Жидкокристаллическое устройство отображения

Иллюстрации

Показать все

Жидкокристаллическое устройство отображения включает в себя первую поляризационную пластину, имеющую ось поглощения, проходящую в первом направлении; вторую поляризационную пластину, имеющую ось поглощения, проходящую во втором направлении, перпендикулярном первому направлению; электрод пикселя, расположенный в каждом из множества пикселей и включающий в себя первый электрод подпикселя и второй электрод подпикселя, к которым могут быть приложены разные уровни напряжения; противоэлектрод, обращенный к электроду пикселя, и жидкокристаллический слой, обеспеченный между электродами пикселей и противоэлектродом. Первый электрод подпикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является третьим направлением, отличным от направления, наклоненного на 45° относительно первого направления или второго направления. Второй электрод подпикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является четвертым направлением, отличным от третьего направления. Технический результат - улучшение качества отображения. 2 н. и 17 з.п. ф-лы, 8 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к жидкокристаллическому устройству отображения, и в частности к жидкокристаллическому устройству отображения с вертикальным типом ориентации, имеющему множество доменов ориентации в пикселе.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В настоящее время в качестве жидкокристаллических устройств отображения, имеющих характеристику широких углов обзора, разработаны следующие жидкокристаллические устройства отображения, например: жидкокристаллические устройства отображения, использующие режим IPS (внутрипланарная коммутация) или режим FFS (переключение краевого поля), которые являются режимами поперечного горизонтального электрического поля, и жидкокристаллические устройства отображения, использующие режим VA (вертикальная ориентация).

Жидкокристаллические устройства отображения режима VA включают в себя, например, жидкокристаллические устройства отображения с режимом MVA (многодоменная вертикальная ориентация), в которых в одном пикселе образуется множество доменов, имеющих разные направления ориентации жидкокристаллических молекул, и жидкокристаллические устройства отображения с режимом CPA (постоянная "карусельная" ориентация), в которых направление ориентации жидкокристаллических молекул постоянно меняется около оси или т.п., образованной на электроде в центре пикселя.

Пример жидкокристаллического устройства отображения с режимом MVA описывается в Патентном документе 1. В жидкокристаллическом устройстве отображения, описанном в Патентном документе 1, предоставляется средство управления ориентацией, проходящее в двух направлениях, перпендикулярных друг другу. Из-за этого в одном пикселе образуются четыре жидкокристаллических домена, в которых азимутальный угол директоров, которые символизируют соответствующие жидкокристаллические домены, равен 45° относительно осей поляризации (осей передачи) у пары поляризационных пластин, помещенных в скрещенных николях. Там, где азимутальный угол 0° соответствует направлению оси поляризации одной из поляризационных пластин, а направление против часовой стрелки является положительным направлением, азимутальные углы директоров у четырех жидкокристаллических доменов равны 45°, 135°, 225° и 315°. Такая структура, в которой в одном пикселе образуются четыре домена, называется "структурой 4-доменной ориентации" или просто "структурой 4D".

Другие примеры жидкокристаллических устройств отображения с режимом MVA описываются в Патентных документах 2 и 3. Жидкокристаллическое устройство отображения, описанное в Патентном документе 2, включает в себя электроды пикселей, имеющие много мелких прорезей (вырезов), проходящих в направлении 45°-225° и в направлении 135°-315° (такие электроды пикселей называются "гребнеобразными электродами пикселей" или "елочными электродами пикселей"). Структура с 4-доменной ориентацией реализуется путем ориентации жидкокристаллических молекул параллельно этим прорезям. Патентный документ 3 описывает, например, жидкокристаллическое устройство отображения, в котором средство управления доменами приводит направления ориентации жидкокристаллических молекул относительно осей поляризации к 45° и к другим направлениям, и жидкокристаллическое устройство отображения, в котором направление или ширина прорезей постепенно меняется, чтобы медленно менять направление ориентации жидкокристаллических молекул между доменами.

Патентный документ 4 описывает жидкокристаллическое устройство отображения, в котором каждый пиксель включает в себя множество электродов подпикселей, к которым могут быть приложены разные уровни напряжения, чтобы увеличить зависимость характеристики γ от угла обзора.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК

ПАТЕНТНАЯ ЛИТЕРАТУРА

Патентный документ 1: Выложенная публикация патента Японии № 11-242225

Патентный документ 2: Выложенная публикация патента Японии № 2003-149647

Патентный документ 3: Выложенная публикация патента Японии № 2007-249243

Патентный документ 4: Выложенная публикация патента Японии № 2008-225491

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ПРОБЛЕМА

Фиг. 8 схематически показывает жидкокристаллическое устройство 100 отображения, в котором пиксели включают в себя электрод пикселя, включающий множество электродов подпикселей; в частности, фиг. 8 схематически показывает пример электродов подпикселей "елочного" типа. Жидкокристаллическое устройство 100 отображения является жидкокристаллическим устройством отображения с вертикальным типом ориентации, включающим в себя жидкокристаллический материал, обладающий отрицательной анизотропией диэлектрических свойств. Как показано на фиг. 8, электрод пикселя в жидкокристаллическом устройстве 100 отображения включает в себя два электрода 110 и 120 подпикселей.

Электрод 110 подпикселя включает в себя магистральный (главный) электрод 111, проходящий в направлении слева направо на чертеже (направление X) и магистральный электрод 112, проходящий в направлении сверху вниз на чертеже (направление Y). В дальнейшем, чтобы задать направления (направления азимутальных углов) в плоскости электрода пикселя, направление вправо (на чертеже) от центра пересечения магистрального электрода 111 и магистрального электрода 112 будет называться "направлением 0°", и азимутальные углы задаются против часовой стрелки. А именно, магистральный электрод 111 проходит в направлении 0°-180°, а магистральный электрод 112 проходит в направлении 90°-270°. Электрод 110 подпикселя дополнительно включает в себя множество боковых электродов 113, множество боковых электродов 114, множество боковых электродов 115 и множество боковых электродов 116, проходящих соответственно в направлении 45°, направлении 135°, направлении 225° и направлении 315° от магистрального электрода 111 или 112.

Электрод 120 подпикселя включает в себя магистральный электрод 121, проходящий в направлении 0°-180°, магистральный электрод 122, проходящий в направлении 90°-270°, и также боковые электроды 123, боковые электроды 124, боковые электроды 125 и боковые электроды 126, проходящие соответственно в направлении 45°, направлении 135°, направлении 225° и направлении 315° от магистрального электрода 121 или 122.

Жидкокристаллическое устройство отображения включает в себя две поляризационные пластины, расположенные в скрещенных николях, имеющие при этом жидкокристаллический слой, вставленный между ними. Одна из двух поляризационных пластин имеет ось поглощения, проходящую в направлении 0°-180° (направлении X), а другая поляризационная пластина имеет ось поглощения, проходящую в направлении 90°-270° (направлении Y). При отсутствии напряжения, приложенного к жидкокристаллическому слою, обеспечивается отображение черного. Когда напряжение прикладывается к жидкокристаллическому слою, направление поляризации падающего света поворачивается ориентированными жидкокристаллическим молекулами, чтобы обеспечить отображение белого.

Чтобы повысить эффективность использования света, предпочтительно ориентировать жидкокристаллические молекулы в направлениях азимутального угла в 45° (направлениях, которые отличаются на 45°) относительно осей поглощения в момент приложения напряжения. Поэтому в жидкокристаллическом устройстве отображения, описанном в Патентном документе 1, направления, в которых вытягивается средство управления доменами, задаются отличающимися на 45° от осей поглощения. В жидкокристаллических устройствах отображения, описанных в Патентных документах 2 и 3, направления, в которых проходят боковые электроды у электрода пикселя, задаются отличающимися на 45° от осей поглощения.

Однако в результате тщательных наблюдений за направлениями ориентации жидкокристаллических молекул в жидкокристаллических устройствах 100 отображения, включающих такие электроды 110 и 120 подпикселей, авторы настоящего изобретения обнаружили, что часть жидкокристаллических молекул не ориентируется в направлении 45° относительно осей поглощения. В частности, было обнаружено, как показано на фиг. 8, что жидкокристаллические молекулы в верхней части электрода 120 подпикселя ориентируются в направлении 45° относительно осей поглощения, но средний азимут ориентации жидкокристаллических молекул на электроде 110 подпикселя отличается от направления 45° относительно осей поглощения. Если подробнее, то было обнаружено, что угол, под которым средний азимут ориентации пересекает направление X, превышает 45°.

Когда угол среднего направления ориентации жидкокристаллических молекул относительно осей поглощения смещается от 45°, как указано выше, сложно повернуть плоскость поляризации падающего света на 90°, чтобы обеспечить отображение белого. В результате эффективность использования света снижается. Когда направления ориентации жидкокристаллических молекул на электроде 110 подпикселя и направления ориентации жидкокристаллических молекул на электроде 120 подпикселя отличаются друг от друга, возникает разность между подпикселями касательно зависимости от азимутального угла у характеристики V-T (зависимость коэффициента пропускания от напряжения) и у характеристики углов обзора. В результате сложно управлять теми характеристиками, чтобы получить нужную характеристику отображения.

Настоящее изобретение, созданное для решения вышеописанных проблем, имеет целью предоставление жидкокристаллического устройства отображения, обладающего высокой эффективностью использования света, или жидкокристаллического устройства отображения, обладающего характеристикой больших углов обзора.

РЕШЕНИЕ ПРОБЛЕМЫ

В соответствии с первым вариантом осуществления настоящего изобретения, предоставляется жидкокристаллическое устройство отображения с вертикальным типом ориентации, включающее в себя множество пикселей. Жидкокристаллическое устройство отображения включает в себя первую поляризационную пластину, имеющую ось поглощения, проходящую в первом направлении; вторую поляризационную пластину, имеющую ось поглощения, проходящую во втором направлении, перпендикулярном первому направлению; электрод пикселя, расположенный в каждом из множества пикселей и включающий в себя первый электрод подпикселя и второй электрод подпикселя, к которым могут быть приложены разные уровни напряжения; противоэлектрод, обращенный к электроду пикселя; и жидкокристаллический слой, предоставленный между электродами пикселей и противоэлектродом. Первый электрод подпикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является третьим направлением, отличным от направления, наклоненного на 45° относительно первого направления или второго направления.

В соответствии со вторым вариантом осуществления настоящего изобретения на основе первого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором второй электрод подпикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является четвертым направлением, отличным от третьего направления.

В соответствии с третьим вариантом осуществления настоящего изобретения на основе второго варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором четвертое направление отличается на 45° от первого направления или второго направления.

В соответствии с четвертым вариантом осуществления настоящего изобретения на основе любого из вариантов осуществления с первого по третий, предоставляется жидкокристаллическое устройство отображения, в котором первый электрод подпикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является направлением, отличным от направления, наклоненного на 45° относительно первого направления или второго направления, а также отличным от третьего направления.

В соответствии с пятым вариантом осуществления настоящего изобретения на основе любого из вариантов осуществления с первого по третий, предоставляется жидкокристаллическое устройство отображения, в котором первый электрод подпикселя включает в себя множество боковых электродов, проходящих во множестве направлений, которые отличаются от направления, наклоненного на 45° относительно первого направления или второго направления; и когда прикладывается напряжение, множество жидкокристаллических доменов, имеющих отличные друг от друга направления ориентации жидкокристаллических молекул, образуются с помощью множества боковых электродов, проходящих во множестве направлений.

В соответствии с шестым вариантом осуществления настоящего изобретения на основе пятого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором направления ориентации жидкокристаллических молекул в множестве жидкокристаллических доменов отличаются на 45° от первого направления или второго направления.

В соответствии с седьмым вариантом осуществления настоящего изобретения на основе любого из вариантов осуществления с первого по шестой, предоставляется жидкокристаллическое устройство отображения, в котором ширина первого электрода подпикселя в первом направлении отличается от ширины первого электрода подпикселя во втором направлении.

В соответствии с восьмым вариантом осуществления настоящего изобретения на основе седьмого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором ширина первого электрода подпикселя в первом направлении больше ширины первого электрода подпикселя во втором направлении; и первое направление и третье направление пересекают друг друга под углом больше 0° и меньше 45°.

В соответствии с девятым вариантом осуществления настоящего изобретения на основе второго или третьего варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором второй электрод подпикселя включает в себя множество боковых электродов, проходящих в направлении, отличном от четвертого направления.

В соответствии с десятым вариантом осуществления настоящего изобретения на основе второго или третьего варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором второй электрод подпикселя включает в себя множество боковых электродов, проходящих во множестве направлений, отличных друг от друга; и когда прикладывается напряжение, множество жидкокристаллических доменов, имеющих отличные друг от друга направления ориентации жидкокристаллических молекул, образуются с помощью множества боковых электродов второго подпикселя, проходящих во множестве направлений.

В соответствии с одиннадцатым вариантом осуществления настоящего изобретения на основе десятого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором направления ориентации жидкокристаллических молекул в множестве жидкокристаллических доменов отличаются на 45° от первого направления или второго направления.

В соответствии с двенадцатым вариантом осуществления настоящего изобретения на основе любого из второго, третьего, девятого, десятого и одиннадцатого вариантов осуществления, предоставляется жидкокристаллическое устройство отображения, в котором ширина второго электрода подпикселя в первом направлении равна ширине второго электрода подпикселя во втором направлении.

В соответствии с тринадцатым вариантом осуществления настоящего изобретения, предоставляется жидкокристаллическое устройство отображения с вертикальным типом ориентации, включающее в себя множество пикселей. Жидкокристаллическое устройство отображения включает в себя первую поляризационную пластину, имеющую ось поглощения, проходящую в первом направлении; вторую поляризационную пластину, имеющую ось поглощения, проходящую во втором направлении, перпендикулярном первому направлению; электрод пикселя, расположенный в каждом из множества пикселей; противоэлектрод, обращенный к электроду пикселя; и жидкокристаллический слой, предоставленный между электродами пикселей и противоэлектродом. Ширина электрода пикселя в первом направлении отличается от ширины электрода пикселя во втором направлении; и электрод пикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является третьим направлением, отличным от направления, наклоненного на 45° относительно первого направления или второго направления.

В соответствии с четырнадцатым вариантом осуществления настоящего изобретения на основе тринадцатого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором электрод пикселя включает в себя множество боковых электродов, проходящих в идентичном направлении, которое является направлением, отличным от направления, наклоненного на 45° относительно первого направления или второго направления, а также отличным от третьего направления.

В соответствии с пятнадцатым вариантом осуществления настоящего изобретения на основе тринадцатого или четырнадцатого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором электрод пикселя включает в себя множество боковых электродов, проходящих во множестве направлений, которые отличаются от направления, наклоненного на 45° относительно первого направления или второго направления; и когда прикладывается напряжение, множество жидкокристаллических доменов, имеющих отличные друг от друга направления ориентации жидкокристаллических молекул, образуются с помощью множества боковых электродов, проходящих во множестве направлений.

В соответствии с шестнадцатым вариантом осуществления настоящего изобретения на основе пятнадцатого варианта осуществления, предоставляется жидкокристаллическое устройство отображения, в котором направления ориентации жидкокристаллических молекул в множестве жидкокристаллических доменов отличаются на 45° от первого направления или второго направления.

В соответствии с семнадцатым вариантом осуществления настоящего изобретения на основе любого из вариантов осуществления с тринадцатого по шестнадцатый, жидкокристаллическое устройство отображения, в котором ширина электрода пикселя в первом направлении больше ширины электрода пикселя во втором направлении; и первое направление и третье направление пересекают друг друга под углом больше 0° и меньше 45°.

ПОЛЕЗНЫЕ РЕЗУЛЬТАТЫ ИЗОБРЕТЕНИЯ

В соответствии с настоящим изобретением, предоставляется жидкокристаллическое устройство отображения, обладающее высокой эффективностью использования света, или жидкокристаллическое устройство отображения, обладающее высоким качеством отображения с предпочтительно управляемой характеристикой углов обзора.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - вид сверху, схематически показывающий структуру одного пикселя в жидкокристаллическом устройстве 1 отображения в Варианте 1 осуществления, в соответствии с настоящим изобретением.

Фиг. 2 - вид в поперечном сечении жидкокристаллического устройства 1 отображения по линии A-A' на фиг. 1.

Фиг. 3 - вид сверху, схематически показывающий формы электродов 20a и 20b подпикселей в жидкокристаллическом устройстве 1 отображения.

Фиг. 4 - иллюстрирует ориентацию жидкокристаллических молекул, реализованную электродами 20a и 20b подпикселей.

Фиг. 5 - иллюстрирует результат, обеспечиваемый жидкокристаллическим устройством 1 отображения, и показывает зависимость характеристики углов обзора от азимутального угла.

Фиг. 6 - вид сверху, схематически показывающий структуру пикселей в жидкокристаллическом устройстве 2 отображения в Варианте 2 осуществления, в соответствии с настоящим изобретением.

Фиг. 7 - вид сверху, схематически показывающий форму электрода 40 пикселя в жидкокристаллическом устройстве 2 отображения.

Фиг. 8 - вид сверху, схематически показывающий формы электродов 110 и 120 подпикселей в жидкокристаллическом устройстве 100 отображения в справочном примере.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

В дальнейшем будут описываться строения жидкокристаллических устройств отображения в вариантах осуществления в соответствии с настоящим изобретением, но настоящее изобретение не ограничивается описанными ниже вариантами осуществления.

(ВАРИАНТ 1 ОСУЩЕСТВЛЕНИЯ)

Фиг. 1 - вид сверху, схематически показывающий структуру одного пикселя 10 в жидкокристаллическом устройстве 1 отображения в Варианте 1 осуществления, в соответствии с настоящим изобретением. Фиг. 2 - вид в поперечном сечении жидкокристаллического устройства 1 отображения по линии A-A' на фиг. 1.

Жидкокристаллическое устройство 1 отображения относится к вертикальному типу ориентации и включает в себя множество пикселей 10, причем каждый имеет структуру, показанную на фиг. 1, которые размещаются в матрице в направлении X (направлении слева направо на чертеже) и направлении Y (направлении сверху вниз на чертеже). Жидкокристаллическое устройство 1 отображения обеспечивает отображение в режиме нормального черного с помощью пикселей 10. Минимальная единица отображения образуется из трех основных цветов R (красного), G (зеленого) и B (синего), и каждый пиксель 10 соответствует области отображения одного цвета среди R, G и B. Три пикселя 10, непрерывно размещенные в направлении X или направлении Y, соответствуют трем пикселям R, G и B. Минимальная единица отображения образуется из этих трех пикселей 10. Минимальная единица отображения может быть образована из четырех или более основных цветов (дисплей с несколькими основными цветами). В таком случае каждый пиксель 10 соответствует области отображения одного цвета среди множества основных цветов, которые образуют минимальную единицу отображения.

Пиксель 10 включает в себя два подпикселя 10a и 10b. Пиксель 10 может включать в себя три или более подпикселей. Подпиксель 10a включает в себя TFT 16a и электрод 20a подпикселя елочного типа (первый электрод подпикселя), а подпиксель 10b включает в себя TFT 16b и электрод 20b подпикселя елочного типа (второй электрод подпикселя). Электрод 20a и 20b подпикселя будет иногда называться просто "электродом 20a пикселя" и "электродом 20b пикселя".

Как показано на фиг. 2, жидкокристаллическое устройство 1 отображения включает в себя подложку 60 TFT, которая является подложкой с активной матрицей, противоположную подложку 70, которая является подложкой цветового фильтра, и жидкокристаллический слой 80, предоставленный между этими подложками. Жидкокристаллический слой 80 содержит нематический жидкокристаллический материал, обладающий отрицательной анизотропией диэлектрических свойств (Δε<0).

Поляризационная пластина 85b (первая поляризационная пластина) предоставляется внешней к подложке 60 TFT (к поверхности подложки 60 TFT на стороне, противоположной жидкокристаллическому слою 80), а поляризационная пластина 85а (вторая поляризационная пластина) предоставляется внешней к противоположной подложке 70. Поляризационные пластины 85а и 85b размещаются в скрещенных николях. Ось поглощения одной из поляризационных пластин проходит в направлении X (первом направлении), а ось поглощения другой поляризационной пластины проходит в направлении Y (втором направлении). В нижеследующем описании азимут, направленный слева направо на фиг. 1, называется "азимутом 0°", и азимутальные углы задаются против часовой стрелки в плоскости подложек на основе азимута 0°. Поляризационные пластины 85а и 85b могут размещаться так, что их оси поглощения перпендикулярны друг другу, и каждая ось поглощения отличается от направления X или направления Y на 0°, 90°, 180° или 270°.

Как показано на фиг. 1 и фиг. 2, подложка 60 TFT включает в себя стеклянную пластину 62 (прозрачную пластину) и следующие элементы, последовательно образованные на стеклянной пластине 62: изолирующую пленку 64 затвора, изолирующий слой 66, смоляной слой 67 (изолирующий слой) и выравнивающую пленку 68 (пленку вертикальной ориентации). Между стеклянной пластиной 62 и изолирующей пленкой 64 затвора образуются линии 12 сканирования (шины затворов) и линии 18а и 18b накопительной емкости (линии Cs). Между изолирующей пленкой 64 затвора и изолирующим слоем 66 (или в изолирующем слое 66) образуются TFT 16a и 16b и сигнальные линии 14 (шины истоков). На смоляном слое 67 образуются электроды 20a и 20b подпикселей. Выравнивающая пленка 68 покрывает электроды 20a и 20b подпикселей.

Электроды истока в TFT 16а и 16b подключаются к сигнальной линии 14, проходящей в направлении Y. Электроды стока в TFT 16а и 16b подключаются соответственно к электродам 20a и 20b подпикселей посредством контактных окон (не показаны). Электроды затвора в TFT 16а и 16b подключаются к линии 12 сканирования, проходящей в направлении X между подпикселями 10a и 10b. В качестве альтернативы TFT 16а и 16b могут снабжаться линией сканирования, и электроды затвора в TFT 16а и 16b могут подключаться к соответствующим линиям сканирования.

Между электродом 20a подпикселя и линией 18а накопительной емкости и между электродом 20b подпикселя и линией 18b накопительной емкости соответственно образуются накопительные емкости 19а и 19b. Путем приложения разных уровней напряжения к линиям 18а и 18b накопительной емкости электроды 20a и 20b подпикселей питаются разными уровнями напряжения. Из-за этого коэффициент пропускания или характеристику γ, обеспечиваемую подпикселем 10a, можно сделать отличной от обеспечиваемой подпикселем 10b. Таким образом, можно предоставить дисплей, обладающий хорошей характеристикой визуализации. В качестве альтернативы электроды 20a и 20b подпикселей могут снабжаться сигнальной линией, чтобы напряжение, приложенное к электроду 20a подпикселя, могло отличаться от напряжения, приложенного к электроду 20b подпикселя.

Как показано на фиг. 2, противоположная подложка 70 включает в себя прозрачную пластину 72, слой 74 CF (цветового фильтра), предоставленный на прозрачной пластине 72 (на поверхности прозрачной пластины 72 на стороне жидкокристаллического слоя), противоэлектрод 76 (общий электрод), образованный на слое 74 цветового фильтра, и выравнивающую пленку 78 (пленку вертикальной ориентации), образованную на противоэлектроде 76.

Выравнивающая пленка 68 в подложке 60 TFT и выравнивающая пленка 78 в противоположной подложке 70 обе включают в себя слой ориентации и слой поддержания ориентации. Слой ориентации является слоем вертикальной ориентации, образованным путем нанесения его материала на подложку, а слой поддержания ориентации образуется из полимера, который образуется следующим образом. После того, как образуется жидкокристаллическая ячейка (ячейка, включающая подложку 60 TFT, противоположную подложку 70 и жидкокристаллический слой 80), фотополимеризуемый мономер, заранее введенный в жидкокристаллический материал, фотополимеризуется в состоянии, в котором напряжение прикладывается к жидкокристаллическому слою 80. Мономер полимеризуется следующим образом. Напряжение подается на жидкокристаллический слой 80 с помощью электродов 20a и 20b подпикселей и противоэлектрода 76, и жидкокристаллические молекулы ориентируются посредством сформированного наклонного электрического поля в соответствии с формами электродов 20a и 20b подпикселей. Жидкокристаллический слой 80 облучается светом в этом состоянии для полимеризации в мономер.

Благодаря образованным таким образом слоям поддержания ориентации ориентация (азимуты предварительного наклона) жидкокристаллических молекул может поддерживаться (сохраняться) даже после того, как снимается напряжение (в отсутствии напряжения). Такой способ образования выравнивающей пленки называется технологией PSA (Ориентация на полимерах с микрорельефной поверхностью). Слой поддержания ориентации имеет функцию предварительного наклона направлений ориентации жидкокристаллических молекул до направлений, слегка наклоненных относительно направления, вертикального к плоскости подложки в случае, когда никакое напряжение не прикладывается к жидкокристаллическому слою во время отображения. В другом варианте осуществления выравнивающие пленки 68 и 78 включают в себя только пленку вертикальной ориентации без слоя поддержания ориентации.

Теперь со ссылкой на фиг. 3 будут описываться формы электрода 20a и 20b подпикселя.

Как показано на фиг. 3, электрод 20a подпикселя включает в себя магистральный электрод 21 (магистральная часть электрода подпикселя), проходящий в направлении X (направлении 0°-180° в азимутальном угле), магистральный электрод 22, проходящий в направлении Y (направлении 90°-270° в азимутальном угле), а также множество боковых электродов 23, множество боковых электродов 24, множество боковых электродов 25 и множество боковых электродов 26, которые проходят от магистрального электрода 21 или 22. Боковые электроды 23 проходят в направлении азимутального угла, которое больше 0° и меньше 90° (не включая 45°). Боковые электроды 24 проходят в направлении азимутального угла, которое больше 90° и меньше 180° (не включая 135°). Боковые электроды 25 проходят в направлении азимутального угла, которое больше 180° и меньше 270° (не включая 225°). Боковые электроды 26 проходят в направлении азимутального угла, которое больше 270° и меньше 360° (не включая 315°).

В этом варианте осуществления направления, в которых проходят боковые электроды 23, 24, 25 и 26, соответственно составляют 42,5°, 137,5°, 225,5° и 317,5°. А именно, угол θ1 (острый угол), под которым боковые электроды 23, 24, 25 и 26 пересекают направление X, составляет 42,5°. Как видно, боковые электроды 23, 24, 25 и 26 проходят в направлении (третьем направлении), которое отличается от направления, наклоненного на 45° относительно направления X или направления Y. Ширина d1 в направлении X электрода 20a подпикселя (расстояние между крайним правым концом и крайним левым концом на чертеже) равна 150 мкм, а ширина d2 в направлении Y электрода 20a подпикселя (расстояние между самым верхним концом и самым нижним концом на чертеже; d1/3) равна 50 мкм.

Электрод 20b подпикселя включает в себя магистральный электрод 31, проходящий в направлении X, магистральный электрод 32, проходящий в направлении Y, а также множество боковых электродов 33, множество боковых электродов 34, множество боковых электродов 35 и множество боковых электродов 36, которые проходят от магистрального электрода 31 или 32. Направления, в которых проходят боковые электроды 33, 34, 35 и 36, соответственно составляют 45°, 135°, 225° и 315°. А именно, угол θ2 (острый угол), под которым боковые электроды 33, 34, 35 и 36 пересекают направление X, составляет 45°. Ширина в направлении X электрода 20b подпикселя равна таковой у электрода 20a подпикселя, то есть d1, и ширина d3 в направлении Y электрода 20b подпикселя также равна d1.

Как видно, боковые электроды с 33 по 36 в электроде 20b подпикселя проходят в отличных направлениях от боковых электродов с 23 по 26 в электроде 20a подпикселя. Отношение ширины d1 и ширины d3 может быть иным, нежели 1:1. В соответствии с этим отношением, боковые электроды 33, 34, 35 и 36 могут проходить в направлениях, которые отличаются от направления, наклоненного на 45° относительно направления X или направления Y, а также отличаются от направлений, в которых проходят боковые электроды 23, 24, 25 и 26. В качестве альтернативы боковые электроды 33, 34, 35 и 36 могут проходить соответственно в таких же направлениях, что и боковые электроды 23, 24, 25 и 26.

Из-за такой формы электродов 20a и 20b подпикселей каждые два соседних боковых электрода в боковых электродах с 23 по 26 и с 33 по 36 имеют между ними прорезь (промежуток без электродного материала), проходящую в том же направлении, что и два боковых электрода.

Боковые электроды с 23 по 26 и с 33 по 36 имеют практически одинаковую ширину, и все прорези имеют практически одинаковую ширину. "Ширина бокового электрода" подразумевает его ширину в направлении, вертикальном к направлению, в котором проходит боковой электрод. "Ширина прорези" подразумевает ее ширину в направлении, вертикальном к направлению, в котором проходит прорезь. Когда ширина бокового электрода и ширина прорези чрезмерно большая или малая, сила управления ориентацией не функционирует подходящим образом. Поэтому желательно, чтобы ширина каждого бокового электрода находилась в диапазоне 1,5 мкм или больше и 5,0 мкм или меньше, и чтобы ширина каждой прорези находилась в диапазоне 1,5 мкм или больше и 5,0 мкм или меньше.

Под действием электродов 20a и 20b подпикселей, имеющих вышеописанные формы и выравнивающие пленки 68 и 78, в каждом из подпикселей 10a и 10b образуются многодоменные структуры 4D. В отсутствии приложенного напряжения жидкокристаллические молекулы в четырех доменах предварительно наклоняются в направлениях, наклоненных относительно направления, вертикального к плоскости подложки. Азимуты предварительного наклона являются азимутами, сохраненными в выравнивающих пленках 68 и 78, которые наклонены на 45° относительно направления X или направления Y. Когда прикладывается напряжение, жидкокристаллические молекулы в четырех доменах ориентируются таким образом, что направления их полярных углов близки к направлению, параллельному плоскости подложки. Азимуты ориентации практически такие же, как и азимуты предварительного наклона. Поскольку азимуты ориентации совпадают с азимутами предварительного наклона, ориентацию в точных азимутах можно реализовать с очень высоким быстродействием.

Фиг. 4 иллюстрирует ориентацию жидкокристаллических молекул в жидкокристаллическом устройстве 1 отображения.

Как показано на фиг. 4, ширина электрода 20b подпикселя в направлении X равна его ширине в направлении Y, и все боковые электроды с 33 по 36 проходят в направлениях азимутального угла 45° относительно направления X (или направления Y). Поэтому, когда прикладывается напряжение к жидкокристаллическим молекулам с помощью электродов 20a и 20b подпикселей, жидкокристаллические молекулы в подпикселе 10b ориентируются в направлениях, в которых проходят боковые электроды с 33 по 36, то есть в направлениях азимутального угла 45° (θ4) относительно направления X.

Жидкокристаллические молекулы в подпикселе 10a ориентируются следующим образом. Ширина d1 электрода 20a подпикселя в направлении X отличается от его ширины d2 в направлении Y. Поэтому, если бы боковые электроды с 23 по 26 были проложены в направлениях, наклоненных на 45° относительно направления X, когда напряжение прикладывается к жидкокристаллическим молекулам, то жидкокристаллические молекулы в подпикселе 10a ориентировались бы в направлениях с азимутальными углами, которые не равны 45° относительно направления X, как описано выше со ссылкой на фиг. 8. Считается, что это возникает по следующей причине. В окрестности самого верхнего конца и самого нижнего конца электрода 20a пикселя имеется сила, действующая для ориентации жидкокристаллических молекул вдоль направления Y; в окрестности самого правого конца и самого левого конца электрода 20a пикселя имеется сила, действующая для ориентации жидкокристаллических молекул вдоль направления X; и ширина d1 электрода 20a подпикселя в направлении X больше его ширины d2 в направлении Y. Поэтому сила в окрестности концов электрода 20a подпикселя для ориентации жидкокристаллических молекул вдоль направления X слабее, чем сила в окрестности концов электрода 20a подпикселя для ориентации жидкокристаллических молекул вдоль направления Y. Под влиянием таких неуравновешенных сил управления ориентацией многие из жидкокристаллических молекул в подпикселе 10a ориентируются в направлениях с азимутальными углами, которые не равны 45° относительно направления X.

Однако в соответствии с настоящим изобретением боковые электроды с 23 по 26 в электроде 20a подпикселя образуются проходящими в направлениях с азимутальными углами, которые не равны 45° относительно направления X (или направления Y), учитывая такие неуравновешенные силы управления ориентацией, действующие в направлении X и направлении Y. Поэтому, когда напряжение прикладывается к жидкокристаллическим молекулам в подпикселе 10a, жидкокристаллические молекулы могут ориентироваться в направлениях с азимутальным углом 45° (θ3) относительно направления X.

В случае, где ширина d1 электрода 20a подпикселя в направлении X больше его ширины d2 в направлении Y, предпочтительно, чтобы угол (острый угол: θ1)