Устройство облучения

Иллюстрации

Показать все

Группа изобретений относится к медицине. Устройство облучения для введения в естественное отверстие тела для выполнения фотодинамической терапии или диагностики в комплекте содержит корпус, полностью вводимый и надежно удерживаемый в отверстии, при этом указанный корпус окружает светодиодную систему освещения и источник питания, предназначенный для подачи энергии к указанной светодиодной системе, причем установленное в отверстии устройство работает автономно. Группа изобретений позволяет повысить эффективность и быстродействие лечения при использовании ФДТ. 2 н. и 45 з.п. ф-лы, 7 ил.

Реферат

Настоящее изобретение относится к устройству облучения для введения в естественное отверстие тела для проведения фотодинамической терапии или диагностики заболеваний, патологических изменений и степени их проявления.

Примером естественного отверстия тела, в котором преимущественно выполняют фотодинамическую обработку, являются женские половые пути. Состояния женских половых путей, при которых необходимо данное вмешательство, обсуждаются ниже. Подобные состояния или проявления, которые требуют проведения подобных обработок, могут возникнуть и в других естественных отверстиях, например, анальном, ушном или носовом.

Папилломавирус человека (HPV) представляет собой вирус, который может инфицировать кожу и слизистые оболочки человеческого организма. Идентифицировано более 100 разных типов HPV. Некоторые типы HPV передаются половым путем и являются патогенными. Установлено, что в США HPV является самой распространенной инфекцией, передаваемой половым путем. Несколько сотен миллионов женщин по всему миру (примерно 70%) один раз за свою жизнь инфицируются HPV, при этом самый высокий уровень распространения вируса характерен для женщин молодого возраста и составляет 20-30%. Указанные вирусы могут вызвать инфекционные заболевания женской половой сферы и приводить к таким заболеваниям женских половых органов, как остроконечные кондиломы, дисплазия и рак шейки матки.

Рак шейки матки представляет собой опасное для жизни заболевание и на сегодняшний день является третьим в мире из числа самых распространенных форм рака среди женщин. Ученые полагают, что существует сильная взаимосвязь между развитием цервикального рака и HPV. Хроническая папилломовирусная инфекция шейки матки может вызывать отклонения на клеточном уровне, включая цервикальную интраэпителиальную неоплазию (CIN), предопухолевые состояния и конечные формы рака шейки матки.

К счастью, легкие формы клеточных патологий, включая CIN1, отличаются высокой степенью спонтанных регрессий (>60%) и проявляются состоянием, которое, как правило, отслеживают проведением всего лишь кольпоскопии. Средние и тяжелые формы CIN (CIN2 и CIN3) имеют меньшую вероятность спонтанных регрессий и более высокий риск прогрессирования болезни. Таким образом, пациентам, у которых обнаружены CIN2 и CIN3, проводят конизацию, обычно посредством хирургических процедур, включая диатермию, лазерную конизацию и гистерэктомию. Эффективность указанных процедур составляет около 90%, но выздоровлению мешают побочные эффекты, приводящие к повышенному риску возникновения кровотечения, инфекции, стеноза, бесплодия и преждевременным родам.

Если не проводить соответствующего лечения, предраковые клетки будут прогрессировать до более тяжелых форм, наподобие карциномы и нейроэндокринной карциномы. Способы лечения цервикального рака, также как и большинства других форм рака, зависят от стадии развития болезни. Лечение цервикального рака на ранней стадии обычно выполняют разного рода хирургическими вмешательствами, тогда как лечение цервикального рака поздней стадии проводят, выполняя хирургическое вмешательство в комплексе с лучевой терапией и химиотерапией. Самая распространенная химиотерапия цервикального рака включает применение цисплатина. По оценкам, около 11 тысячам женщин ежегодно диагностируют цервикальный рак и почти 4000 из них умирают от болезни. Уровень выживаемости (около 5 лет) зависит от стадии болезни и в среднем составляет примерно 50%.

Фотодинамическая терапия (ФДТ) представляет собой способ лечения, использующий сочетание излучения и фотосенсибилизирующего вещества. При облучении светом соответствующей длины волны фотосенсибилизирующее вещество или «лекарственное средство для ФДТ» вступает в реакцию с кислородом ткани, образуя радикалы кислорода, взаимодействующие с органеллами клетки, в том числе митохондриями и клеточными мембранами. Указанные реакции приводят к некрозу клеток или апоптозу (программированному отмиранию клеток). На сегодняшний день ФДТ применяют клинически для лечения некоторых заболеваний, включая разнообразные кожные заболевания.

Как правило, для лечения кожи методом ФДТ применяют лекарства торговой марки Metvix® (Galderma, Швейцария) и Levulan® (Dusa Pharmaceuticals Inc, Wilmington, США).

Из научной литературы известен целый ряд фотосенсибилизаторов. Составы одного из известных типов являются сами по себе токсичными для клеток-мишеней или видов клеток, либо обладают светоизлучающими свойствами при световом экспонировании. Указанные составы отличаются сравнительно высоким молекулярным весом и часто являются сложными молекулами наподобие фталоцианинов, хлоринов, порфиринов и псораленов. К другому типу состава, более ценному в клиническом плане, относятся прекурсоры фотосенсибилизатора, которые сами по себе не являются фототоксичными или светоизлучающими, но образуют фотоактивные составы, например, эндогенные порфирины, in vivo. Такими составами, как правило, являются 5-аминолевулиновая кислота (5-ALA) и ее производные, типа сложных эфиров 5-ALA, и в данном документе они называются «прекурсоры».

В настоящее время на рынке лекарственных средств не существует препарата для ФДТ или диагностики заболеваний, патологических изменений или состояния шейки матки. Однако имеется несколько научных отчетов по клиническим исследованиям, касающимся ФДТ шейки матки, в том числе ФДТ папилломавирусных инфекций человека.

Согласно недавно опубликованной научной работе («Lasers in Surgery and Medicine» 40: 611-615 (2008) (Лазеры в хирургии и медицине), Р. Soergel et al) 24 пациентки с диагнозом CIN2 или CIN-3, либо хроническая CIN1 получали местные аппликации гексил-эфира 5-ALA в виде термогеля. Пациенткам было рекомендовано оставаться в положении лежа на спине последующие 3-5 часов до облучения, которое выполняли лазером в течение 17 минут при высокой дозе облучения, составляющей 100 Дж/см2. Спустя 2-3 месяца проводили оценку клинического эффекта и некоторым пациенткам с недостаточной реакцией на первый сеанс ФДТ, предлагали второй сеанс ФДТ. Все пациентки были проверены спустя 6 месяцев после первого курса лечения и было установлено, что общая эффективность терапии составляет 63%.

Из вышесказанного очевидно, что данная обработка отнимает много времени как у пациенток, так и у гинекологов. Пациентки должны явиться с визитом к гинекологу для нанесения лекарственного состава, после этого они должны оставаться в положении лежа на спине 3-5 часов, а затем снова прийти к гинекологу на сеанс облучения. Кроме того, многие из пациенток, те кто не отреагировал на первую обработку, должны пройти указанную процедуру еще раз.

Общий вывод из указанных исследований состоит в том, что существует поле деятельности для повышения клинической эффективности ФДТ при лечении папилломавируса человека и цервикальных патологий на клеточном уровне. Более того, процедура отнимает много времени как у пациентов, так и у лечащего персонала. Также существует необходимость повышения эффективности лечения других заболеваний женских половых путей и иных естественных отверстий тела.

В нескольких патентных документах описаны разнообразные устройства, предназначенные для вагинального применения, доставки лекарственного средства к шейке, либо фото- диагностики или лечения.

В документе US 2008/0065003 описано светодиодное устройство для фотодинамической терапии шейки, содержащее облучающую головную часть, вводимую в цервикальную зону. Светодиодная матрица расположена либо внутри облучающей головной части, либо в ручке, соединенной с головной частью посредством световода. Устройство соединено с внешним источником питания и излучение, испускаемое светодиодами, направляется на шейку посредством сферического отражателя, расположенного внутри облучающей головной части.

В документе GB 2370992 описано светодиодное устройство для фотодинамической терапии шейки. Устройство состоит из головной части, содержащей светодиодную матрицу, имеющую форму для введения во влагалище и плотного прилегания к зеву шейки. Головная часть соединена с ручкой посредством полого стержня, по которому к светодиодной матрице подают забираемый снаружи воздух и энергию от источника питания. В процессе обработки позиция устройства зафиксирована.

Понятно, что использование обоих устройств требует участия специалиста-медика и поэтому их применяют, как правило, в условиях медицинского учреждения, например, больницы или клиники общей практики. В продолжение всего облучения пациент должен оставаться неподвижным, что представляет собой неудобство и ограничивает фактическую продолжительность каждого сеанса лечения.

Кроме того, перед использованием устройства, на цервикальную зону должно быть нанесено фотосенсибилизирующее вещество. При использовании существующих на сегодняшний день обычных способов лечения пациент должен провести несколько часов ожидания между нанесением фотосенсибилизирующего вещества/предшественника и облучением.

На сегодняшний день ФДТ не является клинически результативным способом лечения CIN и других заболеваний/состояний шейки. Это обусловлено неэффективными результатами лечения, что отмечено в вышеупомянутом отчете. Таким образом, существует необходимость разработки усовершенствованных способов лечения системы цервикальных органов.

Авторами данного изобретения было обнаружено, что применение специального устройства в сочетании с использованием фотосенсибилизирующего вещества или прекурсора повышает эффективность лечения цервикального рака и других цервикальных заболеваний, патологий и состояний, особенно тех заболеваний, патологий и состояний, которые вызваны HPV инфекцией. Подобные усовершенствования могут быть выполнены применительно к фотодинамическому лечению других заболеваний женских половых путей, например, вульварной интраэпителиальной неоплазии (VIN) или вульварных карцином. Более того, подобные усовершенствования могут быть выполнены применительно к ФДТ раковых или предраковых состояний или патологий любого другого естественного отверстия в теле человека или животного.

Согласно одному аспекту данного изобретения предложено устройство облучения для введения в естественное отверстие в теле для выполнения фотодинамической терапии или диагностики, содержащее: корпус, выполненный с возможностью полного введения и надежного удержания в отверстии, который вмещает светодиодную систему освещения и источник питания для подачи питания к указанной светодиодной системе, при этом установленное в отверстии устройство работает автономно.

В отличие от устройств известного уровня техники, устройство, выполненное согласно настоящему изобретению, не требует, чтобы пациент оставался в медицинском учреждении во время проведения сеанса лечения. Точнее, применение устройства зачастую будет предполагать всего лишь один визит в медучреждение, после которого пациенту будет позволено уйти. Пролонгированный непрерывный курс лечения может продолжаться в то время как пациент продолжает свою ежедневную деятельность.

Это обусловлено тем, что устройство предполагает полное введение и надежное удерживание в отверстии и в процессе использования не требует соединения с внешним источником питания или источником излучения. Выражение «работает автономно» подразумевает, что устройство может осуществлять облучение для проведения ФДТ без сопутствующего соединения с каким-либо внешним устройством. Поэтому устройство является полностью автономным и образует модуль закрытого типа, включающий как источник излучения, так и источник питания, необходимые для проведения фотодинамических процедур.

Кроме повышения комфорта и минимизации повреждения пациента другое преимущество настоящего изобретения заключается в том, что облучение может выполняться предпочтительно при очень низких плотностях потока. Плотностью потока F называют мощность излучения, падающего на единицу площади и измеряемую в Вт/см2. Излучение, имеющее низкие плотности потока (например, 10 мВт/см2), предполагает, что облучение требуется проводить сравнительно долго, например, много часов, для того, чтобы достичь требуемой дозы облучения, необходимой для достижения терапевтического эффекта, и поэтому применять его в условиях клиники (госпиталя) не представляется возможным. Тем не менее, известно, что облучение с применением низких плотностей потока в значительной степени уменьшает дискомфорт (боль) пациента в процессе облучения и, кроме того, может повышать эффект ФДТ за счет возможности постоянного накопления эндогенных порфиринов (из прекурсоров) и предотвращения кислородного голодания в процессе облучения (статья S. Jacques et al. «PDT with ALA/PPIX is enhanced by prolonged light exposure putatively by targeting mitochondria» (Повышение эффективности ФДТ с применением ALA/PPIX путем пролонгированного облучения, воздействующего предположительно на митохондрии), опубликованная в журнале «SPIE Proceedings» Vol.2972, и статья «Optical Methods for Tumor Treatment and Detection» (Оптические способы лечения и обнаружения новообразований), T.Dougherty, San Jose, February 1997, и M.Seshadri et al., опубликованная в журнале «Clin Cancer Res» 14(9), 2796-2805 (2008)).

Следовательно, устройство не только более удобно для пациента, но и может обеспечить повышение эффективности лечения.

Форма корпуса может меняться, но, как правило, корпус сконструирован таким образом, чтобы обеспечивать комфортное размещение внутри отверстия и оставаться на своем месте независимо от физической активности пациента. Если упомянутое отверстие относится к женским половым путям, соответствующие формы наружной части корпуса могут быть похожими, например, на форму некоторых контрацептивных средств, применяемых для предупреждения беременности, к примеру, шеечный колпачок FemCap® и другие подобные приспособления, предназначенные для недопущения попадания спермы в матку. Для других естественных отверстий можно применять другие соответствующие формы и конструкции, например, на основе известных конфигураций, используемых в качестве суппозиториев и/или фармацевтических пессариев.

Несмотря на то, что данное изобретение было разработано с учетом лечения пациентов-людей, также возможно применять настоящее устройство для лечения животных. Соответственно, форма корпуса будет зависеть от естественного отверстия, в котором требуется провести обработку, и от анатомического строения животного, для лечения которого предполагают применять устройство.

Устройство может содержать тонкий корпус, при этом стенки отверстия будут обхватывать корпус и удерживать его по месту. Если устройство предназначено для вагинального применения, то форма и размер корпуса может напоминать, например, тампон. Наружная поверхность корпуса может быть рельефной для лучшего удерживания устройства. Кроме того, рельефная поверхность может иметь преимущества при создании поверхности, обеспечивающей доставку лекарственных средств к той области тела, которая требует лечения.

Для того чтобы обеспечить комфортное и эффективное лечение каждого пациента, могут быть изготовлены устройства разных размеров и/или форм. Например, в случае лечения шейки могут быть выполнены устройства трех размеров: 1) для пациенток, у которых еще не было беременности 2) для беременных пациенток, которые еще не родили и 3) для пациенток, которые уже рожали.

Для некоторых естественных отверстий, например, анального, введение и надежное удерживание устройства обеспечит простая форма типа «торпеда». Однако для других применений могут быть предусмотрены дополнительные конструктивные особенности, обеспечивающие в процессе использования надежное удерживание устройства внутри отверстия. В связи с этим, для вагинального применения корпус предпочтительно имеет гибкую наружную часть, форма которой может меняться, обеспечивая надежное удерживание стенками влагалища, что позволяет применять прибор с учетом большого разнообразия форм и размеров влагалища. Кроме того, гибкая наружная часть способствует уменьшению риска выскальзывания или смещения устройства в течение продолжительного периода лечения, в ходе которого пациент может проявлять физическую активность. При необходимости, подобная наружная часть может быть применена и для устройства, предназначенного для введения в другие естественные отверстия тела.

Для введения в ухо или нос форма устройства может быть выполнена с учетом известных конструкций ушных или носовых тампонов.

Гибкая наружная часть может быть изготовлена из любого материала, который обладает способностью изменять свою форму. Например, гибкая часть может быть выполнена из материала, обладающего способностью к расширению, сжатию или деформации. Корпус, по меньшей мере частично изготовленный из деформирующегося материала, может изменять свою форму в процессе введения устройства, согласуясь с диаметром отверстия. В альтернативном варианте, может быть применен расширяющийся материал, так чтобы после введения наружная часть корпуса расширилась для плотного обхвата стенками отверстия. Расширение может происходить под воздействием тепла тела, воздействием текучей среды, подаваемой из распределительного устройства /инструмента и т.д.

Тем не менее, предпочтительно, чтобы гибкая наружная часть была выполнена из эластичного материала. Это обеспечит изменение формы гибкой части, создавая при этом распирающую силу, направленную в радиальном направлении от центра наружу и удерживающую устройство на месте. Для достижения данного эффекта внешний диаметр наружной части должен уменьшаться, чтобы обеспечить введение устройства в отверстие. При этом наружная часть будет создавать силу, направленную радиально от центра наружу, к стенкам отверстия.

Упругий материал может представлять собой любой эластичный материал, широко известный в производстве медицинских приборов, например, резину, латекс, силикон или иные натуральные, полусинтетические или синтетические полимеры или сополимеры.

Гибкая наружная часть может иметь любую форму, которая способна обеспечить надежное удерживание стенками отверстия. Например, гибкая наружная часть может быть изготовлена в виде ряда отдельных ножек, гребешков или иных выступов, отстоящих в радиальном и/или продольном направлении вокруг корпуса, отходя от него в наружном направлении. В других вариантах выполнения гибкая наружная часть может образовывать сплошную наружную поверхность корпуса. Данная поверхность может представлять собой либо всю, либо часть наружной поверхности корпуса. Например, наружная часть может представлять собой деталь в виде диска или чаши, установленную либо на переднем, либо на заднем конце устройства, или закрывающий элемент, проходящий по всей длине корпуса.

В предпочтительном варианте выполнения гибкая наружная часть образует сплошную поверхность, которая сужается в наружном направлении к заднему концу устройства, то есть, тому концу устройства, который в процессе использования ближе всего расположен ко входу в отверстие. К примеру, наружная часть может иметь форму, напоминающую усеченный конус,

Хотя требование гибкости относится только к наружной части корпуса, в некоторых предпочтительных вариантах выполнения весь корпус выполнен гибким. Создание устройства, имеющего гибкий корпус, повышает степень комфортности устройства и упрощает изготовление корпуса вследствие необходимости применения единого материала.

Предпочтительно, корпус имеет обрабатывающую поверхность, при этом светодиодная система предназначена для испускания излучения из указанной поверхности. Устройство может обеспечивать облучение стенок отверстия, в данном случае обрабатывающая поверхность может представлять собой наружную периферическую поверхность корпуса. Размер и форму обрабатывающей поверхности предпочтительно выбирают таким образом, чтобы она обеспечивала плотное прилегание к зоне обработки и предпочтительно противостояла всей области, по которой нужно проводить ФДТ. Светодиодная система освещения и обрабатывающая поверхность предпочтительно расположены таким образом, что излучение в направлении зоны обработки испускается на таком расстоянии и имеет такую интенсивность, которые позволяют добиться необходимого эффекта лечения.

Устройство может обеспечивать облучение конкретной области, расположенной внутри отверстия. Соответственно, устройство может иметь обрабатывающую поверхность, которая в процессе использования устройства направляет и/или фокусирует облучение на конкретной области, расположенной внутри отверстия. В одном предпочтительном варианте выполнения устройство предназначено для проведения ФДТ шейки. Таким образом, предпочтительно, чтобы в процессе использования форма обрабатывающей поверхности закрывала зев шейки. При этом, если устройство введено во влагалище правильно, обрабатывающая поверхность будет закрывать зев шейки и, следовательно, может обеспечивать облучение зоны шейки.

Размер данной обрабатывающей поверхности должен быть таким, чтобы она прилегала по всей части шейки матки, например, ее диаметр составляет 20-50 мм, более предпочтительно, 20-35 мм, а еще более предпочтительно, 22-30 мм.

Предпочтительно, обрабатывающая поверхность выполнена по меньшей мере частично прозрачной, для пропускания излучения, идущего от светодиода, сквозь поверхность и обеспечения требуемого выполнения ФДТ или диагностики. В некоторых вариантах выполнения обрабатывающая поверхность может быть полностью прозрачной для света с длиной волны, обеспечивающей проведение ФДТ и испускаемого по меньшей мере одним светодиодом. Тем не менее, предпочтительно, материал обрабатывающей поверхности и/или другой материал, расположенный между обрабатывающей поверхностью и светоизлучающим участком (участками) светодиодной системы освещения, рассеивает излучение, тем самым, обеспечивая равномерное распределение света, идущего от нескольких светодиодов. В одном варианте выполнения прозрачный материал применяют, как для изготовления корпуса, окружающего светодиодную систему освещения, так и для обрабатывающей поверхности и, таким образом, он служит и в качестве корпуса для системы освещения, и в качестве рассеивателя излучения. В альтернативном варианте выполнения прозрачный материал применяют для формирования обрабатывающей поверхности, тогда как непрозрачный материал применяют для изготовления корпуса. Это гарантирует, что облучению подвергается только область, нуждающаяся в лечении, в то время как другие области, контактирующие с устройством, облучению не подвержены. Предпочтительно, в качестве материала обрабатывающей поверхности, которая работает как рассеиватель испускаемого излучения, применяют прозрачный силикон.

В некоторых предпочтительных вариантах выполнения на обрабатывающей поверхности может быть расположен по меньшей мере один светодиод, либо по меньшей мере один светодиод выходит из указанной поверхности. В таких вариантах выполнения свет не должен проходить сквозь обрабатывающую поверхность и поэтому на ее прозрачность не накладываются никакие ограничения.

В одном предпочтительном варианте выполнения обрабатывающая поверхность выполнена вогнутой. Это может способствовать направленности испускаемого света к зоне обработки, например, к шейке.

В вариантах выполнения, предназначенных для облучения шейки матки, устройство содержит выступ, который отходит от обрабатывающей поверхности. Предпочтительно данный выступ образует цилиндрическую трубку. Указанный выступ может способствовать, как правильному позиционированию устройства внутри влагалища, так и направлению излучения в цервикальный канал. В последнем случае трубка действует как световой туннель.

Предпочтительно, гибкая наружная часть расположена позади обрабатывающей поверхности. Это исключает любые помехи при лечении излучением. В предпочтительных вариантах, в которых наружная часть представляет собой сплошную поверхность, указанная наружная часть может отходить от обрабатывающей поверхности в направлении задней части устройства, сужаясь наружу, так что самое широкое сечение наружной части расположено с обратной стороны обрабатывающей поверхности.

Устройство содержит светодиодную систему освещения, которая при расположении устройства внутри отверстия может работать автономно.

Система освещения может содержать один светодиод или предпочтительно светодиодную матрицу. Для ФДТ шейки матки особенно предпочтительно, чтобы светодиодная матрица содержала 3-15 светодиодов. Термин «светодиод» (LED) распространяется на любой тип светоиспускающего диода, например, OLED (органический светоиспускающий диод) светодиоды.

Энергопотребление светодиодной системы освещения в единицу времени должно быть таковым, чтобы нагрев ткани не вызывал чрезмерного дискомфорта или вреда для пациента. Как правило, используют облучение с уровнем дозы, составляющим от 10 до 200 Дж/см2, например, 50 Дж/см2. Таким образом, в процессе использования светодиодная система освещения предпочтительно обеспечивает плотность потока в диапазоне от 0,5 до 100 мВт/см2, а более предпочтительно, в диапазоне от 1 до 10 мВт/см2. Такая низкая плотность потока приводит к тому, что общая доза распределяется в течение сравнительно долгого периода времени, например, нескольких часов. Как уже упомянуто ранее, это является преимущественным как в плане уменьшения дискомфорта для пациента, так и эффективности лечения.

Длина волны света, применяемого для облучения, может быть выбрана для достижения действенного фотодинамического эффекта, и поэтому при выборе светодиодов учитывают их способность испускать свет той длины волны, которая обеспечивает данный эффект. В одном предпочтительном варианте выполнения по меньшей мере один светодиод в процессе использования испускает свет, длина волны которого соответствует диапазону от 300 до 800 нм, например, установлено, что диапазон 500-700 нм будет особенно эффективен. Особенно важно иметь длину волны, составляющую 630 и 690 нм. Таким образом, предпочтительно, чтобы в процессе использования по меньшей мере один светодиод испускал свет, длина волны которого соответствует диапазону 630-690 нм. В самом предпочтительном варианте выполнения (особенно, если устройство применяют совместно с составом, содержащим прекурсор фотосенсибилизатора, выбираемый из 5-аминолевулиновой кислоты или ее производной, например, сложного эфира данной кислоты) используют красный свет (с длиной волны 600-700 нм), поскольку известно, что свет с данной длиной волны хорошо проникает в ткани. В некоторых вариантах выполнения светодиодная система освещения содержит фильтры, гарантирующие излучение устройством только света с длиной волны определенного диапазона, как упомянуто выше. Обрабатывающая поверхность может быть выполнена таким образом, что пропускает только свет, имеющий указанную предпочтительную длину волны.

Источник питания предпочтительно содержит одну или более батарей. Предпочтительно, батареи должны работать посредством электрохимических реакций с применением химических реактивов, которые не являются слишком токсичными для пациента, в случае если находящееся внутри организма устройство сломается или протечет. Соответствующие батареи представляют литиевые или эквивалентные батареи достаточной емкости, которые к тому же могут храниться в течение 10 лет. Например, можно применять батарею типа ½ АА LiMnO2. Низкая потеря заряда и небольшой размер ионно-литиевых батарей делает их особенно пригодными для использовании в качестве источника питания данного устройства. Для того чтобы повысить безопасность устройства, предпочтительно, чтобы источник питания был изолирован внутри корпуса. Под изоляцией понимают, что в процессе использования корпус непроницаем для текучей среды и исключает протекание текучей среды в устройство или из устройства.

На самом базовом уровне система освещения может просто содержать электрические соединения для источника питания и одного или более светодиодов. При данной конфигурации, непосредственно перед введением устройства система освещения должна быть активирована для включения одного или более светодиодов. Затем устройство может быть введено в отверстие, в котором светодиод (светодиоды) будут облучать зону лечения до момента извлечения устройства или разрядки источника питания.

Активация системы освещения может быть запущена переключателем. Для поддержания стерильности устройства и сохранения источника питания и других элементов устройства закрытыми, переключатель предпочтительно заключен внутрь корпуса и работает, оставаясь изолированным внутри корпуса. Переключатель может представлять собой механический переключатель, расположенный под гибкой частью корпуса, при этом функция переключателя может быть обеспечена за счет упругости гибкой части. В альтернативном варианте переключатель может приводиться в действие электрическим или магнитным полем, проходящим через корпус. Переключатель, основанный на магнитном принципе действия, может быть выполнен с использованием магнита, расположенного снаружи корпуса, удерживающего герконовый «нормально замкнутый» переключатель разомкнутым. При удалении магнита герконовый переключатель будет замыкаться, и этот принцип можно использовать для активации устройства.

В простой системе, состоящей только из источника питания и светодиода, трудно проконтролировать уровень дозирования, поскольку точный срок службы и выходная мощность источника питания будут меняться. Кроме того, излучение, создаваемое светодиодной матрицей, будет постоянным. Для того чтобы предотвратить неприемлемое нагревание ткани, применяют излучение предпочтительно низкой интенсивности, помимо этого, преимущественной может являться способность устройства создавать импульсное излучение.

Таким образом, предпочтительно, система освещения дополнительно содержит схему управления, такую как микроконтроллер или микропроцессор, предназначенную для регулирования излучения, создаваемого по меньшей мере одним светодиодом. Схема управления системы освещения может быть активирована переключателем, который описан выше. В предпочтительном варианте выполнения цепь управления содержит таймер. В этом случае система освещения может быть запрограммирована на то, чтобы облучение начиналось через заранее заданный промежуток времени после активации системы. Это гарантирует, что с момента активации до начала облучения пройдет достаточное количество времени. Например, для обеспечения поглощения или накопления порфиринов, требуется, чтобы с момента применения фотосенсибилизирующего вещества или лекарства-прекурсора прошло определенное количество времени. Кроме того, продолжительность облучения можно строго контролировать, так как схема управления может обеспечивать выключение излучения после истечения заданного времени дозирования. Для дополнительного накопления эндогенных фотосенсибилизаторов (из прекурсоров), по истечении определенного периода времени после первого облучения, например 3 часов, с помощью устройства можно выполнить повторное облучение (повторную ФДТ).

Помимо этого, схема управления может быть предназначена для создания импульсного излучения. Этого можно добиться, встроив в микропроцессор генератор функций. Как упомянуто выше, импульсный свет является преимущественным, так как гарантирует отсутствие неприемлемого нагревания ткани. Кроме того, перерывы в облучении усиливают насыщение ткани кислородом и эффект от ФДТ. Более того, это обеспечивает повторное накопление эндогенных порфиринов в оставшихся в живых клетках, которые могут быть обработаны при повторных сеансах облучения. Частота и продолжительность импульсов могут быть выбраны в соответствии с требованиями, предъявляемыми к режиму обработки и установочными параметрами схемы управления.

В одном варианте выполнения схема управления может быть запрограммирована пользователем. Это позволяет регулировать продолжительность, интенсивность и вид излучения в соответствии с индивидуальными схемами лечения. Соответствующие типы запоминающих устройств, способных к перезаписи, включают EPROM, EEPROM, флеш и т.д. Тем не менее, запоминающее устройство схемы управления предпочтительно имеет только функцию чтения (ПЗУ) и запрограммировано в процессе изготовления.

Доступ к схеме управления может быть получен посредством пользовательского интерфейса, расположенного на устройстве. Путем ответа на ряд вопросов пользователь может изначально установить время задержки, продолжительность дозирования, число и длительность световых импульсов и т.п. Интерфейс может быть выполнен как единое целое с устройством. Соответственно, устройство может иметь небольшие кнопки, которые можно нажимать соответствующим приспособлением, или герконовые переключатели. Каждая кнопка или переключатель может активировать заданный установочный параметр, например, дозу излучения, интенсивность, импульсное/постоянное излучение и т.д.

Важно, чтобы в процессе использования была обеспечена изоляция всех электрических компонентов системы освещения и источника питания внутри или по корпусу. Таким образом, схема управления предпочтительно должна быть изолирована внутри корпуса. Как уже упомянуто ранее, светодиод (светодиоды) могут быть расположены таким образом, чтобы они выступали из корпуса. Тем не менее, предпочтительно, чтобы в процессе использования светодиодная система освещения была полностью изолирована внутри корпуса.

В некоторых вариантах выполнения доступ к интерфейсу пользователя может быть обеспечен через гибкий участок корпуса. В альтернативном варианте, корпус может иметь изолируемое отверстие, которое обеспечивает доступ к интерфейсу.

Однако наличие интерфейса пользователя увеличивает размер системы освещения, что может быть нежелательным в некоторых областях применения. Поэтому, в альтернативном варианте, схема управления может иметь приемник, предназначенный для соединения с удаленным терминалом. При этом из удаленного терминала, например, компьютера, в схему управления могут поступать конкретные программные команды.

В некоторых вариантах выполнения приемник содержит входной порт, соединяемый с кабелем. В таких вариантах выполнения входной порт имеет соответствующий тип разъема, например, USB или иную вилку разъема.

В процессе использования входной порт должен быть изолирован. Поэтому корпус может содержать штекер, вставляемый в порт. В альтернативном варианте корпус может состоять из двух компонентов, которые могут быть соединены посредством, например, винтовой резьбы, проталкивающегося или защелкивающегося соединения, либо байонетного сочленения. Соединение имеет изоляцию, гарантирующую в процессе использования изолирование цепи управления внутри корпуса.

В альтернативном варианте программные команды могут быть переданы в устройство посредством беспроводной связи. Например, приемник может представлять собой инфракрасный или радио приемник. В данном случае преимущество заключается в том, что физический порт ввода необязателен, а схема управления может быть постоянно изолирована внутри корпуса.

Предпочтительно схема управления дополнительно включает систему обратной связи. Это обеспечивает внесение изменений в программу лечения, выполняемое схемой управления с учетом отклонений в расчетной характеристике светодиода.

Например, система обратной связи может включать оптический монитор или иное прямое или косвенное контролирующее устройство, измеряющее дозу облучения, полученную пациентом. В данных системах схема управления может быть запрограммирована на выключение светодиода (светодиодов) после достижения заранее заданной дозы, а не через заранее определенное время.

В альтернативном варианте, в случае, если режим работы светодиодов не соответствует ожидаемому, таймер может быть заменен дозиметром. Например, если источник питания неисправен, выходная мощность светодиодов может быть снижена. Таким образом, для того чтобы получить полную до