Схема возбуждения устройства отображения, устройство отображения и способ возбуждения устройства отображения

Иллюстрации

Показать все

Изобретение относится к схемам возбуждения устройства отображения изображений. Техническим результатом является повышение качества отображения во время включения питания без увеличения площади схемы. Результат достигается тем, что схема возбуждения отображения, предназначенная для возбуждения жидкокристаллической панели отображения, выполненной с линиями шины (CS), включает в себя сдвиговый регистр (схему возбуждения линии затворов), включающий в себя множество схем SR сдвиговых регистров, выполненных таким образом, чтобы соответствовать множеству линий затворов соответственно, схему возбуждения отображения, имеющую схемы (CSL) защелок, выполненных таким образом, чтобы соответствовать одной за другой схемам (SR) сдвиговых регистров, причем сигнал (CMI) полярности вводится в схемы (CSL) защелок. Когда внутренний сигнал (Mn), который вырабатывается с помощью схем (SRn) сдвиговых регистров, становится активным, схема (CSLn) защелки, соответствующая этой схеме сдвигового регистра, загружает и удерживает сигнал (CMI) полярности и выходной сигнал (CSOUTn) из схемы (CSLn) защелки подается в линию шины (CS) в качестве CS-сигнала. Внутренний сигнал (Mn), который вырабатывается с помощью схем (SRn) сдвигового регистра, становится активным перед первым периодом вертикального сканирования картинки отображения. 3 н. и 14 з.п. ф-лы, 26 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к схеме возбуждения устройства отображения и способу возбуждения устройства отображения для возбуждения панели отображения в устройстве отображения, таком как жидкокристаллическое устройство отображения, имеющее жидкокристаллическую панель отображения с активной матрицей.

Уровень техники

Известное жидкокристаллическое устройство отображения с активной матрицей, включающее в себя шины накопительных конденсаторов, имеет недостаток, связанный с тем, что при выполнении возбуждения с реверсивной полярностью во время включения питания (то есть, в начальный период времени) нельзя получить равномерное отображение. Это происходит из-за того, что сразу после включения питания жидкокристаллического устройства отображения потенциалы питающего потенциала на шинах накопительных конденсаторов становятся неопределенными.

Способ устранения этого недостатка отображения во время включения питания раскрыт, например, в патентной литературе 1. На фиг.25 изображена блок-схема, схематично показывающая конфигурацию жидкокристаллического устройства отображения, согласно патентной литературе 1.

Жидкокристаллическое устройство отображения включает в себя: сигнальные линии S1-Sn данных, выполненные на стеклянной подложке и размещенные вдоль второго направления; сигнальные линии G1-Gn сканирования, выполненные на стеклянной подложке и размещенные вдоль первого направления; пиксельные тонкопленочные транзисторы (ТПТ) 1, каждый из которых выполнен в зоне около точки пересечения между сигнальной линией данных и сигнальной линией сканирования; вспомогательные конденсаторы (накопительные конденсаторы) С1, каждый из которых подсоединен к стоковому выводу пиксельного ТПТ1; пиксельные электроды 2, каждый из которых подсоединен к стоковому выводу пиксельного ТПТ1; жидкокристаллические конденсаторы С2, каждый из которых выполнен между пиксельным электродом 2 и противоэлектродом 3, размещенным напротив пиксельного электрода 2, с помощью жидкокристаллического слоя, расположенного между ними; схему возбуждения линий сканирования (схему возбуждения сигнальных линий сканирования) 4, которая возбуждает линии сканирования (сигнальные линии сканирования); возбудитель истоков (схема возбуждения сигнальных линий данных) 5, которая возбуждает сигнальные линии данных; линии CS1-CSn питания вспомогательных конденсаторов (шины накопительных конденсаторов), каждая из которых подсоединена к концу каждого одного из ряда вспомогательных конденсаторов С1, размещенных вдоль линий сканирования (вдоль второго направления); и схема выбора питания вспомогательных конденсаторов (схема возбуждения шин накопительных конденсаторов) 6, которая устанавливает потенциалы на линиях CS1-CSn питания вспомогательных конденсаторов.

Фиг.26 изображает схему, подробно показывающую конфигурацию схемы 6 выбора питания вспомогательных конденсаторов. Как показано на фиг.26, схема 6 выбора питания вспомогательных конденсаторов имеет рМОП-транзистор 9, который выбирает, подавать или нет первое опорное напряжение VcsH на линии CS1-CSn питания вспомогательных конденсаторов, и nМОП-транзистор 8, который выбирает, подавать или нет второе опорное напряжение VcsL (<VcsH) на линии CS1-CSn питания вспомогательных конденсаторов, и эти транзисторы 8 и 9 включаются/выключаются под управлением вентиля 10 И, который выполнен в схеме 4 возбуждения линий сканирования.

Вентиль 10 И вычисляет логическое произведение (i) сигнала s1 управления подачей питания для управления потенциалами линий CS1-CSn питания вспомогательных конденсаторов во время включения питания и (ii) сигнала s2 управления питанием обратной полярности для управления потенциалами линий CS1-CSn питания вспомогательных конденсаторов во время изменения полярности потенциала, и на основании полученного результата вычисления переключает транзисторы 8 и 9 между двумя состояниями "включено" и "выключено".

В этой конфигурации, во время предопределенного периода времени после момента включения питания, сигнал s1 управления включением питания имеет низкий уровень (0 В), посредством чего выходной сигнал вентиля 10 И (см. фиг.26) в схеме 4 возбуждения линий сканирования имеет низкий уровень, и рМОП-транзистор включается, в результате чего первое опорное напряжение VcsH подается на линии CS1-CSn питания вспомогательных конденсаторов. Поскольку первое опорное напряжение VcsH выше, чем второе опорное напряжение VcsL, потенциала на всех линиях CS1-CSn питания вспомогательных конденсаторов имеют высокий уровень во время предопределенного периода времени после момента включения питания. Когда потенциала на линиях CS1-CSn питания вспомогательных конденсаторов имеют высокий уровень, напряжение на каждом пиксельном электроде 2 также имеет относительно высокий уровень, и напряжение на выводах каждого жидкокристаллического конденсатора С2 (то есть, разность потенциалов между противоэлектродом 3 и каждым пиксельным электродом 2) является маленьким. После этого, например, жидкокристаллическое устройство отображения в режиме "нормального белого" (которое выполняет отображение в режиме "нормального белого" при отсутствии сигнала) выполняет отображение, близкое к белому отображению даже в случае, когда оно выключается, в результате чего нельзя увидеть яркую линию. Затем, по истечении предопределенного периода времени схема 6 выбора питания вспомогательных емкостей (фиг.26) повышает напряжение сигнала s1 управления включением питания до высокого уровня. Это приводит к переключению логических уровней вентиля 10 И в соответствии с изменением логических уровней сигнала s2 управления питанием обратной полярности. Соответственно, включение и выключение пМОП-транзистора 8 и рМОП-транзистора 9 изменяется в соответствии с циклом возбуждения напряжением обратной полярности. Это вызывает потенциала линий CS1-CSn питания вспомогательных конденсаторов с первым опорным напряжением VcsH или вторым опорным напряжением VcsL в соответствии с циклом возбуждения напряжением обратной полярности.

Таким образом, в этой конфигурации, поскольку во время предопределенного периода времени после момента включения питания в каждой из линий CS1-CSn питания вспомогательных конденсаторов устанавливается одинаковое напряжение питания (первое опорное напряжение), то в линиях CS1-CSn питания вспомогательных конденсаторов не происходит изменение уровня потенциала. Это позволяет устранить недостаток отображения во время включения питания.

Перечень цитируемой литературы

Патентная литература 1

Публикация заявки на патент Японии, Токукай (Tokukai), №2005-49849 А, дата подачи: 4 февраля 2005 года.

Сущность изобретения

Техническая задача

Однако для жидкокристаллического устройства отображения требуется, чтобы сигнальные линии и схема управления обеспечивали подачу предопределенного потенциала в линии питания вспомогательных конденсаторов сразу после включения жидкокристаллического устройства отображения, что, таким образом, приводит к увеличению площади схемы возбуждения. Это затрудняет использование схемы возбуждения в жидкокристаллической панели отображения с узким кадром.

Настоящее изобретение выполнено с учетом вышеупомянутых недостатков, и задача настоящего изобретения заключается в том, чтобы выполнить схему возбуждения устройства отображения и способ возбуждения устройства отображения, которые не приводят к увеличению площади схемы, что позволяет повысить качество отображения во время включения питания.

Решение задачи

Схема возбуждения устройства отображения, согласно настоящему изобретению, представляет собой схему возбуждения устройства отображения, предназначенную для возбуждения панели отображения, выполненной с шинами накопительных конденсаторов, которые образуют конденсаторы с пиксельными электродами, включенными в пиксели, причем схема возбуждения устройства отображения включает в себя сдвиговый регистр, включающий в себя множество каскадов, выполненных таким способом, чтобы соответствовать множеству сигнальных линий сканирования, соответственно, при этом схема возбуждения устройства отображения имеет схемы удержания, выполненные таким образом, чтобы один к одному соответствовать каскадам сдвигового регистра, причем сигнал цели удержания вводится в каждую из схем удержания, когда сигнал управления, выработанный с помощью одного из каскадов сдвигового регистра становится активным, при этом схема удержания соответствует этому каскаду, загружающему и удерживающему сигнал цели удержания, причем выходной сигнал, поступающий из схемы удержания, подается на шину накопительных конденсаторов в качестве сигнала шины накопительных конденсаторов, при этом сигнал управления, которой вырабатывается в каждом каскаде сдвигового регистра, становится активным перед первым периодом вертикального сканирования картинки отображения.

Согласно вышеупомянутой конфигурации, когда сигнал управления, который вырабатывается на каждом из каскадов сдвигового регистра (внутренний сигнал или внешний сигнал), становится активным перед первым периодом вертикального сканирования (первый кадр) картинки отображения (в начальный период), сигнал цели удержания (сигнал CMI полярности) удерживается в схеме удержания (в схеме защелки или запоминающей схеме) соответствующего каскада. Поэтому, например, в случае, где в начальный период времени, сигнал цели удержания устанавливается с определенным уровнем потенциала (высоким уровнем или низким уровнем), сигнал определенного потенциала выводится из схемы удержания и подается в линию накопительных конденсаторов. Это позволяет зафиксировать потенциал сигнала шины накопительных конденсаторов после включения питания и до начала первого кадра, таким образом, позволяя устранить недостаток отображения в начальный период из-за вышеупомянутого неопределенного состояния.

Кроме того, вышеупомянутая конфигурация устраняет необходимость выполнения схемы управления для фиксации потенциала сигнала шины накопительных конденсаторов (то есть, известной схемы выбора питания накопительных конденсаторов) или т.п., и поэтому схему возбуждения можно выполнить с меньшей площадью. Следовательно, используя схему возбуждения устройства отображения, жидкокристаллическую панель отображения можно выполнить с более узким кадром.

Способ возбуждения устройства отображения, согласно настоящему изобретению, представляет собой способ возбуждения устройства отображения, предназначенный для возбуждения панели отображения, выполненной с шинами накопительных конденсаторов, которые образуют конденсаторы с пиксельными электродами, включенными в пиксели, которая включает в себя сдвиговый регистр, включающий в себя множество каскадов, выполненных таким образом, чтобы соответствовать множеству сигнальных линий сканирования, соответственно, причем способ возбуждения устройства отображения включает в себя этапы, на которых: вводят сигнал цели удержания в схемы удержания, выполненные таким образом, чтобы соответствовать каскадам сдвигового регистра, соответственно, и, когда сигнал управления, выработанный текущим каскадом сдвигового регистра, становится активным, побуждают схему удержания, соответствующую текущему каскаду, загружать и удерживать сигнал цели удержания; подают выходной сигнал из схемы удержания на шину накопительных конденсаторов в качестве сигнала шины накопительных конденсаторов; и перед первым периодом вертикального сканирования картинки отображения, приводят в активное состояние сигнал управления, который вырабатывается каждым из каскадов сдвигового регистра.

Способ приводит к тому же самому эффекту, а именно изложенному в отношении схемы возбуждения устройства отображения, то есть, к эффекту, не вызывающему увеличение площади схемы, что позволяет повысить качество отображения во время включения питания.

Преимущественные эффекты изобретения

Как описано выше, схема возбуждения устройства отображения и способ возбуждения устройства отображения, согласно настоящему изобретению, выполнены так, чтобы сигнал управления, который вырабатывается каждым из каскадов сдвигового регистра и в дальнейшем подается в схему удержания, становился активным перед первым периодом вертикального сканирования картинки отображения. Это позволяет зафиксировать потенциал сигнала шины накопительных конденсаторов, получая, таким образом, эффект, который не приводит к увеличению площади схемы, что позволяет повысить качество отображения во время включения питания.

Краткое описание чертежей

Фиг.1 - блок-схема, показывающая конфигурацию жидкокристаллического устройства отображения, согласно варианту осуществления настоящего изобретения.

Фиг.2 - эквивалентная схема, показывающая электрическую конфигурацию каждого пикселя в жидкокристаллическом устройстве отображения (фиг.1).

Фиг.3 - временные диаграммы, показывающие формы различных сигналов жидкокристаллического устройства отображения, согласно варианту 1 осуществления.

Фиг.4 - блок-схема, показывающая конфигурацию схемы возбуждения линии затворов и схемы возбуждения линии шины CS, согласно варианту 1 осуществления.

Фиг.5 показывает конфигурацию схемы сдвигового регистра, согласно варианту 1 осуществления.

Фиг.6 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы сдвигового регистра, показанные на фиг.5.

Фиг.7 показывает конфигурацию логической схемы (схемы защелки), согласно варианту 1 осуществления.

Фиг.8 - схема защелки, показанная на фиг.7.

Фиг.9 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы защелки, показанной на фиг.7.

Фиг.10 - временные диаграммы, которые поясняют работу схемы защелки, показанной на фиг.7.

Фиг.11 - временные диаграммы, показывающие формы различных сигналов жидкокристаллического устройства отображения, согласно варианту 2 осуществления.

Фиг.12 - блок-схема, показывающая конфигурацию схемы возбуждения линии затворов и схемы возбуждения линии шины CS, согласно варианту 2 осуществления.

Фиг.13 - показывает конфигурацию логической схемы (схемы защелки), согласно варианту 12 осуществления.

Фиг.14 - схема, защелки, показанная на фиг.13.

Фиг.15 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы защелки, показанной на фиг.13.

Фиг.16 - временные диаграммы, показывающие формы различных сигналов жидкокристаллического устройства отображения, согласно варианту 3 осуществления.

Фиг.17 - блок-схема, показывающая конфигурацию схемы возбуждения линии затворов и схемы возбуждения линии шины CS, согласно варианту 3 осуществления.

Фиг.18 показывает конфигурацию логической схемы (схемы защелки), согласно варианту 3 осуществления.

Фиг.19 - схема защелки, показанная на фиг.18.

Фиг.20 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы защелки, показанной на фиг.18.

Фиг.21 - блок-схема, показывающая конфигурацию схемы возбуждения линии затворов и схемы возбуждения линии шины CS, согласно варианту 4 осуществления.

Фиг.22 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы защелки, показанной на фиг.21.

Фиг.23 - блок-схема, показывающая конфигурацию схемы возбуждения линии затворов и схемы возбуждения линии шины CS, согласно варианту 5 осуществления.

Фиг.24 - временные диаграммы, показывающие формы различных сигналов, которые вводятся в и выводятся из схемы защелки, показанной на фиг.23.

Фиг.25 - блок-схема, показывающая конфигурацию известного жидкокристаллического устройства отображения.

Фиг.26 - схема, показывающая конфигурацию схемы выбора питания вспомогательных конденсаторов в жидкокристаллическом устройстве отображения, показанном на фиг.25.

Подробное описание изобретения

Описание вариантов осуществления

Подробное описание вариантов осуществления настоящего изобретения приведено ниже со ссылкой на чертежи.

Сначала со ссылкой на фиг.1 и 2 описана конфигурация жидкокристаллического устройства 1 отображения, соответствующего устройству отображения настоящего изобретения. Фиг.1 изображает блок-схему, показывающую в целом конфигурацию жидкокристаллического устройства 1 отображения, и фиг.2 изображает эквивалентную схему, показывающую электрическую конфигурацию каждого пикселя жидкокристаллического устройства 1 отображения.

Жидкокристаллическое устройство 1 отображения включает в себя: жидкокристаллическую панель 10 отображения с активной матрицей, которая соответствует панели отображения настоящего изобретения; схему 20 возбуждения линии шины истоков, которая соответствует схеме возбуждения сигнальных линий данных настоящего изобретения; схему 30 возбуждения линии затворов, которая соответствует схеме возбуждения сигнальных линий сканирования настоящего изобретения; схему 40 возбуждения линии шины CS, которая соответствует схеме возбуждения шин накопительных конденсаторов настоящего изобретения; и схему 50 управления, которая соответствует схеме управления настоящего изобретения.

Жидкокристаллическая панель 10 отображения, образованная с помощью жидких кристаллов, расположенных между подложкой активной матрицы и противоподложкой (не показана), имеет большое число пикселей Р, размещенных по строкам и столбцам.

Более того, жидкокристаллическая панель 10 отображения включает в себя: линии 11 шины истоков, выполненные на подложке активной матрицы, которые соответствуют сигнальным линиям данных настоящего изобретения; линии 12 затворов, выполненные на подложке активной матрицы, которые соответствуют сигнальным линиям сканирования настоящего изобретения; тонкопленочные транзисторы (здесь и далее называются ТПТ) 13, выполненные на подложке активной матрицы, которые соответствуют переключающему элементу настоящего изобретения; пиксельные электроды 14, выполненные на подложке активной матрицы, которые соответствуют пиксельным электродам настоящего изобретения; линии 15 шины CS, выполненные на подложке активной матрицы, которые соответствуют шинам накопительных конденсаторов настоящего изобретения; и противоэлектрод 12, выполненный на противоподложке. Следует отметить, что каждый из ТПТ 13, не показанный на фиг.1, изображен самостоятельно на фиг.2.

Линии 11 шины истоков размещены одна за другой по столбцам параллельно друг другу вдоль направления столбцов (продольного направления), и линии 12 затворов размещены одна за другой по строкам параллельно друг другу вдоль направления строк (поперечного направления). Каждый из ТПТ 13 выполнен в соответствии с точкой пересечения между линией 11 шины истоков и линией 12 затворов, поэтому они представляют собой пиксельные электроды 14. Каждый из ТПТ 13 имеет свой электрод s истока, подсоединенный к линии 11 шины истоков, свой электрод g затвора, подсоединенный к линии 12 затворов, и свой электрод d стока, подсоединенный к пиксельному электроду 14. Кроме того, каждый из пиксельных электродов 14 образует жидкокристаллический конденсатор 17 с противоэлектродом 12 с жидкими кристаллами, расположенными между пиксельным электродом 14 и противоэлектродом 19.

Затем, когда сигнал затворов (сигнал сканирования), который подается в линию 12 затворов, побуждает затвор к включению ТПТ 13, и сигнал истоков (сигнал данных), подаваемый из линии 11 шины истоков, записывается в пиксельном электроде 14, пиксельный электрод 14 выдает потенциал, соответствующий сигналу истоков. В результате, потенциал, соответствующий сигналу истоков, подается на жидкие кристаллы, расположенные между пиксельным электродом 14 и противоэлектродом 19. Это позволяет реализовать отображение со шкалой серого цвета, соответствующее сигналу истоков.

Линии 15 шины CS размещены одна за другой по строкам параллельно друг другу вдоль направления строк (поперечного направления) таким образом, чтобы быть парными с линиями 12 затворов, соответственно. Каждая из линий 15 шины CS образует накопительный конденсатор 16 (который называется "вспомогательным конденсатором") с каждым одним из пиксельных электродов 14, которые размещены в каждой строке, таким образом, обеспечивая емкостную связь с пиксельными электродами 14.

Следует отметить, что поскольку из-за своей структуры ТПТ 13 имеет включающийся конденсатор 18, образованный между электродом g затвора и электродом d стока, потенциал пиксельного электрода 14 воздействует на (включает) изменение потенциала линии 12 затворов. Однако для упрощения объяснения такой эффект не принимается во внимание здесь.

Жидкокристаллическая панель 10 отображения, выполненная таким образом, возбуждается с помощью схемы 20 возбуждения линии шины истоков, схемы 30 возбуждения линии затворов и схемы 40 возбуждения линии CS. Кроме того, схема 50 управления обеспечивает схему 20 возбуждения линии шины истоков, схему 30 возбуждения линии затворов и схему 40 возбуждения линии шины CS различными сигналами, которые необходимы для возбуждения жидкокристаллической панели 10 отображения.

В настоящем варианте осуществления во время активного периода (эффективного периода сканирования) в вертикальном периоде сканирования, который периодически повторяется, каждая строка выделяется периоду горизонтального сканированию одна за другой и сканируются одна за другой. С этой целью, при синхронизации с периодом горизонтального сканирования в каждой строке, схема 30 возбуждения линии затворов последовательно выводит сигнал затворов для включения ТПТ 13 в линию 12 затворов в этой строке. Ниже будет подробно описана схема 30 возбуждения линии затворов.

Схема 20 возбуждения линии шины истоков выводит сигнал истоков в каждую линию 11 шины истоков. Этот сигнал истоков получается с помощью схемы 20 возбуждения линии шины истоков, которая принимает видеосигнал вне жидкокристаллического устройства 1 отображения через схему 50 управления, выделяет видеосигнал каждому столбцу и выполняет усиление видеосигнала или т.п.

Кроме того, например, для того чтобы выполнить инверсное возбуждение линии, схема 20 возбуждения линии шины истоков выполнена так, чтобы полярность ее выходных сигналов истоков была идентичной для всех пикселей в идентичной строке и изменялась на обратную в каждых соседних n (где n - натуральное число) строках. Например, как показано на фиг.3, период горизонтального сканирования в первой строке и период горизонтального сканирования во второй строке являются обратными по полярности сигнала S истоков (однолинейное инверсное возбуждение (1Н)). Следует отметить, что схема 20 возбуждения линии шины истоков в настоящем варианте осуществления не ограничивается инверсным возбуждением линии, но можно выполнить инверсное возбуждение кадра.

Схема 40 возбуждения линии шины CS выводит CS-сигнал, соответствующий сигналу шины накопительных конденсаторов настоящего изобретения, в каждую линию 15 шины CS. Этот CS-сигнал является сигналом, чей потенциал переключается (повышается или падает) между двумя значениями (высоким и низким потенциалами). Ниже будет подробно описана схема 40 возбуждения линии шины CS.

Схема 50 управления управляет схемой 30 возбуждения линии затворов, схемой 20 возбуждения линии шины истоков и схемы 40 возбуждения линии шины CS, таким образом, побуждая каждую из них выводить сигналы так, как показано на фиг.3. Хотя на фиг.1 схема 30 возбуждения линии затворов и схема 40 возбуждения линии шины CS расположены на одной стороне жидкокристаллической панели 10 отображения, это не предполагает какого-либо ограничения. Схема 30 возбуждения линии затворов и схема 40 возбуждения линии шины CS могут располагаться на различных сторонах жидкокристаллической панели 10 отображения. Такая образцовая конфигурация будет описана ниже (в варианте 2 осуществления).

В настоящем варианте осуществления, следует уделить внимание особенностям схемы 30 возбуждения линии затворов и схеме 40 возбуждения линии шины CS из числа тех элементов, которые образуют жидкокристаллическое устройство 1 отображения. Далее следует подробное описание схемы 30 возбуждения линии затворов и схемы 40 возбуждения линии шины CS. Хотя ниже приведено описание жидкокристаллического устройства отображения, которое выполняет возбуждение зарядовой связи (СС), жидкокристаллическое устройство отображения настоящего изобретения не ограничивается возбуждением СС.

Вариант 1 осуществления

Фиг.3 изображает временные диаграммы, показывающие формы различных сигналов в жидкокристаллическом устройстве 1 отображения, согласно варианту 1 осуществления. В варианте 1 осуществления в качестве примера описан случай, где выполняется однолинейное инверсное возбуждение (1Н). На фиг.3 GSP представляет собой исходный импульсный сигнал затворов, который определяет тактирование вертикального сканирования, и GCK1 (СК) и GCK2 (СКВ) представляют собой тактовые сигналы затворов, которые выводятся из схемы управления для определения тактирования работы сдвигового регистра. Период от заднего фронта до следующего заднего фронта в GCP соответствует одному периоду вертикального сканирования (период IV). Каждыйп период от переднего фронта в GCK.1 до переднего фронта в GCK2 и период от переднего фронта в GCK2 до переднего фронта в GCK1 соответствуют одному периоду горизонтального сканирования (периоду 1Н). Сигнал начальной установки (CMI) представляет собой сигнал полярности, который изменяет свою полярность на обратную каждый один период горизонтального сканирования.

Кроме того, на фиг.3 показаны следующие сигналы в следующем порядке: сигнал S истоков (видеосигнал), который подается из схемы 20 возбуждения линии шины истоков в линию 11 шины истоков (линию 11 шины истоков, выполненную в х-ом столбце); сигнал G1 затворов, который подается из схемы 30 возбуждения линии затворов в линию 12 затворов, выполненную в первой строке; CS-сигнал CS1 (CSOUT1), который подается из схемы 40 возбуждения линии шины CS в линию 15 шины CS, выполненную в первой строке; и форма потенциала Vpix1 пиксельного электрода 14, выполненного в первой строке и х-ом столбце. Кроме того, фиг.3 показывает следующие сигналы в предложенном порядке: сигнал G2 затворов, который подается в линию 12 затворов, выполненную во второй строке; CS-сигнал CS2 (CSOUT2), который подается в линию 15 шины CS, выполненную во второй строке; и форма потенциала Vpix2 пиксельного электрода 14, выполненного во второй строке и х-ом столбце. Более того, на фиг.3 показаны следующие сигналы в предложенном порядке: сигнал G3 затворов, который подается в линию 12 затворов, выполненную в третьей строке; CS-сигнал CS3 (CSOUT3), который подается в линию 15 шины CS, выполненную в третьей строке; и форма потенциала Vpix3 пиксельного электрода 14, выполненного в третьей строке и х-ом столбце.

Следует отметить, что пунктирные линии в потенциалах Vpix1, Vpix2 и Vpix3 показывают потенциал противоэлектрода 19.

Далее предполагается, что исходный кадр картинки отображения представляет собой первый кадр, и что первому кадру предшествует начальное состояние (начальный период). В варианте 1 осуществления, как показано на фиг.3, во время начального состояния после включения питания (то есть, во время периода от конца прохождения предопределенного периода времени после включения питания до начала исходного кадра (первого кадра) картинки отображения), все CS-сигналы CS1, CS2 и CS3 имеют один фиксированный потенциал (на фиг.3 низкий уровень). В первом кадре, CS-сигнал CS1 в первой строке и CS-сигнал CS3 в третьей строке переключаются с низкого уровня на высокий уровень при синхронизации по передним фронтам в своих соответствующих сигналах G1 и G3 затворов, соответственно, и имеют высокий уровень в моменты времени, где сигналы G1 и G3 затворов падают. Поэтому потенциал CS-сигнала в каждой строке в момент времени, где его соответствующий сигнал затворов падает, отличается от потенциала CS-сигнала в соседней строке в момент времени, где его соответствующий сигнал затворов падает. Например, CS-сигнал CS1 имеет высокий уровень в момент времени, где его соответствующий сигнал G1 затворов падает, и CS-сигнал CS2 имеет высокий уровень в момент времени, где его соответствующий сигнал G2 затворов падает, и CS-сигнал CS3 имеет высокий уровень в момент времени, где его соответствующий сигнал G3 затворов падает.

Следует отметить, что сигнал S истоков представляет собой сигнал, который имеет амплитуду, соответствующую шкале серого цвета, представленной видеосигналом, и который изменяет свою полярность на обратную каждый период 1Н. Кроме того, так как предполагается на фиг.3, что отображается равномерная картинка, амплитуда сигнала S истоков является постоянной. Между тем, сигналы G1, G2 и G3 затворов служат в качестве потенциалов затворов для включения транзисторов во время первого, второго и третьего периодов 1Н, соответственно, в активном периоде (эффективном периоде сканирования) каждого кадра, и служат в качестве потенциалов затворов для выключения транзисторов во время других периодов.

Затем CS-сигналы CS1, CS2 и CS3 изменяют свою полярность на обратную после того, как их соответствующие сигналы G1, G2 и G3 затворов падают, и принимают такие формы сигналов, что соседние строки являются обратными по направлению изменения друг к другу. Более конкретно, в кадре с нечетным номером (первом кадре, третьем кадре, …) CS-сигналы CS1 и CS3 падают после того, как их соответствующие сигналы G1 и G3 затворов падают, и CS-сигнал CS2 повышается после того, как его соответствующий сигнал G2 затворов падает. Кроме того, в кадре с четным номером (втором кадре, четвертом кадре, …) CS-сигналы CS1 и CS3 повышаются после того, как их соответствующие сигналы G1 и G3 затворов падают, и CS-сигнал CS2 падает после того, как падает его соответствующий сигнал G2 затворов.

Следует отметить, что соотношение между передним и задним фронтами в CS-сигналах CS1, CS2 и CS3 в кадрах с нечетными и четными номерами может быть обратным по отношению к соотношению, изложенному выше.

Поскольку на фиг.3 соседние строки отличаются друг от друга, исходя из потенциалов CS-сигналов в моменты времени, где падают сигналы затворов в первом кадре, CS-сигналы CS1, CS2 и CS3 в первом кадре принимают те же самые формы сигналов, как и в нормальном кадре с нечетным номером (например, в третьем кадре). Поэтому, так как все потенциалы Vpix1, Vpix2 и Vpix3 пиксельных электродов 14 изменяются правильно с помощью CS-сигналов CS1, CS2 и CS3, соответственно, подача сигналов S истоков той же самой шкалы серого цвета вызывает положительную и отрицательную разности потенциалов между потенциалом противоэлектрода и измененным потенциалом каждого из пиксельных электродов 14, чтобы быть равными друг другу. То есть, в первом кадре, в котором сигнал истоков отрицательной полярности записывается в пикселе с нечетными номерами в том же самом столбце пикселей, и сигнал истоков положительной полярности записывается в пикселе с четными номерами в том же самом столбце пикселей, потенциалы CS-сигналов, соответствующие пикселям с нечетными номерами не изменяют свою полярность во время записи в пикселе с нечетными номерами, изменяют свою полярность в отрицательном направлении после записи, и не изменяют свою полярность до следующей записи, и потенциалы CS-сигналов, соответствующие пикселям с четными номерами не изменяют свою полярность во время записи в пиксели с четными номерами, изменяют свою полярность в положительном направлении после записи, и не изменяют свою полярность до следующей записи.

Это возбуждение позволяет зафиксировать потенциал каждого CS-сигнала в начальном состоянии, которое будет зафиксировано на одной стороне (который имеет низкий уровень или высокий уровень), таким образом, позволяя устранить недостаток отображения в начальный период времени. Кроме того, в первом кадре и более позднем кадре потенциал каждого пиксельного электрода может изменяться правильным образом.

Специфическая конфигурация схемы 40 возбуждения линии шины CS для выполнения вышеупомянутого управления описана ниже. На фиг.4 показана конфигурация схемы 30 возбуждения линии затворов и схемы 40 возбуждения линии шины CS. Далее для удобства объяснения строка (линия) (следующая строка), следующая после n-ой строки в направлении сканирования (на фиг.4 показано стрелкой) представлена в виде (n+1)-ой строки, и строка (предыдущая строка), непосредственно предшествующая n-ой строке в направлении сканирования, представлена в виде (n-1)-ой строки.

Как показано на фиг.4, схема 30 возбуждения линии затворов имеет множество схем SR сдвиговых регистров, соответствующих их соответствующим строкам, и схема 40 возбуждения линии шины CS имеет множество схем удержания (схем защелок, запоминающих схем) CSL, соответствующих их соответствующим строкам. Для удобства объяснения, схемы SRn-1, SRn и SRn+1 сдвиговых регистров и схемы CSLn-1, CSLn и CSLn+1 защелок, которые соответствуют (n-1)-ой, n-ой и (n+1)-ой строкам, соответственно, выбраны здесь в качестве примера.

Схема SRn-1 сдвигового регистра в (n-1)-ой строке принимает тактовый сигнал GCK1 затворов через свой тактовый вывод СК из схемы 50 управления (см. фиг.1) и принимает выходной сигнал SRBOn-2 сдвигового регистра из предыдущей строки ((n-2)-ой строки) через свой входной вывод SB в качестве сигнала установки для схемы SRn-1 сдвигового регистра. Схема SRn-1 сдвигового регистра имеет свой выходной вывод OUTB, подсоединенный к входному выводу SB, схема SRn сдвигового регистра следующей строки (n-ой строки). Это позволяет схеме SRn-1 сдвигового регистра выводить выходной сигнал SRBOn-1 сдвигового регистра через свой выходной вывод OUTB в схему SRn сдвигового регистра. Схема SRn-1 сдвигового регистра имеет свой выходной вывод М, подсоединенный к тактовому выводу СК схемы CSLn-1 защелки текущей строки ((n-1)-ой строки). Это позволяет схеме SRn-1 сдвигового регистра вводить сигнал CSRn-1 внутри ее (внутренний сигнал Mn-1) (сигнал управления) в схему CSLn-1 защелки.

Кроме того, выходной сигнал SRBOn-2 сдвигового регистра из предыдущей строки ((n-2)-ой строки) вводится в схему SRn-1 сдвигового регистра и выводится в качестве сигнала Gn-1 затворов (SRBOn-2: сигнал обратной полярности SRBOn-2) в линию 12 затворов текущей строки ((n-1)-ой строки) через буфер. Кроме того, напряжение питания (VDD) подается в схему SRn-1 сдвигового регистра.

Схема CSLn-1 защелки в (n-1)-ой строке принимает сигнал CMI полярности из схемы 50 управления (см. фиг.1) и внутренний сигнал Mn-1 (сигнал CSRn-1) из схемы SRn-1 сдвигового регистра. Схема CSLn-1 защелки имеет выходной вывод OUT, подсоединенный к линии 15 шины CS текущей строки ((n-1)-ой строки). Это позволяет схеме CSLn-1 защелки выводить CS-сигнал CSOUTn-1 через свой выходной вывод OUT в линию 15 шины CS текущей строки.

Схема SRn сдвигового регистра в n-ой строке принимает тактовый сигнал GCK2 затворов через свой тактовый вывод СК из схемы 50 управления (см. фиг.1) и принимает выходной сигнал SRBOn-1 сдвигового регистра из предыдущей строки ((n-1)-ой строки) через свой входной вывод SB в качестве сигнала установки для схемы SRn сдвигового регистра. Схема SRn сдвигового регистра имеет свой выходной вывод OUTB, подсоединенный к входному выводу SB схемы SRn+1 сдвигового регистра следующей строки ((n+1)-ой строки). Это позволяет схеме SRn сдвигового регистра выводить выходной сигнал SRBOn сдвигового регистра через свой выходной вывод OUTB в схему SRn+1 сдвигового регистра. Схема SRn сдвигового регистра имеет свой выходной вывод М, подсоединенный к тактовому выводу СК схемы CSLn защелки текущий строки (n-ой строки). Это позволяет схеме SRn сдвигового регистра вводить внутренний сигнал Mn, выработанный внутри ее, (сигнал CSRn), в схему CSLn защелки.

Кроме того, выходной сигнал SRBOn-1 сдвигового регистра из предыдущей строки ((n-1)-ой строки) вводится в схему SRn сдвигового регистра и выводится в виде сигнала Gn затворов (SROn-1: сигнал обратной полярности SRBOn-1) в линию 12 затворов текущей строки (n-ой строки) через буфер. Кроме того, напряжение питания (VDD) подается в схему SRn сдвигового регистра.

Схема CSLn защелки в n-ой строке принимает сигнал CMI полярности из схемы 50 управления (см. фиг.1) и внутренний сигнал Мп (сигнал CSRn), выработанный внутри схемы SRn сдвигового регистра. Схема CSLn защелки имеет выходной вывод OUT, подсоединенный к линии 15 шины CS текущей строки (n-ой ст