Многоканальный газовый электронный умножитель

Иллюстрации

Показать все

Изобретение относится к технике регистрации ядерного излучения с использованием газовых координатно-чувствительных детекторов, работающих в лавинном режиме, и может быть использовано в ядерной физике. Сущность изобретения заключается в том, что многоканальный газовый электронный умножитель содержит два одинаковых металлических плоских параллельных электрода с зазором между ними, заполненным газом, с отверстиями, расположенными равномерно по всей площади каждого электрода и имеющими размеры, близкие к величине зазора между электродами, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода, отличающийся тем, что каждый электрод выполнен из металлического листа толщиной, меньшей величины зазора между электродами, и имеющего отверстия круглой или прямоугольной формы с расстоянием между центрами соседних отверстий, равным 1,2-1,5 размера отверстия. Технический результат - повышение надежности и стабильности в работе умножителя в условиях повышенных механических шумов. 4 ил., 2 пр.

Реферат

Изобретение относится к технике регистрации ядерного излучения, а именно к регистрации с использованием газовых координатно-чувствительных детекторов, работающих в лавинном режиме, и может быть использовано в ядерной физике, в промышленности при дефектоскопии изделий, в медицине: в рентгеноскопии, в позитронной томографии и исследованиях с мечеными атомами, а также при визуализации слабых световых потоков большой площади.

Известен многоканальный газовый электронный умножитель [А.Ф.Бузулуцков ФИЗИЧЕСКИЕ ОСНОВЫ РАБОТЫ КАСКАДНЫХ ГАЗОВЫХ ЭЛЕКТРОННЫХ УМНОЖИТЕЛЕЙ (ОБЗОР). Вестник НГУ. Серия: Физика. 2008. Том 3, вып.3, с.60], содержащий два одинаковых металлических тонких плоских параллельных электрода, выполненных с зазором между ними и с отверстиями, расположенными равномерно по всей площади каждого электрода и имеющими размеры и шаг между ними близкие к величине зазора между электродами, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода. Зазор между электродами заполнен диэлектриком с отверстиями, совпадающими с отверстиями в электродах. Недостатками такого электронного умножителя, являются сложность в изготовлении электродов, ненадежность умножителя в эксплуатации из-за случайных пробоев по поверхности диэлектрика в отверстиях, приводящих к выходу умножителя из строя, а также натекание электрических зарядов на стенки отверстий умножителя, что приводит к его нестабильной работе вследствие изменения величины напряженности электрического поля в отверстиях.

Также известен газовый микроколодезный электронный умножитель [Лелюхин А.С. и др. ГАЗОВЫЙ МИКРОКОЛОДЕЗНЫЙ ЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ. Патент РФ №2246739 (16.06.2003), G01T 1/28], содержащий, размещенные в газовой среде одинаковые металлические тонкие плоские параллельные электроды, выполненные с зазором между ними, заполненным диэлектриком и с отверстиями в электродах и диэлектрике, расположенными по всей площади каждого электрода, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода. Недостатками такого электронного умножителя, являются его ненадежность в эксплуатации из-за случайных пробоев по поверхности диэлектрика в отверстиях, приводящих к выходу умножителя из строя, а также сложность в изготовлении.

Наиболее близким техническим решением - прототипом изобретения является многоканальный газовый электронный умножитель (МГЭУ) [Б.М.Овчинников и др. «Многоканальный газовый электронный умножитель». Патент РФ №241738 4 (11.03.2010), G01T 1/00], содержащий размещенные в газовой среде одинаковые металлические плоские параллельные электроды, выполненные тонкими металлическими нитями в виде двух слоев полос с шириной и расстоянием между полосами близкими к величине зазора между электродами, заполненного газом, причем полосы одного слоя в электроде расположены ортогонально полосам другого слоя и вместе образуют прямоугольные отверстия, расположенные равномерно по всей площади каждого электрода, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода.

Недостатком такого многоканального газового электронного умножителя является его невысокая механическая прочность, приводящая в условиях механических шумов к микрофонному эффекту, затрудняющему регистрацию полезных сигналов.

Технический результат предлагаемого изобретения заключается в увеличении механической прочности каждого электрода умножителя путем изготовления его из металлической пластины с созданием отверстий в нем механическим путем, либо травлением.

Технический результат достигается тем, что в многоканальном газовом электронном умножителе, содержащем два одинаковых металлических тонких плоских параллельных электрода, с зазором между ними, заполненным газом, и с отверстиями, расположенными равномерно по всей площади каждого электрода, и имеющими размеры и шаг между ними, близкие к величине зазора между электродами, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода, в отличие от прототипа, электроды выполнены из металлического листа с толщиной, меньшей величины зазора между электродами и имеющего отверстия круглой или прямоугольной формы, с расстоянием между центрами соседних отверстий равным 1,2-1,5 размера отверстия.

Сущность заявленного многоканального газового электронного умножителя поясняется прилагаемыми чертежами.

На Фиг.1 показан многоканальный газовый электронный умножитель изготовленный из титановых пластин толщиной 0,5 мм: а - вид спереди в разрезе, б - вид сверху.

На Фиг.2 показана камера для испытаний многоканального газового электронного умножителя.

1 - корпус камеры,

2 - анод камеры

3 - катод камеры

4 - многоканальный газовый электронный умножитель.

5 - резистивный делитель.

На Фиг.3 показан газовый электронный умножитель, сетки которого были изготовлены путем травления через маску квадратных отверстий на никелевой фольге.

На Фиг.4 показана конфигурация силовых линий электрического поля многоканального газового электронного умножителя при расстоянии между центрами соседних отверстий равном 1,2-1,5 размера отверстия.

Возможность осуществления заявленного многоканального газового электронного умножителя подтверждается следующими пояснениями и примерами.

Пример 1

Электроды многоканального газового электронного умножителя были изготовлены из листового титана толщиной 0,5 мм с отверстиями, просверленными сверлом диаметром 1 мм (Фиг.1).

Испытания многоканального газового электронного умножителя осуществлялись в камере Фиг.2, заполненной газом. Зазор 3-4 является ионизационным, в нем происходят взаимодействия регистрируемых элементарных частиц с образованием электрон-ионных пар. Электроны ионизации транспортируются электрическим полем через газовую среду в отверстия МГЭУ, в которых под воздействием электрического поля с напряженностью 10-30 кВ×см-1 происходит их лавинное размножение с коэффициентом 102-105, с последующей их транспортировкой через индукционный зазор на регистрирующий анод камеры, который имеет ячеистую структуру для получения разрешения по х,y-координатам.

При заполнении камеры, содержащей многоканальный газовый электронный умножитель диаметром 3 см, газом неон под атмосферным давлением, и облучении ионизационного зазора β-частицами Ni63 (~60 кэВ) получен максимальный коэффициент пропорционального размножения электронов равный 104.

В отличие от прототипа, данное устройство не реагировал на шумовые помехи, примерно на порядок большие по амплитуде, чем при испытании прототипа.

Пример №2

На Фиг.3 показан многоканальный электронный умножитель, сетки которого были изготовлены путем травления через маску квадратных отверстий на никелевой фольге.

При заполнении камеры для испытаний (Фиг.2) неоном при регистрации β-частиц Ni получен коэффициент размножения электронов равный 103.

Расстояние между центрами соседних отверстий большее величины 1,2 размера отверстия МГЭУ выбрано, исходя из необходимости получения между отверстиями фокусирующей конфигурации силовых линий электрического поля (Фиг.4).

При расстоянии между центрами соседних отверстий меньшим 1,2 размера отверстия, силовые линии в зазоре между электродами в основном замыкаются на сетку и размножение электронов происходит в неоднородном поле на сетке, с частичной передачей полученного заряда в индукционный зазор за счет фотонного и электростатического механизмов [B.M.Ovchinnikov, V.V.Parusov., "Investigation of the proportional discharge mechanism in non electronegative gases", Nucl. Instr. Mem., A485, No.3 (2002)539].

При расстоянии между центрами соседних отверстий большим 1,5 размера отверстия эффективность детектирования электронов из ионизационного зазора уменьшается из-за частичных замыканий силовых линий из ионизационного зазора на верхнюю сетку многоканального газового электронного умножителя..

Многоканальные газовые электронные умножители могут найти применение в экспериментальной физике элементарных частиц, в промышленности при дефектоскопии изделий, в медицине и в больших световых экранах.

Многоканальный газовый электронный умножитель, содержащий два одинаковых металлических плоских параллельных электрода с зазором между ними, заполненным газом, с отверстиями, расположенными равномерно по всей площади каждого электрода и имеющими размеры, близкие к величине зазора между электродами, причем каждое отверстие одного электрода размещено напротив соответствующего отверстия другого электрода, отличающийся тем, что каждый электрод выполнен из металлического листа толщиной, меньшей величины зазора между электродами, и имеющего отверстия круглой или прямоугольной формы, с расстоянием между центрами соседних отверстий, равным 1,2-1,5 размера отверстия.