Способ контроля вещества в атмосфере и устройство для его осуществления

Иллюстрации

Показать все

Изобретение относится к обнаружению вещества в атмосфере и основано на использовании, по меньшей мере, одного датчика, реагирующего на наличие определяемого вещества и который облучается, по меньшей мере, одним источником света, и, по меньшей мере, одного фотоприемника. Изобретение позволяет определять наличие и/или концентрацию определяемого вещества без использования сложного оптоэлектронного оборудования. 2 н. и 13 з.п. ф-лы, 13 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Возможность обнаруживать химические вещества, особенно химические вещества органического происхождения, важна во многих случаях, в том числе при осуществлении контроля за состоянием окружающей среды и в других подобных случаях. Это находит специальное применение, например, в индивидуальных дозиметрах (например, то, что человек может носить на себе или переносить), и/или дозиметрах местности (например, то, что может быть размещено в окружающей среде, состояние которой необходимо контролировать).

Существуют различные способы обнаружения химических веществ, например оптические, гравиметрические, микроэлектромеханические, колориметрические. Несмотря на то, что в настоящее время для обнаружения ряда веществ существуют различные реализующие колориметрический метод устройства, большая часть из них основана на использовании красителей или химических индикаторов, изменяющих цвет. Такие используемые в качестве датчиков вещества, как правило, являются избирательными, реагирующими на определенное соединение, поэтому для обнаружения различных классов соединений может потребоваться большое количество датчиков. При этом большая часть таких аппаратных средств имеют ограниченный срок эксплуатации из-за обесцвечивания или нежелательных побочных реакций. Кроме того, в большинстве таких систем для проведения оптического анализа используют сложное или громоздкое оптоэлектронное оборудование.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способам и устройствам для обнаружения веществ. Такие способы и устройства могут включать, по меньшей мере, один чувствительный к интересующему - определяемому веществу датчик, изменение параметров которого могут быть зафиксированы при облучении его светом, как это описано в настоящем изобретении.

Одним из объектов изобретения является способ контроля вещества в атмосфере, при котором в атмосфере, потенциально содержащей такое вещество, выдерживают в течение заданного периода времени, по меньшей мере, один датчик направляют световой пучок в первом диапазоне длин волн на, по меньшей мере, один датчик и получают первый сигнал, соответствующий количеству света первого диапазона длин волн, отраженного от, по меньшей мере, одного датчика, направляют световой пучок во втором диапазоне длин волн на, по меньшей мере, один датчик и получают второй сигнал, соответствующий количеству света второго диапазона длин волн, отраженного от, по меньшей мере, одного датчика, сравнивают первый и второй сигналы для получения сигнала сравнения и устанавливают соответствие сигнала сравнения с заранее полученной кривой отражения, посредством чего получают оценку концентрации, соответствующую концентрации определяемого вещества в атмосфере.

Другим объектом изобретения является оптоэлектронное устройство для контроля вещества в атмосфере, включающее корпус, по меньшей мере, частично, образующий внутреннее пространство устройства и имеющий отверстие, по меньшей мере, один съемный датчик, размещенный во внутреннем пространстве корпуса или в отверстии корпуса, по меньшей мере, один источник света, размещенный во внутреннем пространстве устройства с возможностью направления светового пучка на датчик, и, по меньшей мере, один фотоприемник, выполненный с возможностью измерения количества света, отраженного от датчика, при этом, по меньшей мере, один источник света и, по меньшей мере, один фотоприемник размещены рядом друг с другом в одной плоскости на общей печатной плате, размещенной во внутреннем пространстве устройства.

Еще одним объектом изобретения является оптоэлектронное устройство для контроля вещества в атмосфере, включающее корпус, по меньшей мере, частично образующий внутреннее пространство устройства и имеющий отверстие, по меньшей мере, один датчик, установленный в отверстии корпуса, и, по меньшей мере, один источник света, размещенный во внутреннем пространстве устройства с возможностью направления светового пучка на датчик и, по меньшей мере, один фотоприемник, предназначенный для измерения количества света, отраженного от датчика, при этом датчик закреплен в отверстии корпуса, перекрываемом так, что в устройстве образуется герметичное внутреннее пространство.

Особенности изобретения будут очевидны из следующего ниже описания. Однако приведенное выше раскрытие изобретения не следует понимать как ограничение заявляемого изобретения, которое охарактеризовано только формулой, в которую могут быть внесены поправки во время рассмотрения дела по заявке.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 изображен в аксонометрии пример выполнения оптоэлектронного устройства.

На Фиг.2 изображен вид сбоку поперечного сечения участка датчика в соответствии с одним примером его выполнения.

На Фиг.3 изображен вид сбоку поперечного сечения участка датчика в соответствии с другим примером его выполнения.

На Фиг.4 изображен схематично вид сбоку поперечного сечения оптоэлектронного устройства в соответствии с одним из примером его выполнения.

На Фиг.5 изображен схематично вид сбоку поперечного сечения оптоэлектронного устройства в соответствии с одним из примером его выполнения.

На Фиг.6 изображен схематично вид сбоку поперечного сечения оптоэлектронного устройства в соответствии с одним из примером его выполнения.

На Фиг.7 изображен схематично вид сбоку поперечного сечения оптоэлектронного устройства в соответствии с одним из примером его выполнения.

На Фиг.8 изображен вид сбоку поперечного сечения участка примерного оптоэлектронного устройства в частично разобранном виде, включающего датчик в соответствии с одним из примеров выполнения.

На Фиг.9 изображен вид сбоку поперечного сечения участка примерного оптоэлектронного устройства в частично разобранном виде, включающего датчик и защитный слой в соответствии с одним из примеров выполнения.

На Фиг.10 изображена функциональная блок-схема оптоэлектронного устройства в соответствии с одним из примеров выполнения.

На Фиг.11 представлен типичный спектр отражения, характерный для датчика в соответствии с одним из примеров выполнения.

На Фиг.12 показаны значения отраженного оптического сигнала в зависимости от содержания (концентрации) определяемого вещества, полученные при помощи оптоэлектронного устройства в соответствии с одним из примеров выполнения.

На Фиг.13 показаны относительные значения отраженных оптических сигналов в зависимости от значений отраженных оптических сигналов, показанных на Фиг.12.

Одинаковые номера позиций на различных чертежах означают одни и те же элементы. Если не оговорено специально, масштаб всех чертежей к настоящему описанию выбран произвольный - только с целью иллюстрирования различных примеров осуществления настоящего изобретения. В частности, размеры различных элементов даны только для иллюстрации, и не следует предполагать наличия какой-либо связи между размерами различных элементов, если это отдельно не оговорено. Несмотря на то, что в настоящем описании могут быть использованы такие термины, как "верхний", "нижний", "сверху", "снизу", "под", "над", "передний", "задний", "наружный", "внутренний", "вверх" и "вниз" и "первый" и "второй", следует понимать, что они используются лишь для указания относительного положения элементов, если иное не оговорено специально.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Изображенное на Фиг.1 в аксонометрии оптоэлектронное устройство 1 включает, по меньшей мере, один оптический датчик 2. Устройство 1 может быть использовано для осуществления контроля за газовой средой, обычно воздушной атмосферой.

В некоторых примерах осуществления изобретения устройство 1 можно носить на теле и/или одежде человека или в непосредственной близости к нему, например, если устройство 1 выполнено как персональный дозиметр. В таких случаях устройство 1 может быть прикреплено к одежде человека (например, при помощи зажима, петли, ремня, манжеты, шнура, кармашка и т.п., на Фиг.1 не показаны) или его можно носить или переносить иным способом, например, как нагрудный дозиметр. Устройство 1 может быть использовано для дозиметрии окружающей среды, например путем размещения его в этой среде (например, в комнате, в транспортном средстве, т.д.), как внутри, так и снаружи, где необходимо определять содержание анализируемого вещества. Устройство 1 может включать корпус 100, выполненный любой пригодной формы, размера или конструктивного выполнения. Корпус 100 может, например, иметь, по меньшей мере, первую основную поверхность 103, которая обычно повернута в направлении от пользователя или опорной стенки, и вторую основную поверхность 104, которая обычно повернута в направлении к пользователю или опорной стенке.

В некоторых примерах осуществления изобретения способы и/или устройства могут использоваться вместе со средством защиты органов дыхания (например, респиратором, который может содержать фильтрующий элемент, сорбирующие вещества, например, для удаления определенных веществ из атмосферы) в качестве так называемого индикатора окончания срока службы, при помощи которого можно определять оставшуюся сорбирующую емкость фильтрующего элемента, фильтрующий слой сорбирующего вещества и т.д.

Датчик 2 реагирует на наличие определяемого вещества и может быть выполнен в виде оптического рефрактометрического датчика, как это описано ниже. Датчик 2 выдает сигнал, имеющий спектр отражения с одним или более максимумом и минимумом на различных длинах волн и который может меняться при наличии определяемого вещества или в результате изменения его концентрации. В одном примере осуществления изобретения свет, отраженный от датчика 2, является зеркально отраженным. В другом примере свет, отраженный от датчика 2, является диффузно отраженным. Датчик 2 имеет, по меньшей мере, один чувствительный к определяемому веществу слой, оптические свойства которого (например, оптическая плотность) меняются в зависимости от содержания этого определяемого вещества. Датчик 2 дополнительно может иметь, по меньшей мере, один слой, полностью отражающий свет, и/или, по меньшей мере, один слой, который отражает свет частично - полуотражающий слой (как описано более подробно ниже). В некоторых примерах осуществления изобретения датчик 2 может включать чувствительный к определяемому веществу слой 230, размещенный между полностью отражающий свет слоем 240 и полуотражающим слоем 220, при этом такое соединение слоев образует так называемый интерференционный светофильтр, позволяющий получить спектр отражения, который может меняться при наличии определяемого вещества или при изменении его концентрации.

Один из примеров выполнения датчика 2 показан на Фиг.2. В примерах осуществления изобретения с такой конфигурацией датчик 2 включает расположенные последовательно полуотражающий слой 220, чувствительный к определяемому веществу слой 230, полностью отражающий свет слой 240 и подложку 210. При облучении датчика 2 световые лучи 40 (например, от источника света 31, описанного ниже) падают на полуотражающий слой 220. Часть световых лучей 40 отражается от полуотражающего слоя 220 в виде световых лучей 41. Часть световых лучей 40 проходит сквозь полуотражающий слой 220 и чувствительный к определяемому веществу слой 230 и, отражаясь от полностью отражающего свет слоя 240, выходит из датчика 2 в виде световых лучей 42. При сложении световых лучей 41 и 42 формируется световой поток, имеющий спектр отражения, который может меняться при наличии определяемого вещества или при изменении его концентрации.

В примере осуществления изобретения с конфигурацией, изображенной на Фиг.2, определяемое вещество может проникать сквозь полуотражающий слой 220 и затем в чувствительный к определяемому веществу слой 230. Вследствие этого могут меняться оптические свойства слоя 230 (например, оптическая плотность) так, что спектр отраженного от датчика 2 света может меняться, что позволяет определять наличие и/или концентрацию определяемого вещества.

В примерах осуществления изобретения с конфигурацией, изображенной на Фиг.2, полуотражающий слой 220 выполнен проницаемым для определяемого вещества, как это описано ниже, что позволяет определяемому веществу проникать сквозь слой 220 в чувствительный к определяемому веществу слой 230. В примере осуществления изобретения с конфигурацией, изображенной на Фиг.2, полностью отражающий свет слой 240 может быть выполнен проницаемым для определяемого вещества или может быть непроницаемым для него. В примере осуществления изобретения с конфигурацией, изображенной на Фиг.2, в случае если нет необходимости в том, чтобы свет проходил сквозь подложку 210 или взаимодействовал с ней при облучении светом датчика 2, нет необходимости в обеспечении определенных оптических свойств подложки 210 (например, светопроницаемости).

Другой пример выполнения датчика 2 представлен на Фиг.3. В примерах осуществления изобретения с такой конфигурацией датчик 2 включает расположенные последовательно подложку 210 (как вариант), полуотражающий слой 220, чувствительный к определяемому веществу слой 230 и полностью отражающий свет слой 240. Световые лучи 40 падают на подложку 210 и проходят сквозь нее. Часть световых лучей 40 отражается от полуотражающего слоя 220 в виде световых лучей 41. Часть световых лучей 40 проходит сквозь полуотражающий слой 220 и чувствительный к определяемому веществу слой 230 и, отражаясь от полностью отражающего свет слоя 240, выходит из датчика 2 в виде световых лучей 42. При сложении световых лучей 41 и 42 формируется световой поток, имеющий спектр отражения, который может меняться при наличии определяемого вещества или при изменении его концентрации.

В примере осуществления изобретения с конфигурацией, изображенной на Фиг.3, определяемое вещество может проникать сквозь полностью отражающий свет слой 240 и затем попадать в чувствительный к определяемому веществу слой 230. Вследствие этого могут меняться оптические свойства слоя 230 (например, оптическая плотность) так, что спектр отраженного от датчика 2 света может меняться, что позволяет определять наличие и/или концентрацию определяемого вещества. В примерах осуществления изобретения с конфигурацией, изображенной на Фиг.3, полностью отражающий свет слой 240 выполнен проницаемым для определяемого вещества, как это описано ниже, и обеспечивает прохождение определяемого вещества к чувствительному к определяемому веществу слою 230. В примере осуществления изобретения с конфигурацией, изображенной на Фиг.3, полуотражающий слой 220 может быть выполнен проницаемым для определяемого вещества или может быть непроницаемым для него. В примере осуществления изобретения с конфигурацией, изображенной на Фиг.3, поскольку свет должен проходить сквозь подложку 210, она должна быть оптически прозрачной на длинах волн, представляющих интерес.

В примерах осуществления изобретения с конфигурацией, изображенной на Фиг.2, полуотражающий слой 220 выполнен проницаемым для определяемого вещества, поэтому такое вещество может проникать в датчик 2 с той же стороны, с которой он облучается. В таком случае датчик 2 может быть размещен в удобном месте (как показано в примере осуществления изобретения на Фиг.4) во внутреннем пространстве 125 корпуса 100 устройства 1 (например, он удерживается при помощи одного или более опорных кронштейнов 177), при этом датчик 2 оказывается оптически связанным, по меньшей мере, с одним источником света 31 и, по меньшей, мере, с одним фотоприемником 32. Под термином "оптически связан" подразумевается то, что датчик 2 выполнен с возможностью получения света от источника 31, а фотоприемник 32 выполнен с возможностью получения света, отраженного от датчика 2, либо непосредственно (например, в случае, когда указанные элементы обращены лицевой поверхностью друг к другу, как показано в примере осуществления изобретения на Фиг.4), либо при помощи одного или более зеркал. В таких примерах осуществления изобретения в корпусе 100 может быть выполнено одно или более неперекрываемых отверстий 101, чтобы определяемое вещество могло проникать во внутреннее пространство 125 корпуса 100 и попадать в проницаемый для определяемого вещества слой 220 датчика 2. Несмотря на то, что на Фиг.4 датчик 2 изображен размещенным в непосредственной близости от неперекрываемого отверстия 101 на первой (лицевой) основной поверхности 103 корпуса 100 и обращенным к источнику света 31 и фотоприемнику 32, которые размещены бок о бок в непосредственной близости со второй основной поверхностью 104 корпуса 100, возможно большое количества других конструктивных вариантов выполнения. Например, источник света 31 и фотоприемник 32 могут быть размещены на некотором расстоянии друг от друга; могут быть использованы зеркала для оптической связи датчика 2 с источником света 31 и/или фотоприемником 32; датчик 2 может быть размещен на некотором расстоянии от отверстия 101 и т.д.

В примерах осуществления изобретения с конфигурацией, изображенной на Фиг.3, полностью отражающий свет слой 240 может быть проницаемым для определяемого вещества, так, что такое вещество может проникать в датчик 2 со стороны, противоположной той, с которой он облучается. В таких примерах осуществления изобретения датчик 2 удобно разместить (как показано на примере осуществления изобретения на Фиг.5) в герметичном для проникновения определяемого вещества отверстии 102, или в непосредственной близости к нему, выполненном в корпусе 100 устройства 1, при этом проницаемый для определяемого вещества полностью отражающий свет слой 240 датчика 2 обращен наружу (т.е. от внутреннего пространства 125), а облучаемая сторона датчика 2 обращена во внутреннее пространство 125 так, что датчик 2 оптически связан, по меньшей мере, с одним источником света 31 и, по меньшей мере, с одним фотоприемником 32. В таких примерах осуществления изобретения датчик 2 и/или другие слои, выполненные по периметру датчика 2, могут герметично закрывать отверстие 102, так что внутреннее пространство 125 становится герметичным внутренним пространством 126. В таких примерах осуществления изобретения датчик 2 может включать, по меньшей мере, одну оптически прозрачную подложку, выполненную проницаемой для определяемого вещества (описана детально ниже), которая размещается между чувствительным к определяемому веществу слоем 230 датчика 2 и герметичным внутренним пространством 126.

Теперь более детально будут описаны свойства, способы выполнения и т.п. чувствительного к определяемому веществу слоя 230, подложки 210, при ее наличии, полуотражающего слоя 220 и полностью отражающего свет слоя 240. Такие свойства понимают как необходимые для выполнения полностью отражающих свет датчиков в большинстве случаев и, в частности, для любого из изображенных на Фиг.2 и на Фиг.3 примеров осуществления изобретения, описанных выше, кроме тех случаев, которые оговариваются специально. Хотя для обозначения описанных выше слоев используют одинаковые номера позиций, специалистам в данной области техники понятно, что такие слои и/или их соединения могут иметь одинаковые или разные конструктивное исполнение и/или состав. Различные другие слои, в том числе, например, связующие слои, адгезивные слои, защитные слои, покровные слои и им подобные слои, могут быть включены в состав датчика 2, если это необходимо, поскольку они никаким образом не влияют на функционирование датчика 2. Кроме того, все конструктивные варианты выполнения и конструктивные особенности устройства 1, описанные здесь, понимаются, как выполненные с возможностью применения в любом из описанных выше примеров осуществления изобретения, пока не будет оговорено иное.

Чувствительный к определяемому веществу слой 230 может быть выполнен из любого достаточно проницаемого для представляющего интерес - определяемого вещества материала, оптическая плотность которого меняется в достаточной степени при воздействии на него такого вещества, за счет чего обеспечивается необходимое функционирование датчика 2, описанного в настоящем изобретении. В некоторых примерах осуществления изобретения чувствительный к определяемому веществу слой выполнен из пористого материала. В данном случае под термином "пористый" подразумевается то, что материал содержит присущие ему, связанные, по меньшей мере, частично поры. Могут быть выбраны материалы, средний размер пор которых (согласно изотермы сорбции) составляет примерно менее 100 нм. В различных примерах осуществления изобретения могут быть выбраны материалы, средний размер пор которых составляет менее 20 нм, примерно менее 10 нм, или примерно менее 2 нм. Слой 230 может быть однородным или неоднородным, и может, например, быть выполнен из одного или более элементов неорганического происхождения, одного или более элементов органического происхождения или из композиции элементов органического и неорганического происхождения. Типичные материалы неорганического происхождения, которые могут быть использованы в слое 230, включают оксиды металлов, нитриды металлов, оксинитриды металлов и другие материалы неорганического происхождения, из которых могут быть изготовлены прозрачные (и, если требуется, пористые) слои соответствующей толщины для получения пригодного оптического сигнала. Например, слой 230 может быть выполнен из оксида кремния, нитрида кремния, оксинитрида кремния, оксида алюминия, оксида титана, нитрида титана, оксинитрида титана, оксида олова, оксида циркония, цеолитов или их комбинаций. Особенно востребованным материалом неорганического происхождения для выполнения чувствительного к определяемому веществу слоя может быть пористый кремний.

Пористый кремний может быть получен, например, путем золь-гель метода на пластине органического происхождения или без нее. Примерные пластины органического происхождения включают поверхностно-активные вещества (ПАВ), например, анионоактивные или неионные ПАВ, такие как соли алкилтриметиламмония, блок-сополимер поли(етиленоксид-со-пропилен оксид) и другие ПАВ или полимеры. Для образования сети пор внутри диоксида кремния золь-гель соединение может преобразовываться в соль кремниевой кислоты, а пластина органического происхождения удаляется. Также в качестве пластин органического происхождения может использоваться целый ряд органических молекул. Например, в качестве пластин органического происхождения для получения пористых силикатов могут использоваться сахара, такие как глюкоза и манноза. Органозамещенные силоксаны или органо-би-силоксаны могут быть включены в золь-гель соединение для получения более гидрофобных пор и ограничения сорбции водяного пара. Также для получения чувствительных к определяемому веществу пористых неорганических материалов может использоваться плазменный метод химического парофазного осаждения (CVD-процесс). Такой метод обычно включает формирование плазмы из газообразных прекурсоров, осаждение продуктов плазмы на подложке для формирования аморфного слоя с пространственной решеткой и последующий нагрев такого слоя для формирования пористого аморфного слоя с пространственной решеткой. Такие методы и материалы описаны детально в опубликованной заявке на изобретение US 2008/078281, которая включена в настоящее описание изобретения посредством ссылки.

В некоторых примерах осуществления изобретения чувствительный к определяемому веществу слой 230 изготовлен, по меньшей мере, частично из органосиликатных материалов, в настоящем изобретении описанных как композиции, т.е. гибридные композиционные материалы, имеющие трехмерную кремниевую решетку (-Si-O-Si-), ковалентно связанную с органофункциональными группами R, где R - замещенная на углеводород или гетероатом группа углеводородов, связанная с кремниевой решеткой по меньшей мере одной кремний-водородной (Si-C) связью. Такие материалы и способы их получения описаны дополнительно детально в американской заявке на изобретение серийный номер 61/140180, которая включена в настоящее описание изобретения посредством ссылки.

Типичные органические материалы, которые могут быть использованы для изготовления слоя 230, включают полимеры, сополимеры (в том числе блоксополимеры) и их смеси, приготовленные или выполненные с возможностью приготовления из классов мономеров, включающих гидрофобные акрилаты и метакрилаты, дифункциональные мономеры, виниловые мономеры, углеводородные мономеры (олефины), кремнийорганические мономеры, фторсодержащие мономеры, гидроксилированные мономеры, акриламиды, ангидриды, функционализированные альдегидами мономеры, функционализированные аминами или солями аминов мономеры, функционализированные кислотами мономеры, функционализированные эпоксидами мономеры, и их смеси или комбинации.

В некоторых примерах осуществления изобретения чувствительный к определяемому веществу слой 230 выполнен, по меньшей мере, частично из элементов, выбранных из группы материалов, содержащих так называемые "полимеры с внутренней микропористостью" (далее в настоящем изобретении - ПВМ). Полимеры этой группы описаны и охарактеризованы, например, в: "Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Microporous Materials, "Budd et al., Chem. Commun., 2004, pp.230-231; "Polymers of Intrinsic Microporosity (PIMs)", McKeown et al., Chem. Eur. J, 2005, 11, No. 9, pp. 2610-2620; опубликованной заявке US 2006/0246273 и международной заявке WO 2005/012397A2, которые включены в настоящее изобретение посредством ссылки.

ПВМ могут быть получены посредством использования любой комбинации мономеров, в результате чего можно получить очень жесткий полимер, внутри которого есть достаточное количество структурных элементов, обеспечивающих образование скрученной структуры. В различных примерах осуществления изобретения ПВМ могут включать органические макромолекулы, обычно в виде планарных частиц, соединенных посредством жестких сшивающих агентов - линкеров, при этом упомянутые линкеры имеют такую точка изгиба, что две соединенные посредством линкера планарные частицы размещаются в некомпланарной ориентации. В дополнительных примерах осуществления изобретения такие материалы могут быть получены из органических макромолекул в виде первых, большей частью планарных частиц, соединенных посредством преимущественно жестких линкеров с максимум двумя другими упомянутыми первыми частицами, при этом упомянутые линкеры имеют такую точка изгиба, что две смежные первые планарные частицы, соединенные посредством линкера, размещаются в некомпланарной ориентации. В различных примерах осуществления изобретения такая точка изгиба может включать спирогруппу, молекулярное кольцо с внутренним мостиком или пространственно затрудненной простой ковалентной связью с ограниченным вращением вокруг.

Молекулы в цепях полимера с такой жесткой и скрученной структурой не могут формировать плотную структуру, таким образом, полимер обладает внутренней микропористостью. Таким образом, преимуществом ПВМ является наличие такого свойства, как микропористость, которая существенно не зависит от температурной предыстории материала. Преимуществами РIМов, таким образом, является то, что их можно воспроизводить в больших количествах и то, что они обладают свойствами, которые не меняются со временем, не зависят от срока годности и т.д.

Для многих случаев применения чувствительный к определяемому веществу слой 230 может быть гидрофобным. В результате может уменьшаться вероятность того, что водяной пар (или жидкость) послужит причиной изменений в чувствительном к определяемому веществу слое 230 и помешает обнаружить определяемое вещество, например пары органического растворителя.

Дополнительные детали и характеристики пригодных материалов, используемых для изготовления чувствительного к определяемому веществу слоя 230, и способы его изготовления из таких материалов описаны в опубликованной заявке US 2008/0063874, которая включена в настоящее описание изобретения посредством ссылки.

Датчик 2 может содержать полностью отражающий свет слой 240. В некоторых примерах осуществления изобретения полностью отражающий свет слой 240 может быть нанесен (например, с использованием различных способов, описанных в настоящем изобретении) на поверхности выполненного изначально чувствительного к определяемому веществу слоя 230; или полностью отражающий свет слой 240 может быть нанесен на подложке 210, при этом чувствительный к определяемому веществу слой 230 затем размещается на полностью отражающем свет слое 240.

Полностью отражающий свет слой 240 может быть выполнен из любого пригодного материала, который может иметь достаточную отражающую способность. В качестве таких материалов, пригодных для изготовления полностью отражающего свет слоя, могут быть использованы металлы или полуметаллы, такие как алюминий, хром, золото, никель, кремний и серебро. Другие пригодные материалы, из которых может быть изготовлен полностью отражающий свет слой, могут включать оксиды металлов.

В некоторых примерах осуществления изобретения полностью отражающий свет слой может иметь отражающую способность, по меньшей мере, примерно 90% (то есть пропускает примерно 10% света), и в некоторых примерах осуществления изобретения полностью отражающий свет слой может иметь отражающую способность, по меньшей мере, примерно 99% (то есть пропускает примерно 1% света) на длине волны примерно 500 нм.

В некоторых примерах осуществления изобретения (например, с конфигурацией, изображенной на Фиг.3) полностью отражающий свет слой 240 может быть выполнен проницаемым для определяемого вещества. Этого можно достичь, например, за счет выполнения полностью отражающего свет слоя 240 из наночастиц металла, размещенных в структуре, сходной по строению большому количеству пушечных ядер или мраморных шариков, сквозь которую определяемое вещество может проникать в чувствительный к такому веществу слой 230.

Могут быть использованы различные металлические наночастицы. Типичные для этого металлы включают серебро, никель, золото, платину, палладий и сплавы, содержащие любой из вышеперечисленных металлов. Могут использоваться металлы в виде наночастиц, подверженные окислению (например, алюминий), но желательно избегать этого и отдавать предпочтение металлам, менее чувствительным к воздуху. Металлические наночастицы могут быть выполнены полностью как единое целое или могут иметь многослойную структуру (например, гибридную структуру типа "ядро-оболочка", как, например, структура Ag/Pd). Средний диаметр наночастиц может составлять, например, от примерно 1 нм до примерно 100 нм, примерно от 3 нм до примерно 50 нм или от примерно 5 нм до примерно 30 нм. Общая толщина слоя из металлических наночастиц может, например, составлять меньше примерно 200 нм или меньше примерно 100 нм, и минимальная толщина слоя может, например, составлять, по меньшей мере, примерно 5 нм, по меньшей мере, примерно 10 нм или, по меньшей мере, примерно 20 нм. Несмотря на то, что для формирования монослоя могут применяться наночастицы большого диаметра, такой слой обычно формируют из нескольких следующих друг за другом слоев наночастиц, например, по меньшей мере, 2-х или более, 3-х или более, 4-х или более, или 5-ти или более, общая толщина слоя составляет до 5, до 10, до 20 или до 50 наночастиц. Полностью отражающий свет слой, выполненный из металлических наночастиц, может быть, например, по меньшей мере, примерно на 40%, по меньшей мере, примерно на 50% или, по меньшей мере, примерно на 60% отражающим на длине волны, составляющей примерно 500 нм. В различных примерах осуществления изобретения полностью отражающий свет слой, выполненный из металлических наночастиц, может быть, по меньшей мере, примерно на 80%, по меньшей мере, примерно на 90% или, по меньшей мере, примерно на 99% отражающим на длине волны, составляющей примерно 500 нм.

Существуют растворы или суспензии пригодных металлических наночастиц, которые можно приобрести у различных поставщиков, в том числе: паста марки InkJet Silver Conductor AG-IJ-G-100-S1 (от компании Cabot Printable Electronics and Displays); паста марки SILVERJET.TM. DGH 50 и DGP 50 (от компании Advanced Nano Products); паста марки SVW001, SVW102, SVE001, SVE102, NP1001, NP1020, NP1021, NP1050 и NP1051 (от компании Nippon Paint, США); паста марки METALON.TM. FS-066 и JS-011 (от компании Novacentrix Corp.) и нанопаста серии NP (от компании Harima Chemicals, Inc.). Металлические наночастицы могут быть на основе разнообразных разбавителей, в том числе на водной основе, на основе органических растворителей. Металлические наночастицы также могут быть на основе связующего вещества, содержащего полимеризуемый мономер, но для получения проницаемого слоя из наночастиц желательно, чтобы такое связующее удалялось из нанесенного покрытия (например, извлечением с помощью растворителя или прокаливанием).

Слой 240 может быть выполнен путем нанесения разбавленного пленкообразующего раствора или суспензии металлических наночастиц на чувствительный к определяемому веществу слой 230 и последующего высыхания этого раствора или суспензии с образованием проницаемого полностью отражающего свет слоя 240. Концентрация раствора, например, может быть такой, чтобы нанесенный раствор или суспензия обеспечивали получение проницаемого для жидкости или пара слоя из металлических наночастиц, например, с концентрацией взвешенных частиц менее 30 масс.%, менее 20 масс.%, менее 10 масс.%, менее 5 масс.% или менее 4 масс.%. За счет разбавления дополнительным растворителем приобретенного коммерческого продукта из металлических наночастиц, нанесения и последующего высушивания разбавленного раствора или суспензии может быть получен вполне определенный тонкий слой, проницаемый для жидкости или пара. Могут быть использованы различные методы нанесения раствора или суспензии из металлических наночастиц, в том числе кистью, окунанием, с помощью валка, методом центрифугирования, методом распыления, с помощью штампа, струйным методом, сетко-графическим методом (например, ротационной трафаретной печатью), глубокой печатью, флексографией и другими методами, известными специалистам. Нанесение методом центрифугирования может обеспечить более тонкое, более проницаемое покрытие по сравнению с нанесением покрытия другими способами. Соответственно, некоторые суспензии из наночастиц серебра, поставляемые с низкой концентрацией взвешенных частиц (такой как 5 масс.% серебра марки SVW001 от компании Nippon Paint или 10 масс.% SILVERJET DGH-50 или DGP-50 от компании Advanced Nano Products), могут использоваться в том виде, в котором они поставляются, без дополнительного разбавления, если такие суспензии наносятся методом центрифугирования на соответствующей высокой скорости и при соответствующей температуре на пригодную подложку. После нанесения слой из металлических наночастиц прокаливают (например, путем нагревания до температуры примерно от 125°С до примерно 250°С в течение примерно от 10 минут до примерно 1 часа) до тех пор, пока сохраняется соответствующая проницаемость. Очевидно, что образующийся при этом полностью отражающий свет слой может больше не содержать легко различимые наночастицы, но на него можно ссылаться как на выполненный из наночастиц слой, полностью отражающий свет, для определения метода, с помощью которого такой слой был выполнен.

Дополнительные детали и свойства пригодных проницаемых для определяемого вещества материалов, используемых для выполнения полностью отражающего свет слоя 240, в частности материалов из металлических наночастиц, описаны, например, в опубликованной заявке US 2008/0063874, которая включена в настоящее описание изобретения посредством ссылки.

Датчик 2 может содержать полуотражающий слой 220. В различных примерах осуществления изобретения полуотражающий слой 220 может быть нанесен (например, с использованием различных способов, описанных в настоящем изобретении) на поверхности ранее выполненного чувствительного к определяемому веществу слоя 230, или полуотражающий слой 220 может быть нанесен на подложке 210, при этом чувствительный к определяемому веществу слой 230 затем наносится на полуотражающий слой 220.

Полуотражающий слой 220 по определению имеет более низкий коэффициент отражения, чем полностью отражающий свет слой 240. Полуотражающий слой 220 может быть выполнен из любого пригодного материала, который может иметь полуотражающую способность (например, при определенной толщине). Пригодные материалы могут включать металлы или полуметаллы, т