Суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь
Изобретение относится к области металлургии, а именно к области получения и использования литой дисперсионно-твердеющей ферритокарбидной стали для тяжелонагруженных штампов горячего деформирования, пресс-форм для литья под давлением, а также штампов для твердо-жидкой штамповки сплавов на основе меди. Сталь содержит, в вес.%: углерод 0,27-0,32, титан 5,8-6,2, никель 0,5-0,9, карбид титана (TiC) 0,5-1,5, железо остальное, а также может содержать от следов до 0,05% марганца, 0,15-0,17% кремния и ≈0,03% серы и фосфора. Карбид титана введен в виде порошка с размером частиц до 10 мкм в ковш или в струю расплава в процессе заливки стали в охлаждаемую металлическую форму-кокиль. Улучшается комплекс технологических и эксплуатационных характеристик, а также снижается стоимость стали. 2 табл.
Реферат
Изобретение относится к металлургии, машиностроению, а именно к области получения и использования литейных материалов для тяжелонагруженных штампов горячего деформирования (КГШП), пресс-форм для литья под давлением, а также штампов для твердожидкой штамповки (ШТЖЩ) (пресс «Автофордж») сплавов на основе меди.
Известны теплостойкие штамповые стали машиностроительного класса для горячего деформирования 4ХМФС, 5Х2МНФ (Ди-32), 5Х3В3МФС (Ди-23), 3Х2В8Ф, 5Х3В3МФ2Б и др. [1, 2].
Недостатками штамповых сталей мартенситного класса является их применение только в кованом состоянии. При изготовлении прессинструмента методом литья характерны низкие теплопроводность, вязкость и пластичность, что исключает возможность изготавливать пресс-инструмент методом литья из-за образования трещин при ускоренном охлаждении отливок. Известные штамповые стали мартенситного класса при эксплуатации тяжелонагруженного прессинструмента (штампы КГШП), в которых температура на гравюре достигает выше полиморфных превращений (от 800 до 900°С) претерпевают структурно-фазовый наклеп и разрушение из-за α→γ превращений в течение каждого цикла нагружения.
Для изготовления литой прессоснастки на ОАО «КАМАЗ-Металлургия» предложена сталь 35Х5МНФСЛ, которая применяется для изготовления мелких штампов (весом до 60 кг) путем литья в песчано-глинистые цирконовые формы, получаемые по сложной технологии путем горячего отверждения с применением экологически вредных фенолформальдегидных смол. Кроме того, медленное охлаждение при кристаллизации отливок приводит к образованию грубой литой структуры, что приводит к низким эксплуатационным показателям по работоспособности в сравнении с инструментом из кованых сталей.
Перспективным способом улучшения комплекса механических и эксплуатационных характеристик инструментальных сталей при изготовлении литой прессоснастки для горячего деформирования является применение направленной кристаллизации, обеспечивающей получение дисперсной структуры при ускоренном охлаждении в процессе литья в охлаждаемый кокиль.
Применение направленной кристаллизации отливок с форсированным охлаждением без образования литейных трещин может быть осуществлено на сталях аустенитного или ферритного класса. Наиболее близкой к предлагаемой по технической сущности и достигаемому эффекту является дисперсионно-твердеющая аустенитно-карбидная литая штамповая сталь [3] 20Х20Н18ТЗЮФМБР состава, мас.%:
Углерод | - 0,17-0,23 |
Хром | - 14,1-18,2 |
Никель | - 17,0-19,0 |
Титан | - 2,0-3,0 |
Бор | - 0,002-0,02 |
Ванадий | - 0,9-1,5 |
Молибден | - 0,8-0,9 |
Алюминий | - 1,2-1,5 |
Ниобий | - 0,1-0,15 |
Церий | - 0,04-0,05 |
Железо | - остальное. |
Существенными недостатками этой стали является сложный химический состав, наличие дефицитных легирующих элементов и высокая стоимость.
Заявляемое изобретение направлено на улучшение комплекса технологических и эксплуатационных характеристик, а также снижение стоимости стали для литого пресс-инструмента.
Поставленная задача достигается тем, что экономно-легированная карбидно-ферритная литая штамповая сталь, содержащая углерод, титан, никель, железо, содержит компоненты в следующем соотношении, мас.%:
Углерод | - 0,27-0,32 |
Титан | - 5,8-6,2 |
Никель | - 0,5-0,9 |
Карбид титана, TiC | - 0,5-1,5 |
Железо | - остальное |
Описываемая литая штамповая сталь может содержать марганец от следов до 0,05%, кремний 0,15-0,17% и также серу и фосфор ≈0,03%.
Химический состав исследованных плавок предлагаемых и известных сталей и соответствующие им свойства приведены в табл.1 и 2.
Таблица 1 | ||||||||||||
Плавкисталей | Содержание элементов, мас.% | |||||||||||
С | Cr | Ni | Ti | W | V | Mo | Al | Nb | Се | Fe | TiC | |
Предлагаемый 1 | 0,27 | - | 0,5 | 5,8 | - | - | - | - | - | - | - | 0,5 |
2 | 0,30 | - | 0,7 | 6,0 | - | - | - | - | - | - | - | 1,0 |
3 | 0,32 | - | 0,9 | 6,2 | - | - | - | - | - | - | 1,5 | |
Известный4 | 0,17-0,23 | 14,1-18,2 | 17-19 | 2-3 | 0,002 -0,02 | 0,9-1,5 | 0,8-0,9 | 1,2-1,5 | 0,1-0,15 | 0,04-0,05 | ост. | |
Примечание: Содержание железа во всех плавках до 100%. |
Влияние Ti. Титан вводится в предлагаемую сталь в количестве 4 мас.% для создания ферритной матрицы, которая образуется в системе Fe-Ti при указанном количестве Ti [5]. Порядка 1 мас.% идет на создание TiC, а 0,8 - с целью формирования фазы типа Ni3Ti.
Влияние количества углерода, находящегося в пределах 0,27-0,32 мас.%. Для производства предлагаемого состава суспензии штамповой стали используется среднеуглеродистая сталь с указанным содержанием углерода, т.к. применение чистого железа является дефицитным материалом для действующих предприятий.
В заявленном составе углерода находится в пределах 0,27-0,32 мас.%, что обеспечивает получение феррито-карбидной матрицы. Карбидами являются соединения типа TiC. Стехоометрически для связывания в карбиды типа TiC, имеющегося углерода в пределах 0,27-0,32 мас.% дополнительно необходимо введение не более 1,0 мас.% Ti.
Влияние Ni в пределах 0,5-0,9 мас.%. Никель вводится в сталь с целью формирования фазы, типа N3Ti в ферритной Ti-Fe матрице при дисперсном твердении, которое протекает в процессе производства и эксплуатации штампов.
Эксплуатация штампов для горячего деформирования сопровождается выделением дисперсных соединений Ni3Ti, что благоприятно влияет на сохранение твердости пресс-инструмента. Верхний предел содержания Ni ограничивается в указанном количестве с целью сохранения в основе предлагаемой стали феррито-карбидной матрицы. Нижнее содержание Ni необходимо для получения дисперсных интерметаллидов типа Ni3Ti.
При этом часть титана затрачивается на формирование указанных интерметаллидов, поэтому общее количество титана в стали (с гарантией необходимой феррито-карбидной матрицы и наличием дисперсных интер-менталлидов Ni3Ti) составляет 5,8-6,2 мас.%.
Карбиды TiC 0,5-1,5 мас.%. Количество вводимых в струю металла или в ковш определено экспериментально с целью обеспечения твердости порядка 46-48 HRC.
Указанная твердость достаточна для обеспечения работоспособности штампов для горячего деформирования.
Комплексное влияние всех компонентов в заданных пределах, указанных в заявке, обеспечит повышение работоспособности, что подтверждается результатами испытаний новой стали по термомеханической усталости (табл.2).
Карбид титана в виде порошка размером частиц до ≈10 мкм вводится в расплав стали перед разливкой в ковш или в струю при заливке форм.
Таблица 2 | |||||||
Плавки сталей | Теплопроводность, в т.м.к. | Коэффициент линейного расширенияα·106·κ-1 | Механические характеристики | Относительное сопротивление термомеханической усталости циклов | |||
σB | σ0,2 | δ, % | |||||
Предлагаемый1 | 28,6 | 11,8 | 1826 | 1716 | 8,6 | 18117 | |
2 | 30,6 | 10,5 | 1828 | 1720 | 8,1 | 20111 | |
3 | 32,8 | 10,4 | 1828 | 1732 | 8,0 | 23128 | |
Известный | 4 | 41,4-42,6 | 12,3-13,6 | 1840-1900 | 1730 | 6,8-7,2 | 20125 |
Примечание: Испытание на термомеханическую усталость (ТМУ) осуществлялось по методике [4]. Оценивалось количество циклов нагружения образцов до появления трещин ТМУ размерами 0,1 мм в глубину образца. Режим испытаний отвечал эксплуатационному нагружению штампов «Автофордж» при штамповке латуней: Tmax=780°С на поверхности образца, Tmin +460°С, время контактирования образца со штампуемым материалом τ=3 с пауза τn=12 с. Размеры образца: высота h=12 мм, толщина В=2 мм, длина образца l=80 мм.
Как видно из таблицы 2, предлагаемая ферритно-карбидная сталь по теплофизическим характеристикам практически мало отличается от известной аустенито-карбидной стали. Показатели сопротивления развитию трещин ТМУ у предлагаемой стали на 9-10% выше, чем у известной аустенито-карбидной стали.
Применение литого пресс-инструмента из ферритно-карбидной стали взамен традиционно изготавливаемого механическими и электрофизическими методами из кованных заготовок мартенситных сталей позволяет резко сократить продолжительность изготовления и производственные затраты за счет исключения механических операций по изготовлению сложной гравюры инструмента.
Замена сложнолегированной аустенито-карбидной стали на экономно-легированную феррито-карбидную сталь упрощает процесс выплавки стали, а также снижает себестоимость за счет уменьшения содержания легирующих элементов. Высокая твердость отливок из стали (46-48HRC) достигается за счет дисперсионного твердения при старении в результате выделения из феррита дисперсной γ-фазы типа Ni3Ti, а также за счет наличия карбидов титана.
Источники информации, принятые во внимание:
1. Л.А.Позняк, Ю.М.Скрынченко, С.И.Тишаев - Штамповые стали - М.: Металлургия, 1980 - 240 с.
2. AC №1108126 СССР, МКИ С22С 38/26. Штамповал сталь. Авторы: М.С.Колесников, Э.Н.Корниенко, Л.А.Алабин и др. Опубликовано 15.04.84. Бюл. №30.
3. AC №1724723 СССР, МКИ С22С 38/26. Штамповал сталь. Авторы: М.С.Колесников, Л.В.Трошина и др. (СССР).
4. АС №879400 СССР, МКл3 GOIN 3/60. Способ исследования термомеханической усталости материалов. Авторы: М.С.Колесников, Б.Л.Кузнецов, B.C.Кондратенко, А.Г.Шишкин (СССР). Опубликовано 07.11.81. Бюл. №41.
5. М.Хансен и К.Андерко, Справочник «Структуры двойных сплавов», Т.2, пер. с английского М., Металлургия, 1962 г., 1488 с. с илл.
Суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь, отличающаяся тем, что она содержит компоненты в следующем соотношении, вес.%:
углерод | 0,27-0,32 |
титан | 5,8-6,2 |
никель | 0,5-0,9 |
карбид титана (TiC) | 0,5-1,5 |
железо | остальное, |