Катализатор на основе цеолита izm-2 и способ гидроконверсии/гидрокрекинга углеводородного сырья
Иллюстрации
Показать всеИзобретение относится к катализатору, который включает в себя:
- подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, в рентгенограмме которого имеются по меньшей мере спектральные линии, записанные в таблице ниже, где FF = очень интенсивная; F = интенсивная; m = средняя; mf = умеренно слабая; f = слабая; ff = очень слабая,
и который имеет химический состав, выраженный на безводное основание, в расчете на моли оксидов, отвечающие следующей общей формуле ХО2:aY2O3:bM2/nO, в которой Х означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент и М представляет собой по меньшей мере один щелочной металл и/или щелочноземельный металл, валентности n, а и b означают соответственно число молей Y2O3 и М2/nO, и а составляет от 0 до 0,5, а b составляет от 0 до 1, и
- активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или по меньшей мере один гидрирующий-дегидрирующий неблагородный элемент группы VIII периодической системы, причем указанный катализатор является катализатором с сульфидированной фазой. Изобретение относится также к способам гидрокрекинга, гидрообработки, гидроконверсии, в которых применяется этот катализатор. Технический результат - получение катализатора с каталитическими свойствами в процессах конверсии. 3 н. и 12 з.п. ф-лы, 5 табл., 6 пр.
Реферат
Изобретение относится к катализатору, включающему в себя подложку, содержащую по меньшей мере один твердый кристаллический IZM-2 и активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или группы VIII (неблагородный) периодической системы, причем указанный катализатор является катализатором с сульфидированной фазой.
Изобретение относится также к способам гидрокрекинга, гидроконверсии и гидрообработки, в которых применяется этот катализатор.
В частности, изобретение относится к гидрокрекингу углеводородного сырья, содержащего, например, ароматические, и/или олефиновые, и/или нафтеновые, и/или парафиновые соединения, за исключением сырья, полученного по способу Фишера-Тропша, и, возможно, содержащего металлы и/или азот, и/или кислород, и/или серу.
Целью процесса гидрокрекинга является в основном получение горючего, то есть бензиновых фракций, точка кипения которых составляет от 27 до 150°C, фракции керосина с точкой кипения в интервале от 150 до 250°C и фракции газойля, имеющую точку кипения в интервале от 250 до 380°C.
Предшествующий уровень техники
Гидрокрекинг тяжелых нефтяных фракций является очень важным способом переработки нефти, который позволяет получать из малоценного лишнего сырья более легкие фракции, такие как бензины, реактивное топливо и легкие газойли, получение которых нефтепереработчиками является актуальной задачей адаптации продукции к структуре спроса. Некоторые способы гидрокрекинга позволяют также получать высоко очищенный кубовый остаток, который может давать отличную основу для масел. По сравнению с каталитическим крекингом, преимущество каталитического гидрокрекинга состоит в том, что он дает средние дистилляты, реактивное топливо и газойли очень высокого качества. Напротив, полученный бензин имеет намного более низкое октановое число, чем получаемое при каталитическом крекинге.
Гидрокрекинг является способом, гибкость которого достигается тремя основными элементами, какими являются используемые рабочие условия, типы применяемых катализаторов и тот факт, что гидрокрекинг углеводородного сырья может быть проведен в одну или две стадии.
Все катализаторы гидрокрекинга, использующиеся в процессах гидрокрекинга, являются бифункциональными катализаторами, сочетающими кислотную функцию с гидрирующей функцией. Кислотная функция обеспечивается подложками, удельная поверхность которых варьируется обычно от 150 до 800 м2/г, и которые имеют поверхностную кислотность, такими как галогенированные оксиды алюминия (в частности, хлорированные или фторированные), комбинации оксидов бора и алюминия, аморфные алюмосиликаты и цеолиты. Гидрирующая функция обеспечивается либо одним или несколькими металлами группы VIB периодической системы элементов, либо сочетанием по меньшей мере одного металла группы VIB периодической системы с по меньшей мере одним металлом группы VIII.
Равновесие между двумя функциями, кислотной и гидрирующей, является одним из параметров, которые регулируют активность и селективность катализатора. Слабая кислотная функция и сильная гидрирующая функция дают малоактивные катализаторы, работающие обычно при повышенной температуре (больше или равной 390-400°C), и с низкой объемной скоростью подачи (VVH, выраженная в объеме обрабатываемого сырья на единицу объема катализатора в час, обычно меньше или равна 2), но обладающие очень хорошей селективностью по средним дистиллятам. Наоборот, сильная кислотная функция и слабая гидрирующая функция дают активные катализаторы, но имеющие не такую хорошую селективность по средним дистиллятам (реактивное топливо и газойли).
Один тип традиционных катализаторов гидрокрекинга имеет в основе умеренно кислые аморфные подложки, такие, например, как алюмосиликаты. Эти системы используются для получения средних дистиллятов хорошего качества и, в известных случаях, базовых масел. Эти катализаторы применяются, например, в двухстадийных способах. Недостатком этих катализаторов на основе аморфных подложек является их низкая активность.
Что касается катализаторов, содержащих, например, цеолит Y структурного типа FAU, или катализаторов, содержащих, например, цеолит типа бета, то они имеют каталитическую активность выше, чем у алюмосиликатов, но они имеют более низкие селективности по средним дистиллятам (реактивное топливо и газойли).
Исследовательские работы, проведенные авторами заявки с множеством цеолитов и микропористых кристаллических твердых тел и с активными гидрирующими фазами, привели к неожиданному открытию, что катализатор гидрокрекинга углеводородного сырья, включающий в себя подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, и активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или неблагородный элемент группы VIII периодической системы, причем указанный катализатор является катализатором с сульфидированной фазой, необязательно по меньшей мере одну матрицу, по меньшей мере один легирующий элемент, выбранный из группы, состоящей из бора, кремния и фосфора, необязательно по меньшей мере один элемент группы VB периодической системы элементов, предпочтительно ниобий, и необязательно элемент группы VIIA, предпочтительно фтор, позволяет получить повышенные активности в том, что касается конверсии, в гидрокрекинге, гидроконверсии и гидрообработке.
Методы определения характеристик
Общий состав компонентов катализатора может быть определен методом рентгеновской флуоресценции на катализаторе в порошкообразном состоянии или атомно-абсорбционным анализом после травления катализатора кислотой.
Отметим, что термин диаметр используется не только по отношению к форме шариков или экструдатов, но более обще, ко всем формам частиц; фактически диаметром называется характерная длина частицы, на которой производится измерение.
Подробное описание изобретения
Настоящее изобретение относится к катализатору, содержащему
- подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, в рентгенограмме которого имеются по меньшей мере спектральные линии, записанные в таблице ниже:
2 тета (°) | dhkl (Е) | Irel | 2 тета (°) | dhkl (Е) | Irel |
5,07 | 17,43 | ff | 19,01 | 4,66 | ff |
7,36 | 12,01 | FF | 19,52 | 4,54 | ff |
7,67 | 11,52 | FF | 21,29 | 4,17 | m |
8,78 | 10,07 | F | 22,44 | 3,96 | f |
10,02 | 8,82 | ff | 23,10 | 3,85 | mf |
12,13 | 7,29 | ff | 23,57 | 3,77 | f |
14,76 | 6,00 | ff | 24,65 | 3,61 | ff |
15,31 | 5,78 | ff | 26,78 | 3,33 | f |
15,62 | 5,67 | ff | 29,33 | 3,04 | ff |
16,03 | 5,52 | ff | 33,06 | 2,71 | ff |
17,60 | 5,03 | ff | 36,82 | 2,44 | ff |
18,22 | 4,87 | ff | 44,54 | 2,03 | ff |
- где FF = очень интенсивная; F = интенсивная; m = средняя; mf = умеренно слабая; f = слабая; ff = очень слабая,
и которые имеют химический состав, выраженный в пересчете на безводное основание, в расчете на моли оксидов, отвечающий следующей общей формуле XO2:a Y2O3:bM2/nO, в которой X означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент, и M представляет собой по меньшей мере один щелочной металл и/или щелочноземельный металл валентности n, a и b означают соответственно число молей Y2O3 и M2/nO, и a составляет от 0 до 0,5, а b составляет от 0 до 1, и
- активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или по меньшей мере один гидрирующий-дегидрирующий неблагородный элемент группы VIII периодической системы, причем указанный катализатор является катализатором с сульфидированной фазой.
Катализатор гидрокрекинга и гидроизомеризации
Согласно изобретению, указанный катализатор содержит активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или по меньшей мере один неблагородный гидрирующий-дегидрирующий элемент группы VIII периодической системы.
Предпочтительно, изобретение относится к катализатору, содержащему по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB периодической системы.
Предпочтительно, указанный катализатор имеет, в вес.% от полной массы катализатора, массовое содержание металла(ов) группы VIB, составляющее от 0,1 до 40 вес.%, наиболее предпочтительно от 1,5 до 35 вес.% и еще более предпочтительно от 3 до 25 вес.%.
Предпочтительно, изобретение относится к катализатору, содержащему по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной неблагородными элементами группы VIII периодической системы.
Предпочтительно, указанный катализатор имеет, в вес.% от полной массы катализатора, массовое содержание неблагородного металла(ов) группы VIII, составляющее от 0 до 25 вес.%, предпочтительно от 0,1 до 20 вес.% и еще более предпочтительно от 0,1 до 15 вес.%.
Катализатор может также предпочтительно содержать:
- от 0 до 20 вес.%, предпочтительно от 0,1 до 15 вес.% и еще более предпочтительно от 0,1 до 10 вес.% по меньшей мере одного легирующего элемента, выбранного из группы, состоящей из кремния, бора и фосфора, не считая кремния, содержащегося в цеолитном каркасе, а также необязательно
- от 0 до 60 вес.%, предпочтительно от 0,1 до 50 вес.%, еще более предпочтительно от 0,1 до 40 вес.%, по меньшей мере одного элемента, выбранного из группы VB и предпочтительно ниобия, и необязательно
- от 0 до 20 вес.%, предпочтительно от 0,1 до 15 вес.% и еще более предпочтительно от 0,1 до 10 вес.% по меньшей мере одного элемента, выбранного из группы VIIA, предпочтительно фтора.
Предпочтительно катализатор согласно изобретению содержит подложку на основе цеолита IZM-2 и пористую минеральную матрицу оксидного типа, причем указанная подложка содержит:
- от 0,1 до 99,8 вес.%, предпочтительно от 0,1 до 80 вес.%, еще более предпочтительно от 0,1 до 70 вес.% и наиболее предпочтительно от 0,1 до 50 вес.% цеолита IZM-2,
- от 0,2 до 99,9 вес.%, предпочтительно от 1 до 99 вес.% по меньшей мере одной пористой минеральной матрицы оксидного типа.
Изобретение относится также к способу гидрокрекинга и способу гидрообработки углеводородного сырья на указанном катализаторе.
Характеристики гидрирующей фазы
Согласно изобретению указанный катализатор содержит активную фазу, включающую в себя по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или по меньшей мере один неблагородный гидрирующий-дегидрирующий элемент группы VIII периодической системы.
Предпочтительно изобретение относится к катализатору, содержащему по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB периодической системы, и предпочтительно металл, выбранный из группы, образованной вольфрамом и молибденом, взятые по отдельности или в смеси.
Согласно одному предпочтительному варианту осуществления гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB периодической системы, является молибденом.
Согласно другому предпочтительному варианту осуществления гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB периодической системы, является вольфрамом.
Предпочтительно изобретение относится к катализатору, содержащему по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной неблагородными элементами группы VIII периодической системы, предпочтительно металл, выбранный из группы, образованной кобальтом и никелем, взятый по отдельности или в смеси.
Согласно одному предпочтительному варианту осуществления гидрирующий-дегидрирующий элемент, выбранный из группы, образованной неблагородными элементами группы VIII, является кобальтом.
Согласно одному предпочтительному варианту осуществления гидрирующий-дегидрирующий элемент, выбранный из группы, образованной неблагородными элементами группы VIII, является никелем.
Целесообразно использовать комбинации следующих металлов: никель-молибден, кобальт-молибден, железо-молибден, железо-вольфрам, никель-вольфрам, кобальт-вольфрам, предпочтительными комбинациями являются никель-молибден, кобальт-молибден, кобальт-вольфрам, никель-вольфрам, и еще более предпочтительны никель-молибден и никель-вольфрам.
Можно также использовать комбинации трех металлов, например, никель-кобальт-молибден, никель-молибден-вольфрам, никель-кобальт-вольфрам.
Целесообразно использовать комбинации следующих металлов: никель-ниобий-молибден, кобальт-ниобий-молибден, железо-ниобий-молибден, никель-ниобий-вольфрам, кобальт-ниобий-вольфрам, железо-ниобий-вольфрам, причем предпочтительными комбинациями являются никель-ниобий-молибден, кобальт-ниобий-молибден. Можно также использовать комбинации четырех металлов, например, никель-кобальт-ниобий-молибден.
Твердый кристаллический IZM-2
Согласно изобретению подложка катализатора по изобретению содержит по меньшей мере один твердый кристаллический IZM-2, имеющий химический состав, в пересчете на безводное основание, в расчете на моли оксидов, отвечающий следующей общей формуле: XO2: aY2O3: bM2/nO, в которой X означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент, и M означает по меньшей мере один щелочной металл и/или щелочноземельный металл валентности n, a и b означают соответственно число молей Y2O3 и M2/nO, и a составляет от 0 до 0,5, а b составляет от 0 и 1.
Согласно изобретению твердый кристаллический IZM-2, используемый в подложке катализатора, имеет в рентгенограмме по меньшей мере спектральные линии, представленные в таблице 1. Этот новый твердый кристаллический IZM-2 имеет новую кристаллическую структуру.
Рентгенограмма получена с помощью дифрактометра, используя классический порошковый метод, с источником излучения Kбl меди (л = 1,5406Е). Исходя из положения дифракционных пиков, выраженных углом 2и, из уравнения Брэгга рассчитывают характеристические эквидистантности кристаллической решетки dhkl образца. Ошибка измерения dhkl, Д(dhkl) рассчитывается на основе уравнения Брэгга, в зависимости от абсолютной погрешности Д(2и), относящейся к измерению 2и. Обыкновенно принимается, что абсолютная погрешность Д(2и) равна ± 0,02°.
Относительная интенсивность Irel, сопоставленная каждому значению dhkl, измеряется по высоте соответствующего дифракционного пика. Рентгенограмма твердого кристаллического IZM-2 согласно изобретению содержит по меньшей мере спектральные линии со значениями dhkl, приведенными в таблице 1. В столбце dhkl указаны средние значения межплоскостных расстояний в ангстремах (Е). Каждому из этих значений должна соответствовать ошибка измерения Д(dhkl), составляющая от ± 0,6 Е до ± 0,01 Е.
Таблица 1 | |||||
Средние значения dhkl и относительных интенсивностей, определенные из рентгенограммы прокаленного твердого кристаллического IZM-2 | |||||
2 тета (°) | dhkl (Е) | Irel | 2 тета (°) | dhkl (Е) | Irel |
5,07 | 17,43 | ff | 19,01 | 4,66 | Ff |
7,36 | 12,01 | FF | 19,52 | 4,54 | Ff |
7,67 | 11,52 | FF | 21,29 | 4,17 | M |
8,78 | 10,07 | F | 22,44 | 3,96 | F |
10,02 | 8,82 | ff | 23,10 | 3,85 | Mf |
12,13 | 7,29 | ff | 23,57 | 3,77 | F |
14,76 | 6,00 | ff | 24,65 | 3,61 | Ff |
15,31 | 5,78 | ff | 26,78 | 3,33 | F |
15,62 | 5,67 | ff | 29,33 | 3,04 | Ff |
16,03 | 5,52 | ff | 33,06 | 2,71 | Ff |
17,60 | 5,03 | ff | 36,82 | 2,44 | Ff |
18,22 | 4,87 | ff | 44,54 | 2,03 | Ff |
Относительная интенсивность Irel указана в относительном масштабе интенсивности, где самой интенсивной спектральной линии в рентгенограмме присвоено значение интенсивности 100: ff<15; 15 ≤f<30; 30 ≤ mf<50; 50 ≤m < 65; 65 ≤F < 85; FF ≥ 85.
Твердый кристаллический IZM-2, используемый в подложке катализатора согласно изобретению, предпочтительно имеет новую кристаллическую базовую структуру или топологию, которая характеризуется ее рентгенограммой в прокаленном состоянии, показанной на фигуре 1.
Указанный твердый IZM-2 предпочтительно имеет химический состав, в пересчете на безводное основание, на моли оксидов, задаваемый следующей общей формулой XO2:aY2O3:bM2/nO, в которой X означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент, и M означает по меньшей мере один щелочной металл и/или щелочноземельный металл валентности n. В вышеуказанной формуле a означает число молей Y2O3, и a составляет от 0 до 0,5, наиболее предпочтительно - от 0 до 0,05, еще более предпочтительно от 0,0016 до 0,02, а b означает число молей M2/nO и составляет от 0 до 1, предпочтительно от 0 до 0,5, еще более предпочтительно от 0,005 до 0,5.
Предпочтительно, X выбран из кремния, германия, титана и смеси по меньшей мере двух этих четырехвалентных элементов, наиболее предпочтительно X означает кремний, и Y предпочтительно выбран из алюминия, бора, железа, индия и галлия, наиболее предпочтительно Y означает алюминий. M предпочтительно выбран из лития, натрия, калия, кальция, магния и смеси по меньшей мере двух этих металлов и наиболее предпочтительно M означает натрий. Предпочтительно, X означает кремний, и тогда указанный твердый кристаллический IZM-2 представляет собой полностью кремниевое твердое вещество, если элемент Y отсутствует в составе указанного твердого IZM-2. Целесообразно также использовать в качестве элемента X смесь нескольких элементов X, в частности, смесь кремния с другим элементом X, выбранным из германия и титана, предпочтительно германия. Так, когда кремний находится в смеси с другим элементом X, указанный твердый кристаллический IZM-2, когда он находится в прокаленной форме, является кристаллическим металлосиликатом, имеющим рентгенограмму, идентичную описанной в таблице 1. Еще более предпочтительно и в присутствии элемента Y, когда X означает кремний, а Y означает алюминий, то тогда указанный твердый кристаллический IZM-2 является кристаллическим алюмосиликатом, имеющим в прокаленной форме рентгенограмму, идентичную описанной в таблице 1.
В общем, указанный твердый IZM-2, используемый в подложке катализатора, применяемого в способе согласно изобретению, предпочтительно имеет химический состав, выраженный следующей общей формулой XO2:aY2O3:bM2/nO:cR:dH2O, в которой R означает органическое соединение, содержащее два четвертичных атома азота, X означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент, и M представляет собой щелочной металл и/или щелочноземельный металл валентности n; a, b, c и d означают, соответственно, число молей Y2O3, M2/nO, R и H2O, и a составляет от 0 до 0,5, b составляет от 0 до 1, c составляет от 0 до 2, и d составляет от 0 до 2. Эта формула и значения для a, b, c и d такие, при которых указанный твердый IZM-2 находится в прокаленной форме.
Более точно, указанный твердый IZM-2 в форме сразу после синтеза предпочтительно имеет химический состав, выраженный следующей общей формулой XO2:aY2O3:bM2/nO:cR:dH2O (I), в которой R означает органическое соединение, содержащее два четвертичных атома азота, X означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент, и M представляет собой щелочной металл и/или щелочноземельный металл валентности n; a, b, c и d означают соответственно число молей Y2O3, M2/nO, R и H2O, и a составляет от 0 до 0,5, b составляет от 0 до 1, c составляет от 0,005 до 2, предпочтительно от 0,01 до 0,5, и d составляет от 0,005 до 2, предпочтительно от 0,01 до 1.
В приведенной выше формуле (I) для определения химического состава указанного твердого кристаллического IZM-2 в его форме сразу после синтеза, величина a составляет от 0 до 0,5, очень предпочтительно от 0 до 0,05 и еще более предпочтительно составляет от 0,0016 до 0,02. Предпочтительно, b составляет от 0 до 1, наиболее предпочтительно b составляет от 0 до 0,5 и еще более предпочтительно b составляет от 0,005 до 0,5. Величина c составляет от 0,005 до 2, предпочтительно от 0,01 до 0,5. Значение для d составляет от 0,005 до 2, предпочтительно от 0,01 до 1.
В форме сразу после синтеза, то есть непосредственно на выходе с синтеза и до всякого этапа(ов) прокаливания, хорошо известного специалисту, указанный твердый IZM-2 предпочтительно содержит по меньшей мере органическое соединение R, имеющее два четвертичных атома азота, как описанное ниже, или же продукты его разложения, или же его предшественники. Согласно одному предпочтительному варианту изобретения, в приведенной выше формуле (I) элемент R представляет собой 1,6-бис(метилпиперидиний)гексан, развернутая формула которого дается ниже. Указанное органическое соединение R, которое играет роль структурирующего агента, может быть удалено классическими способами, известными в уровне техники, такими как термическая и/или химическая обработка.
Способ получения указанного твердого кристаллического IZM-2 предпочтительно состоит в том, чтобы привести в реакцию водную смесь, содержащую по меньшей мере один источник по меньшей мере одного оксида XO2, необязательно по меньшей мере один источник по меньшей мере одного оксида Y2O3, необязательно по меньшей мере один источник по меньшей мере одного щелочного и/или щелочноземельного металла валентности n, по меньшей мере одно органическое соединение R, содержащее два четвертичных атома азота, причем смесь предпочтительно имеет следующий молярный состав:
XO2/Y2O3: по меньшей мере 2, предпочтительно по меньшей мере 20, более предпочтительно от 60 до 600,
H2O/XO2: 1-100, предпочтительно от 10 до 70,
R/XO2: 0,02-2, предпочтительно от 0,05 до 0,5,
M2/nO/XO2: 0-1, предпочтительно от 0,005 до 0,5,
где X означает один или несколько четырехвалентных элементов, выбранных из группы, образованной следующими элементами: кремний, германий, титан, предпочтительно кремний, где Y означает один или несколько трехвалентных элементов, выбранных из группы, образованной следующими элементами: алюминий, железо, бор, индий и галлий, предпочтительно алюминий, и где M означает один или несколько щелочных и/или щелочноземельных металлов, выбранных из лития, натрия, калия, кальция, магния и смеси по меньшей мере двух из этих металлов, предпочтительно натрий.
В соответствии со способом получения указанного твердого кристаллического IZM-2, R предпочтительно является органическим соединением, имеющим два четвертичных атома азота, играющим роль органического структурирующего агента. Предпочтительно, R представляет собой азотсодержащее соединение 1,6-бис(метилпиперидиний)гексан. Анионы, ассоциированные с катионами четвертичного аммония, присутствующие в структурирующем органическом соединении для синтеза указанного твердого кристаллического IZM-2, предпочтительно выбраны из ацетатного аниона, сульфатного аниона, карбоксилатного аниона, тетрафторборатного аниона, анионов галогенов, таких как фторид, хлорид, бромид, йодид, гидроксидного аниона и комбинации нескольких из них. Предпочтительно, анионы, ассоциированные с катионами четвертичного аммония, присутствующие в структурирующем веществе для синтеза твердого кристаллического IZM-2, выбраны из гидроксидного аниона и бромидного аниона. Указанное азотсодержащее органическое соединение, используемое в качестве структурирующего агента для указанного твердого кристаллического IZM-2, предпочтительно синтезируется любым способом, известным специалисту. Для синтеза дибромида 1,6-бис(метилпиперидиний)гексана предпочтительно берут смесь одного моля 1,6-дибромгексана и по меньшей мере 2 молей N-метилпиперидина в этаноле. Обычно смесь кипятят с обратным холодильником в течение от 3 до 10 часов. После фильтрации, осаждение посредством эфирного растворителя, такого как диэтиловый эфир, а затем рекристаллизации в смеси этанол/эфир, получают дибромид 1,6-бис(метилпиперидиний)гексана. Дигидроксид 1,6-бис(метилпиперидиний)гексана предпочтительно получают обработкой при температуре окружающей среды водного раствора дибромида 1,6-бис(метилпиперидиний)гексана оксидом серебра Ag2O.
Источником элемента X, используемым для осуществления способа получения указанного твердого кристаллического IZM-2, предпочтительно может применяться любое соединение, содержащее элемент X, которое может выделять этот элемент в водном растворе в реакционноспособной форме. Когда элемент X означает кремний, источник оксида кремния предпочтительно может быть любым из источников, обычно использующихся в синтезе цеолитов, например, твердый оксид кремния в порошке, кремниевая кислота, коллоидный оксид кремния, растворенный оксид кремния или тетраэтоксисилан (TEOS). Из оксидов кремния в порошке предпочтительно можно использовать осажденные оксиды кремния, в частности, полученные осаждением из раствора силиката щелочного металла, такие как оксиды кремния аэросилы, пирогенные оксиды кремния, например, "CAB-O-SIL", и силикагели. Можно использовать коллоидные оксиды кремния, имеющие различные размеры частиц, например, средний эквивалентный диаметр от 10 до 15 нм или от 40 до 50 нм, какие продаются под зарегистрированными торговыми марками, например, "LUDOX". Предпочтительно, источник кремния представляет собой LUDOX AS-40.
Источником элемента Y, необязательно использующемся для осуществления способа получения указанного твердого кристаллического IZM-2, предпочтительно может быть любое соединение, содержащее элемент Y, которое может выделять этот элемент в водном растворе в реакционноспособной форме. В предпочтительном случае, когда Y является алюминием, источником оксида алюминия предпочтительно будет алюминат натрия или соль алюминия, например, хлорид, нитрат, гидроксид или сульфат, алкоксид алюминия или собственно оксид алюминия, предпочтительно в гидратированной или способной к гидратации форме, как, например, коллоидный оксид алюминия, псевдобемит, оксид алюминия гамма или тригидрат альфа или бета. Можно также использовать смеси указанных выше источников.
Для источника щелочного и/или щелочноземельного металла M валентности n предпочтительно используют галогенид или гидроксид указанного металла M, предпочтительно гидроксид указанного металла M.
Для осуществления способа получения указанного твердого IZM-2 предпочтительно, чтобы водная смесь, содержащая по меньшей мере один источник по меньшей мере одного оксида XO2, необязательно по меньшей мере один источник по меньшей мере одного оксида Y2O3, необязательно по меньшей мере один источник по меньшей мере одного щелочного и/или щелочноземельного металла валентности n, по меньшей мере одно органическое соединение R, имеющее два четвертичных атома азота, содержала также по меньшей мере один источник гидроксидных ионов. Указанный источник гидроксидных ионов предпочтительно происходит из структурирующего органического соединения R, когда оно находится в своей гидроксидной форме, а именно, из дигидроксида 1,6-бис(метилпиперидиний)гексана, или же из источника щелочного и/или щелочноземельного металла M, когда оно находится в своей гидроксидной форме, например, гидроксид натрия.
Так, согласно одному предпочтительному варианту осуществления способа получения указанного твердого кристаллического IZM-2, проводят реакцию водной смеси, содержащей оксид кремния, необязательно оксид алюминия, дибромид 1,6-бис(метилпиперидиний)гексана и гидроксид натрия. Согласно другому предпочтительному варианту осуществления способа по изобретению, проводят реакцию водной смеси, содержащей оксид кремния, необязательно оксид алюминия и дигидроксид 1,6-бис(метилпиперидиний)гексана.
Способ получения указанного твердого кристаллического IZM-2 предпочтительно состоит в получении реакционной водной смеси, называемой гелем и содержащей по меньшей мере один источник по меньшей мере одного оксида XO2, необязательно по меньшей мере один источник по меньшей мере одного оксида Y2O3, по меньшей мере одно органическое соединение R, необязательно по меньшей мере один источник по меньшей мере одного щелочного и/или щелочноземельного металла валентности n. Количества указанных реагентов предпочтительно подбираются так, чтобы обеспечить этому гелю состав, позволяющий кристаллизовать его в твердый кристаллический IZM-2 общей формулы (I), который сразу после синтеза имеет следующие характеристики: (1) XO2:aY2O3:bM2/nO:cR:dH2O, где a, b, c и d соответствуют критериям, определенным выше, когда c и d больше 0. Затем гель подвергают гидротермической обработке до тех пор, пока не будет образован указанный твердый кристаллический IZM-2. Гель предпочтительно выдерживают в гидротермических условиях под автогенным давлением реакции, необязательно добавляя газ, например, азот, при температуре от 120°C до 200°C, предпочтительно от 140°C до 180°C, еще более предпочтительно от 160 до 175°C, до образования кристаллов твердого IZM-2 в его форме сразу после синтеза. Период, необходимый для получения кристаллизации, варьируется обычно от 1 часа до нескольких месяцев в зависимости от состава реагентов в геле, перемешивания и температуры реакции. Предпочтительно, продолжительность кристаллизации варьируется от 2 часов до 21 дня. Реакция обычно проводится при перемешивании или в отсутствие перемешивания, предпочтительно в присутствии перемешивания.
Может быть выгодным добавление центров кристаллизации в реакционную смесь, чтобы снизить время, необходимое для образования кристаллов, и/или полную длительность кристаллизации. Может быть также выгодным использовать центры кристаллизации, чтобы облегчить образование указанного твердого кристаллического IZM-2 в ущерб примесям. Такие центры кристаллизации предпочтительно содержат кристаллические твердые вещества, в частности, кристаллы твердого IZM-2. Центры кристаллизации обычно добавляют от 0,01 до 10% в долях от массы оксида XO2, используемого в реакционной смеси.
После завершения этапа гидротермической обработки, ведущей к кристаллизации указанного твердого IZM-2, твердую фазу предпочтительно фильтруют, промывают, сушат и затем прокаливают. Стадию прокаливания предпочтительно проводят в один или несколько этапов нагрева, проводимого при температуре, составляющей от 100 до 1000°C, предпочтительно от 400 до 650°C, в течение периода от нескольких часов до нескольких дней, предпочтительно от 3 часов до 48 часов. Предпочтительно, прокаливание проводят последовательно в два этапа.
После завершения указанного этапа прокаливания, полученный указанный твердый IZM-2 предпочтительно таков, что он имеет рентгенограмму, включающую по меньшей мере спектральные линии, вписанные в таблице 1. Он не содержит воды, а также органического соединения R, имеющихся в твердом IZM-2 в его форме сразу после синтеза.
После прокаливания твердого IZM-2, входящего в состав подложки катализатора по изобретению, его предпочтительно подвергают ионному обмену по меньшей мере одной обработкой раствором по меньшей мере одной соли аммония для получения аммониевой формы твердого IZM-2, которая после прокаливания приводит к получению кислотной формы (H+) указанного твердого IZM-2. Этот этап ионного обмена может проводиться на любой стадии получения катализатора, то есть после этапа получения твердого IZM-2, после стадии формования твердого IZM-2 (таблетированием или с помощью пористого минерального связующего) или же после этапа введения гидрирующего-дегидрирующего металла. Предпочтительно, этап обмена проводится после этапа формования твердого IZM-2.
Указанный твердый IZM-2, входящий в состав подложки катализатора, применяемого в способе согласно изобретению, предпочтительно по меньшей мере частично, предпочтительно практически весь находится в кислотной форме, то есть в форме кислоты (H+). Атомное отношение M/Y обычно предпочтительно ниже 0,1, предпочтительно ниже 0,05 и еще более предпочтительно ниже 0,01.
Цеолит IZM-2, использующийся согласно изобретению, по меньшей мере частично находится в водородной (H+) или аммониевой (NH4 +) форме. Необязательно, часть цеолита может находиться в катионной форме, причем указанный катион выбран из группы, состоящей из групп IA, IB, IIA, IIB, IIIA, IIIB (в том числе редкие земли), Sn, Pb и Si. Цеолит IZM-2, в водородной форме или частично в водородной форме, обозначенный H-IZM-2, получают прокаливанием и/или ионным обменом из цеолита IZM-2, полученного сразу после синтеза.
Из цеолитов IZM-2 обычно предпочтительно использовать цеолиты IZM-2, у которых суммарное атомное отношение кремний/алюминий (Si/Al) выше примерно 3, более предпочтительно цеолиты IZM-2, у которых отношение Si/Al составляет от 5 до 200, еще более предпочтительно от 10 до 150. Эти цеолиты IZM-2, имеющие описанные выше отношения Si/Al, могут быть получены синтезом или любым методом после синтеза, известным специалисту, то есть, например, методами деалюминирования, повторного алюминирования, обескремнивания или обмена. Таким образом, получение и обработка или обработки, а также формование цеолита могут представлять собой этап получения этих катализаторов.
Характеристики аморфной или слабокристаллической пористой минеральной матрицы оксидного типа
Пористая минеральная матрица, обычно аморфная, состоит, как правило, из по меньшей мере одного тугоплавкого оксида. Указанная матрица обычно выбирается из группы, состоящей из оксида алюминия, оксида кремния, глин, оксида титана, оксида бора и оксида циркония. Матрица может быть образована смешением по меньшей мере двух указанных выше оксидов, например, оксида кремния с оксидом алюминия. Можно также выбрать алюминаты. Предпочтительно применять матрицы, содержащие оксид алюминия, во всех его формах, известных специалисту, например, оксид алюминия гамма.
Целесообразно также использовать смеси оксида алюминия и оксида кремния, смеси оксида алюминия и алюмосиликата.
Изобретение относится также к способу гидрокрекинга и способу гидрообработки углеводородного сырья на указанном катализаторе.
Получение катализатора
Один предпочтительный способ получения катализатора по настоящему изобретению содержит следующие этапы:
Цеолит IZM-2, применяемый согласно изобретению, может вводиться любым способом, известным специалисту, на любой стадии получения подложки или катализатора. Цеолит IZM-2, применяемый согласно изобретению, по меньшей мере частично находится в водородной (H+) или аммониевой форме (NH4 +), как описано ранее.
Цеолит может находиться, например, но без ограничений, в виде порошка, измельченного порошка, суспензии, суспензии, подвергнутой деагломерирующей обработке. Так, например, цеолит может быть переведен в суспензию, подкисленную или нет, в концентрации, соответствующей желательному конечному содержанию цеолита в подложке. Эта суспензия, называемая обычно тестом, смешивается затем с предшественниками матрицы.
Согласно одному предпочтительному варианту получения, цеолит может быть введен во время формования подложки вместе с элементами, которые образуют матрицу. Например, согласно этому предпочтительному варианту настоящего изобретения, цеолит IZM-2 добавляют к влажному гелю оксида алюминия на этапе формования подложки.
Один из предпочтительных способов формования подложки в настоящем изобретении состоит в размешивании по меньшей мере одного цеолита IZM-2 с влажным гелем оксида алюминия в течение нескольких десятков минут, затем в пропускании полученной таким образом пасты через фильеру для образования экструдатов диаметром от 0,4 до 4 мм.
Согласно другому предпочтительному варианту получения, цеолит может вводиться в ходе синтеза матрицы. Например, согласно этому предпочтительному варианту настоящего изобретения, цеолит IZM-2 добавляют в ходе синтеза силикоалюминатной матрицы; цеолит может добавляться в смесь, состоящую из соединения оксид