Способ формирования износостойких покрытий на деталях из алюминиевых сплавов
Изобретение относится к области гальванотехники и может быть использовано для создания износостойких покрытий на трущихся поверхностях подшипников и опор скольжения, направляющих и других деталей машин из алюминиевых сплавов, применяемых в машиностроительной, металлообрабатывающей, станкостроительной и других областях промышленности. Способ включает микродуговое оксидирование МДО при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц, при этом после МДО на поверхность рабочего упрочненного слоя покрытия наносят слой состава, содержащего 1 мас.ч. нанопорошка оксида меди и по 3 мас.ч. жидкого стекла и дистиллированной воды, высушивают деталь при температуре 20°С в течение 50-60 мин, после чего деталь повторно обрабатывают в режиме дугового электрофореза в силикатно-щелочном электролите, содержащем 1 г/л гидроксида калия и 2 г/л натриевого жидкого стекла при плотности тока 25-26 А/дм2 в течение 1-2 мин. Технический результат - снижение коэффициента трения покрытия, снижение приработочного износа подвижного соединения, а также повышение его нагрузочной способности и износостойкости. 1 табл.
Реферат
Изобретение относится к области электрохимического нанесения антифрикционных покрытий на металлы и сплавы и может быть использовано для создания износостойких покрытий на трущихся поверхностях подшипников и опор скольжения, направляющих и других деталей машин из алюминиевых сплавов, применяемых в машиностроительной, металлообрабатывающей, станкостроительной и других областях промышленности.
Известно композиционное покрытие, имеющее наружный антифрикционный слой карбида хрома толщиной 5…50 мкм и основу из алюминиевого сплава, между которыми размещен слой оксидокерамики толщиной 50…300 мкм, и способ его изготовления, включающий формирование на основе из алюминиевого сплава слоя оксидокерамики с открытой пористостью анодно-катодным микродуговым оксидированием (МДО) и последующее нанесение антифрикционного слоя карбида хрома путем его осаждения в вакууме из паровой фазы при температуре 430…450°С [Патент РФ 2175686, С23С 28/00, опубл. в БИ №31, 2001 г.].
Однако нанесение слоя карбида хрома при температуре 430…450°С приводит к короблению деталей, имеющих сложную геометрическую форму, а использование при этом вакуума и специального оборудования существенно повышает себестоимость покрытия. Все перечисленное сужает возможность применения данного изобретения для повышения износостойкости деталей сложной формы из алюминиевых сплавов.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ нанесения покрытий на металлы и сплавы в режиме МДО при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц, при этом величина катодного тока изменяется в интервале 0,5…24 А/дм2, а величина анодного тока - в интервале 0,6…25 А/дм2 [Авторское свидетельство СССР 1200591, C25D 11/02, опубл. в БИ №13, 1989 - прототип].
Существенным недостатком данного способа является то, что покрытие, сформированное МДО, имеет высокий коэффициент трения при работе в режиме трения без смазочного материала или граничной смазки, характерного для пуска и остановки узла, а также при реверсивном и нестационарном режимах работы. Это приводит к тому, что деталь с покрытием вызывает повышенный износ ответной, зачастую дорогостоящей детали подвижного соединения при их взаимодействии, за счет чего происходит снижение его долговечности в целом.
Задачей изобретения является повышение долговечности подвижных соединений, имеющих детали с покрытием, сформированным по предлагаемой технологии.
Техническим результатом изобретения является снижение коэффициента трения покрытия, сформированного МДО, при граничной смазке или взаимодействии без смазочного материала, снижение приработочного износа подвижного соединения, а также повышение его нагрузочной способности и износостойкости.
Поставленная задача и указанный технический результат достигаются за счет того, что в известном способе нанесения покрытий на металлы и сплавы, включающем микродуговое оксидирование при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц, СОГЛАСНО ИЗОБРЕТЕНИЮ после микродугового оксидирования на поверхность рабочего упрочненного слоя покрытия наносят состав, содержащий одну массовую часть нанопорошка оксида меди и по три массовых части жидкого стекла и дистиллированной воды, высушивают деталь при температуре 20°С в течение 50…60 мин, после чего деталь повторно обрабатывают в режиме дугового электрофореза в силикатно-щелочном электролите, содержащем 1 г/л гидроксида калия и 2 г/л натриевого жидкого стекла при плотности тока 25…26 А/дм2 в течение 1…2 мин.
Способ осуществляют следующим образом.
Вначале на рабочей поверхности детали из алюминиевого сплава анодно-катодным МДО при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц формируют покрытие. При этом используют силикатно-щелочной электролит на основе дистиллированной воды с добавлением 2 г/л гидроксида калия и 10 г/л натриевого жидкого стекла с модулем m=3. Режимы МДО: плотность катодного тока - 24 А/дм2, плотность анодного тока - 25 А/дм2, продолжительность оксидирования - 60…70 мин, температура электролита - 40°С.
Сформированное МДО покрытие состоит из двух основных слоев: рабочего упрочненного и верхнего рыхлого (технологического), который необходимо удалять, т.к. при трении он будет осыпаться и служить дополнительным абразивом. Для удаления верхнего рыхлого слоя целесообразно использовать эластичный абразивный инструмент, состоящий из лепестков шлифовальной шкурки, закрепленных между двумя дискам. Обработку ведут периферийной частью лепестков шкурки при вращении инструмента. Общая толщина покрытия, сформированного МДО, составляет 115…120 мкм, при этом толщина рабочего упрочненного слоя равна 60…65 мкм.
Затем на поверхность рабочего упрочненного слоя покрытия, сформированного МДО, наносят состав, состоящий из следующих компонентов (по массе): нанопорошок оксида меди (CuO) дисперсностью 100 Нм, ТУ 1791-003-36280340-2008 - одна часть, натриевое жидкое стекло Na2SiO3 с модулем m=3,2…3,5 - три части и дистиллированная вода - три части. Натриевое жидкое стекло служит в качестве связующего компонента, а дистиллированная вода - в качестве разбавителя. Толщина нанесенного состава должна составлять 60…80 мкм. После этого деталь высушивают при температуре 20°С в течение 50…60 мин.
После этого деталь с покрытием, сформированным МДО и имеющим на поверхности слой состава с нанопорошком оксида меди, повторно обрабатывают в режиме дугового электрофореза, используя силикатно-щелочной электролит, содержащий 1 г/л гидроксида калия и 2 г/л натриевого жидкого стекла, дистиллированная вода - остальное при плотности тока 25…26 А/дм2 в течение 1…2 мин.
Коэффициент трения покрытия, сформированного МДО, при граничной смазке или взаимодействии без смазочного материала определяли с использованием машины трения МТУ-01, ТУ 4271-001-29034600-2004. Приработочный износ подвижного соединения и его износостойкость оценивали по результатам сравнительных ускоренных испытаний на изнашивание. Испытания проводили в соответствии с ГОСТ 23.224 «Обеспечение износостойкости изделий. Методы оценки износостойкости восстановленных деталей». Нагрузочную способность подвижного соединения определяли на установке МТТ-3М, воспроизводящей схему трения при вращении контртела в виде диска относительно трех неподвижных цилиндрических образцов, взаимодействующих с контртелом торцевыми поверхностями.
Одним из основных компонентов состава, наносимого на поверхность рабочего упрочненного слоя покрытия, сформированного МДО, является нанопорошок CuO, обладающий высокими антифрикционными свойствами. При дуговом электрофорезе детали с покрытием и с нанесенным составом частицы нанопорошка CuO включаются (вплавляются) в состав покрытия в зонах пор в упрочненном слое. В результате коэффициент трения покрытия при граничной смазке или взаимодействии без смазочного материала, а также приработочный износ подвижного соединения существенно снижаются, а нагрузочная способность, износостойкость и долговечность подвижного соединения существенно увеличиваются (таблица).
Таблица | ||
Показатели | Прототип | Предлагаемый способ |
1. Коэффициент трения покрытия, сформированного МДО, при граничной смазке или взаимодействии без смазочного материала | 0,3…0,6 | 0,1…0,15 |
2. Приработочный износ соединения, мг | 18 | 6 |
3. Нагрузочная способность соединения, МПа | 4,5 | 10,0 |
4. Износостойкость соединения, % | 100 | 150 |
5. Долговечность соединения, % | 100 | 140 |
Как видно из таблицы, предлагаемый способ формирования износостойких покрытий на деталях из алюминиевых сплавов позволяет в среднем в 3,5…4,0 раза снизить коэффициент трения покрытия, сформированного МДО, при граничной смазке или взаимодействии без смазочного материала и в 3,0 раза - приработочный износ подвижного соединения, а также в 2,2 раза увеличить его нагрузочную способность и на 50% - износостойкость. В результате долговечность подвижных соединений, имеющих детали с покрытием, сформированным по предлагаемой технологии, увеличивается не менее чем на 40%.
Способ формирования износостойких покрытий на деталях из алюминиевых сплавов, включающий микродуговое оксидирование при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц, отличающийся тем, что после микродугового оксидирования на поверхность рабочего упрочненного слоя покрытия наносят слой состава, содержащего одну массовую часть нанопорошка оксида меди и по три массовых части жидкого стекла и дистиллированной воды, высушивают деталь при температуре 20°С в течение 50-60 мин, после чего деталь повторно обрабатывают в режиме дугового электрофореза в силикатно-щелочном электролите, содержащем 1 г/л гидроксида калия и 2 г/л натриевого жидкого стекла, при плотности тока 25-26 А/дм2 в течение 1-2 мин.