мас.% в состав материала способно усилить его рафинировочные свойства. При больших содержаниях уменьшается доля остальных компонентов в материале и происходит снижение качества готового металла.

Дополнительное введение в состав материала барийстронциевого карбоната позволяет одновременно иметь в составе материала вещества, расширяющие температурно-временной интервал его взаимодействия с расплавом и обеспечивающие вспенивание вводимого материала. Установлено, что эффект от его введения на качество материала заметен, начиная с 5 мас.%, а при содержании более 30 мас.% снижается доля остальных компонентов в материале и происходит снижение пластических и ударных свойств готового металла.

Введение ферросиликобария и/или алюмобария в состав материала обусловлено следующими обстоятельствами. Кальций и барий образуют между собой неограниченный твердый раствор, температуры плавления/кипения кальция и бария - 848/1487°С и 725/1637°С соответственно. Барий практически не кипит в стали и, следовательно, находясь более длительное время в расплаве, барий в сочетании с кальцием оказывает более сильное рафинирующее и модифицирующее воздействие, взаимодействуя с газами и примесями, растворенными в металле. Эффект присутствия бария в составе материала положительно проявляется, начиная с содержания ферросиликобария и/или алюмобария 3 мас.%. Увеличение в материале количества данных, составляющих более 30 мас.%, снижает долю кальция, что негативно отражается на разливаемости металла.

Пример осуществления способа.

Заявленный материал использовали при внепечной обработке в промышленных условиях плавок стали марки Ст20, имевших состав, мас.%: 0,13-0.14С; 0,4-0,42 Mn; 0,15-0,17 Si; 0,025-0,027 S; 0,017-0,019 P; 0,12 C; 0,10 Ni; 0,15 Cu;

0,02Al; Fe -остальное. Материал для рафинирования и модифицирования стали готовили смешением в различных пропорциях следующих ингредиентов: 30%-ного силикокальция, кальция металлического, 22%-ного силикобария, плавленого флюса, содержащего 25% NaCl и 75% CaCl2 (состав А) или 80% CaCl2 и 20% CaF2 (состав Б), АlСl3, Na3AlF6, СаСО3, Na2СО3, барийстронциевый карбонат, СаО и углерод (см. таблицу 2). Данные смеси дробили до фракции менее 2 мм и закатывали в порошковую проволоку диаметром 14 мм.

При обработке расплава по прототипу использовали 30%-ный силикокальций, который также, после дробления до фракции 0-2 мм, закатывали в порошковую проволоку диаметром 14 мм.

Каждый ковш стали с помощью трайб-аппарата обрабатывали порошковой проволокой, имевшей определенный состав наполнителя - табл.2. Расход наполнителя в случае заявляемых составов материала был - 0,8 кг/т стали, а при составе прототипа - 1 кг/т стали.

После обработки расплава порошковой проволокой сталь разливали на сортовой МНЛЗ на квадрат 100Х100 мм, далее прокатывали на круг 10 мм, в котором оценивали загрязненность неметаллическими включениями, долю глобулярных НВ, относительное удлинение и ударную вязкость металла (см. таблицу 3).

Приведенные в таблицах 2 и 3 результаты свидетельствуют:

1. Обработка расплава материалом, согласно прототипу, приводит к получению металла, характеризующегося высокой загрязненностью оксидами (1,5 балла) и сульфидами (1,2 балла), низкой долей глобулярных частиц (58%), небольшим относительным удлинением (28%) и низкой ударной вязкостью (1,6 кгс*м/см2) - вар.1.

2. Обработка расплава материалом, с составом, согласно п.1 формулы заявляемого изобретения, приводит к снижению содержания оксидов (не более 1,05 балла) и сульфидов (менее 1 балла), увеличивает долю глобулей (более 70%), относительное удлинение (не менее 35%) и ударную вязкость (более 2,2 кгс*м/см2) - вар.3-5, 8, 10,15,16.

3. Обработка расплава материалом, имеющим состав, отличающийся от п.1 формулы заявляемого изобретения, снижает чистоту металла по включениям, долю глобулей, относительное удлинение и ударную вязкость - вар.2, 9, 28, 29.

4. Обработка расплава материалом, с составом, согласно п.2 формулы заявляемого изобретения, также приводит к получению металла улучшенного качества, по сравнению с использованием материала прототипа - вар. 6 и 7.

5. Обработка расплава материалом, с составом, согласно п.3 формулы заявляемого изобретения, аналогично приводит к получению металла улучшенного качества, по сравнению с использованием материала прототипа - вар.11, 12.

6. Обработка расплава материалом, с составом, согласно п.п.4-5 формулы заявляемого изобретения, также приводит к получению металла улучшенного качества, по сравнению с использованием материала прототипа - вар.13, 14, 17.

7. Обработка расплава материалом, с составом, согласно п.п.6 -9 формулы заявляемого изобретения, аналогично приводит к получению металла улучшенного качества, по сравнению с использованием материала прототипа - вар.18-21.

8. Обработка расплава материалом, с составом, согласно п.п.10-17 формулы заявляемого изобретения, также приводит к получению металла улучшенного качества, по сравнению с использованием материала прототипа - вар.22-27.

Таким образом, представленные результаты свидетельствуют о том, что обработка расплава заявляемым способом с использованием заявляемого материала приводит к увеличению температурно-временного интервала взаимодействия материала с расплавом, а также повышению эффективности взаимодействия расплава с материалом. Это обеспечивает повышение качества стали при снижении расхода материала на рафинирующую и модифицирующую обработку железоуглеродистого расплава.

Таблица 2
Составы опробованных материалов наполнителей порошковой проволоки
№ п/п Состав материала наполнителя порошковой проволоки, масс.%
Суммарное содержание SiCa и Самет Содержание SiBa Состав эвтектического флюса AlCl3 Na3AlF6 Сумммарное содержание CaCo3 и Na2CO3 Сод-е CaO Сод-е С Сод-е барийстр.карб.
А Б
1 прототип 100 - - - - - - -
2 20 - 50 - - - 30 -
3 30 - - 50 - - 20 -
4 30 - 50 - - - 20 -
5 45 - - 45 - - 10 -
6 27 3 50 - - - 20 -
7 15 30 45 - - - 10 -
8 45 - 40 - - - 15 -
9 20 - 60 - - - 20 -
10 45 - - 40 - - 15 -
11 32 5 45 - 3 - 15 -
12 35 - - 40 - 10 15 -
13 33 - 50 - - - 15 2
14 25 10 - 40 - - 10 15
15 70 - 25 - - - 5 - -
16 75 - 5 - - 20 - -
17 30 - - 40 - 10 15 5 - -
18 16,7 - 50 - - - 30 - 3,3 -
19 13,5 30 - 45 - - 10 - 1,5 -
20 28,7 5 30 - 3 - 30 - 3,3 -
21 23,5 10 - 40 - - 10 15 1,5 -
22 18,5 - 50 - - - 30 - - 1,5
23 24 - - 50 - - 20 - - 6
24 24 3 47 - - - 20 - - 6
25 21 3 - 47 3 - 20 - - 6
26 26 - 40 - - 3 20 5 - 6
27 27,5 3 45 - 5 - 10 5 1,5 3
28 85 - - 12 - - 3 - -
29 85 - 10 - - - 3 2 -
Таблица 3
Влияние состава материала наполнителя порошковой проволоки на неметаллические включения механические свойства стали
№ п/п Загрязненность включениями, балл Доля глобулярных частиц, % Относительное удлинение, % Ударная вязкость KCV-60°С, кгс*м/см2 Примечание
Оксиды Сульфиды
1 прототип 1,5 1,2 58 28 1,6
2 1,3 1,2 70 30 1,7 пироэффект
3 1,05 0,9 75 36 2,3
4 1,00 0,9 76 35 2,3
5 1,05 0,9 75 36 2,4
6 1,00 0,85 77 37 2,5
7 0,95 0,9 75 36 2,5
8 0,95 0,9 77 37 2,6
9 1,3 1,2 58 28 1,6
10 0,95 0,95 78 36 2,5
11 1,00 0,95 76 36 2,4
12 0,95 0,9 77 37 2,5
13 1,05 0,95 74 36 2,4
14 1,00 0,95 75 35 2,5
15 0,9 0,95 74 37 2,5
16 1,05 0,95 74 35 2,3
17 1,00 0,95 74 35 2,4
18 0,95 0,9 76 36 2,5
19 0,95 0,95 75 34 2,4
20 0.95 0,9 77 35 2,6
21 0,9 0,85 77 36 2,7
22 1,0 0,95 75 35 2,6
23 0,95 0,9 77 37 2,6
24 0,95 0,9 76 36 2,6
25 0,9 0,85 76 36 2,7
26 0,9 0,9 75 36 2,7
27 0,9 0,85 76 37 2,6
28 1,4 1,2 57 29 1,5
29 1,45 1,2 57 28 1,5

1. Материал для обработки железоуглеродистого расплава, включающий кальцийсодержащее вещество в виде смеси кальция в металлической фазе и сплава кальция с кремнием, отличающийся тем, что он дополнительно содержит легкоплавкий флюс из галоидов щелочных и/или щелочноземельных металлов и карбонаты щелочных и/или щелочноземельных металлов при следующем соотношении компонентов, мас.%:

легкоплавкий флюс 5-50
карбонаты 5-20
кальцийсодержащее вещество остальное

2. Материал по п.1, отличающийся тем, что дополнительно содержит силикобарий и/или алюмобарий в количестве 3-30 мас.%.

3. Материал по п.1 или 2, отличающийся тем, что дополнительно содержит хлорид алюминия (АlСl3) и/или криолит (Na3AlF6) в количестве 3-10 мас.%.

4. Материал по п.1 или 2, отличающийся тем, что дополнительно содержит оксид кальция в количестве 2-15 мас.%.

5. Материал по п.3, отличающийся тем, что дополнительно содержит оксид кальция в количестве 2-15 мас.%.

6. Материал по п.1 или 2, отличающийся тем, что дополнительно содержит углерод в количестве 0,25-0,35 долей от доли двуокиси углерода в карбонатах.

7. Материал по п.3, отличающийся тем, что дополнительно содержит углерод в количестве 0,25-0,35 долей от доли двуокиси углерода в карбонатах.

8. Материал по п.4, отличающийся тем, что дополнительно содержит углерод в количестве 0,25-0,35 долей от доли двуокиси углерода в карбонатах.

9. Материал по п.5, отличающийся тем, что дополнительно содержит углерод в количестве 0,25-0,35 долей от доли двуокиси углерода в карбонатах.

10. Материал по п.1 или 2, отличающийся тем, что дополнительно содержит концентрат барийстронциевого карбоната в количестве 5-30 мас.% от количества карбонатов.

11. Материал по п.3, отличающийся тем, что дополнительно содержит концентрат барийстронциевого карбоната в количестве 5-30 мас.% от количества карбонатов.

12. Материал по п.4, отличающийся тем, что дополнительно содержит концентрат барийстронциевого карбоната в количестве 5-30 мас.% от количества карбонатов.

13. Материал по п.5, отличающийся тем, что дополнительно содержит концентрат барийстронциевого карбоната в количестве 5-30 мас.% от количества карбонатов.

14. Материал по п.6, отличающийся тем, что дополнительно содержит концентрат барийстронциевого карбона