Многомерный сигнал с уменьшенным отношением пиковой к среднеквадратической амплитуде
Иллюстрации
Показать всеЗаявленное изобретение относится к области беспроводной связи. Технический результат - генерирование радиосигнала с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде, что способствует улучшению эффективности передачи усилителя мощности передатчика. Для этого, в частности, передатчик кодирует информацию в поток двоичных битов, и группы битов комбинируются для представления символами данных. Далее, каждый символ данных представляется набором координат в многомерном пространстве, причем количество измерений в этом многомерном пространстве соответствует, по меньшей мере, трем ортогональным компонентам, которые содержат передаваемый радиосигнал. Координаты каждого символа данных выбираются так, что каждый символ данных расположен на минимальном расстоянии от ближайшего другого символа данных в многомерном пространстве, а также так, что отношение пиковой амплитуды к среднеквадратической амплитуде передаваемого радиосигнала является минимальным. 5 н. и 16 з.п. ф-лы, 17 ил., 5 табл.
Реферат
Перекрестная ссылка на родственную заявку
Эта заявка является родственной по отношению к заявке на патент США № 12/166883, поданной 2 июля 2008 г. и озаглавленной "Reduced Peak-to-RMS Ratio Multicode Signal" (номер дела в досье поверенного № P25701). Содержимое этого документа настоящим заключено в это описание посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение относится, в целом, к области беспроводной связи и, в частности, к передатчику и способу генерирования радиосигнала с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде, что способствует улучшению эффективности передачи усилителя мощности передатчика. Кроме того, настоящее изобретение относится к приемнику, который может декодировать этот радиосигнал.
Уровень техники
В этом документе заданы следующие сокращения, по меньшей мере, некоторые из которых упоминаются в пределах нижеследующего описания предшествующего уровня техники и настоящего изобретения.
CDMA | Множественный доступ с кодовым разделением |
FIR | Конечная импульсная характеристика |
HSPA | Высокоскоростная пакетная передача данных |
PA | Усилитель мощности |
PCM | Импульсно-кодовая модуляция |
PSK | Манипуляция сдвигом фазы |
QAM | Квадратурная амплитудная модуляция |
UMTS | Универсальная система мобильной связи |
WCDMA | Широкополосный множественный доступ с кодовым разделением |
В данной области техники известно, что можно считать, что сигнал связи, например радиосигнал, имеет мгновенное комплексное значение на двумерной комплексной плоскости, где координата по одному измерению равна амплитуде со знаком синусоидальной компоненты радиосигнала, а координата по второму измерению равна амплитуде со знаком косинусоидальной компоненты радиосигнала. Так как косинусоида и синусоида являются взаимно ортогональными функциями, то их корреляция равна нулю, что означает, что эти два измерения расположены под прямым углом друг к другу. Эти два измерения обычно обозначают I и Q, что означает "Синфазное" и "Квадратурное". Других ортогональных измерений не существует в этом пространстве сигналов, которое является плоскостью. Также хорошо известно, что символы, представляющие группы битов, могут быть расположены на плоскости I, Q так, что любые два символа достаточно отделены друг от друга, чтобы избежать путаницы, до тех пор, пока отношение сигнал/шум находится на довольно высоком уровне. Например, 16 символов могут быть расположены на решетке 4×4, известной как 16QAM, и причем каждой точке назначаются четыре двоичных бита. В 64QAM, 64 символа могут быть расположены на решетке 8×8, и причем каждой точке назначаются 6 двочиных битов. Также может использоваться непрямоугольное созвездие точек, например, 16-PSK (манипуляция сдвигом фазы), в которой 16 точек равномерно расположены по окружности, на равных углах, и для каждой из точек распределяются 4 двоичных бита.
В предшествующем уровне техники, обычно считается желательным и известным, что группы битов распределяются для точек символа согласно схеме кодирования Грея, так что биты, назначенные соседним точкам в пространстве сигналов, отличаются как можно меньшим количеством позиций бита, предпочтительно только одной позицией бита. Далее предоставлено краткое обсуждение некоторых из этих известных схем, а также их недостатки, которые связаны с предшествующим уровнем техники.
В патенте США № 4084337, поданном 24 августа 1976 г., описывается четырехмерная схема модуляции, в которой используются обе поляризации радиоволн для предоставления двух независимых каналов, где каждый канал может переносить двумерный сигнал. В этом патенте существует ссылка на статью в IEEE, озаглавленную "Digital Transmission with Four Dimensional modulation" (Trans IEEE on Information Theory, июль 1974, стр. 497-502), в которой описана четырехмерная схема модуляции, которая создана с ограничением пиковой энергии. Ограничение пиковой энергии описано в упомянутой статье и означает, что сумма мощностей в двух поляризациях не должна превышать некоторое максимальное значение. Например, если (I1,Q1) являются синфазной и квадратурной фазовой компонентами на одной поляризации, и (I2,Q2) являются синфазной и квадратурной фазовой компонентами на другой поляризации, то общая энергия или мощность, которая является ограниченной, задается I12+Q12+I22+Q22. Это ограничение является уместным и подходящим, когда (I1,Q1) и (I2,Q2) генерируются отдельно и применяются к физически независимым каналам, например, ортогонально поляризованным антеннам. Однако, если (I1,Q1) и (I2,Q2) генерируются не отдельно и применяются к физически не отдельным каналам, а, наоборот, применяются к одному и тому же физическому каналу, то передаваемым сигналом является (I1+I2, Q1+Q2), и его энергия или мощность будет пропорциональной (I1+I2)2+(Q1+Q2)2, что не является ограниченным одной и той же метрикой. Соответственно, в последнем случае для ограничения пиковой энергии требуется другая схема.
В патенте США № 4597090, поданном 14 апреля 1983 г., раскрыта схема модуляции для одного физического канала, в котором считается, что два измерения в пространстве сигналов (I,Q) на m последовательных выборках сигналов формируют 2m-мерное пространство, и где mN битов данных кодируются в 2m измерений так, чтобы получить выигрыш кодирования посредством ограничения выбора значения I, Q одной выборки сигнала, зависящего от выбора значений I, Q для других выборок сигналов. Это является одним видом решетчатого кодирования и относится к получению выигрыша кодирования, но в нем отсутствует упоминание о получении уменьшения отношения пиковой к среднеквадратической (rms) амплитуде радиосигнала, что является предметом, который относится к настоящему обсуждению.
В системе сотовой связи 3-го Поколения, известной как WCDMA или UMTS, в настоящее время существует способ согласно спецификации, известной как HSPA, который обеспечивает возможность передачи данных с более высокой скоростью из мобильного телефона в сеть (или базовую станцию). Передача HSPA использует подход, называемый "Multi-code CDMA" ("Многокодовый CDMA"). В этой системе Multi-code CDMA, каждый символ данных расширяется по времени и спектру посредством комбинирования его с кодом расширения. На нисходящей линии связи (от базовой станции к мобильному телефону) коды, используемые для передачи сигналов из базовой станции, координируются так, чтобы они были взаимно ортогональными. В отличие от этого на восходящей линии связи (от мобильного телефона к базовой станции) координация, требуемая между различными мобильными телефонами для достижения ортогональности, считается слишком трудной для реализации, поэтому каждый мобильный телефон использует отличную случайную кодовую последовательность.
Однако в каждом мобильном телефоне, тем не менее, можно генерировать несколько случайных кодовых последовательностей, которые скоординированы между собой для взаимной ортогональности. Каждый из этих ортогональных кодов может затем переносить подпоток символов так, что скорость комбинированного потока символов увеличивается. Но, в этом случае, доступная мощность передатчика мобильного телефона должна делиться между различными кодами, что означает, что диапазон, в котором каждый подпоток может успешно приниматься и декодироваться без ошибок, должен уменьшаться. Фактически, уменьшение мощности для каждого подпотока в сигнале с многокодовой модуляцией, передаваемом из мобильного телефона, является большим, чем можно ожидать при простом делении мощности передатчика на общее количество подпотоков. Это происходит не столько из-за средней мощности, которая ограничивается напряжением батареи, сколько из-за пиковой амплитуды сигнала, которая оказывается ограниченной напряжением батареи.
Соответственно, в системе сотовой связи 3-го Поколения существует потребность в схеме модуляции, которая создает наибольшую среднюю мощность для каждого подпотока в пределах ограничения составной пиковой амплитуды сигнала всех подпотоков. Например, если мобильный телефон использует трехкодовую многокодовую схему с тремя кодами с длиной=4, где каждый код переносит подпоток символов 16QAM с аналогичной амплитудой, то общая средняя мощность, которая передается в пределах данного ограничения пиковой амплитуды, на 7,32 дБ ниже пика до фильтрации, ограничивающей спектр, и средняя мощность для каждого подпотока на 12,1 дБ ниже пика. Фильтрация в общем дополнительно увеличивает отношение пиковой к среднеквадратической амплитуде. Стандарт HSPA описывает улучшение по сравнению со схемой с тремя кодами расширения с длиной=4, т.к. он специфицирует код с длиной=2 в два раза большей мощности (√2 умножить на амплитуду), который переносит два символа в такой же период времени, в какой наложенный и ортогональный код с длиной=4 переносит третий символ, в котором эффективно достигается такая же символьная скорость, как при трех кодах с длиной=4. Эта конфигурация 4+(2,2) может создавать общую среднюю мощность, которая на 5,44 дБ ниже пиковой, и на 1,88 дБ более эффективная, чем конфигурация 4+4+4, которая связана со схемой с тремя кодами расширения с длиной=4.
Однако при конфигурации 4+(2,2) существует уменьшение коэффициента расширения, что является движением не в направлении расширения, при котором также достигается малое отношение пиковой к среднеквадратической амплитуде, но получающийся в результате радиосигнал очень трудно декодировать, когда существует значительное количество искажений, обусловленных многолучевым распространением в канале. Принимая во внимание вышеизложенное, видно, что существовала и все еще существует потребность в передатчике и способе, которые могут разрешать проблемы, связанные с вышеупомянутыми недостатками и другими недостатками, связанными с предшествующим уровнем техники. Эти и другие потребности удовлетворяются с передатчиком и способом настоящего изобретения.
Сущность изобретения
Согласно одному аспекту настоящее изобретение предоставляет способ для уменьшения отношения пиковой к среднеквадратической амплитуде в передаваемом радиосигнале при наложении ограничения на пиковую составную амплитуду символа при использовании многомерной модуляции. Этот способ включает в себя этапы: (a) кодирование информации в поток двоичных битов, (b) формирование множества групп битов из потока двоичных битов, причем это множество групп битов представляет множество символов данных, (c) представление каждого символа данных набором координат в многомерном пространстве, причем количество измерений в этом многомерном пространстве соответствует количеству, равному, по меньшей мере, трем ортогональным компонентам, которые в итоге содержат передаваемый радиосигнал, и (d) выбор координат для каждого символа данных, так что каждый символ данных расположен на минимальном расстоянии от ближайшего другого символа данных в многомерном пространстве, а также так, что отношение пиковой составной амплитуды символа к среднеквадратической амплитуде передаваемого радиосигнала является минимальным. Этот способ генерирования радиосигнала с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде способствует улучшению эффективности передачи усилителя мощности передатчика.
Согласно другому аспекту настоящее изобретение предоставляет способ передачи символов данных, в результате которого получается передаваемый сигнал с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде. Этот способ включает в себя этапы: (a) одновременное использование множества аддитивно комбинированных кодов расширения спектра, причем каждый переносит синфазное или действительное значение сигнала и квадратурное фазовое или мнимое значение сигнала, для предоставления, по меньшей мере, трех независимых модуляционных измерений, причем каждое измерение переносит значение координаты, и (b) задание набора точек созвездия, которые должны быть связаны с символами данных, причем эти точки созвездия распределены в пределах пространства, содержащего, по меньшей мере, три измерения, так что евклидово расстояние между любыми двумя точками созвездия не меньше желаемого минимума, и так что желаемое значение пиковой амплитуды не превышается любой точкой, причем это пиковое значение определяется посредством любого из следующих показателей: (i) сумма абсолютных значений координат любой точки созвездия, соответствующих измерениям, предоставляемым действительными значениями сигнала, переносимыми множеством аддитивно комбинированных кодов расширения спектра, (ii) сумма абсолютных значений координат любой точки созвездия, соответствующих измерениям, предоставляемым мнимыми значениями сигнала, переносимыми множеством аддитивно комбинированных кодов расширения спектра, и (iii) сумма квадратов (a) суммы абсолютных значений координат любой точки созвездия, соответствующих измерениям, предоставляемым действительными значениями сигнала, переносимыми множеством аддитивно комбинированных кодов расширения спектра, и (b) суммы абсолютных значений координат созвездия любой точки, соответствующих измерениям, предоставляемым мнимыми значениями сигнала, переносимыми множеством аддитивно комбинированных кодов расширения спектра. Этот способ генерирования радиосигнала с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде способствует улучшению эффективности передачи усилителя мощности передатчика.
Согласно еще одному аспекту настоящее изобретение предоставляет передатчик, который уменьшает отношение пиковой к среднеквадратической амплитуде в радиосигнале при наложении ограничения на пиковую составную амплитуду символа при использовании многомерной модуляции. Передатчик включает в себя: (a) кодер, который делит группы битов данных на первую подгруппу и вторую подгруппу, (b) кодер использует первую подгруппу битов для выбора одной из определенного количества точек созвездия, которые распределены в пределах первого многомерного пространства, где местоположение точек созвездия определяется так, что сумма их координат меньше желаемого максимального значения, где координаты выбранной точки созвездия используются для установки значений действительных частей соответствующих комплексных чисел, (c) кодер использует вторую подгруппу битов для выбора другой одной из определенного количества точек созвездия, которые распределены в пределах второго многомерного пространства, где местоположение точек созвездия определяется так, что сумма их координат меньше желаемого максимального значения, где координаты выбранной точки созвездия тогда используются для установки значений мнимых частей соответствующих комплексных чисел, (d) кодер соединяет попарно одну действительную и одну мнимую часть для формирования комплексного числа, и аналогично соединяются попарно остальные действительные и мнимые части для получения набора комплексных чисел, (e) кодер назначает комплексные числа, которые должны быть умножены на связанный с ними один из определенного количества ортогональных кодов множества элементарных сигналов, где произведение каждого комплексного числа на его код впоследствии суммируется по элементарным сигналам для получения многокодового символа, (f) фильтр, который принимает поток многокодовых символов и фильтрует их для ограничения передаваемого спектра, (g) модулятор, который модулирует отфильтрованный сигнал с радиочастотной несущей, и (h) антенну, которая передает модулированный радиосигнал. Соответственно, посредством генерирования радиосигнала с уменьшенным отношением пиковой амплитуды к среднеквадратической амплитуде эффективность передачи усилителя мощности передатчика улучшается.
Согласно еще одному аспекту настоящее изобретения предоставляет приемник, который декодирует радиосигнал с уменьшенным отношением пиковой к среднеквадратической амплитуде и ограниченной пиковой составной амплитудой символа. В одном варианте осуществления, приемник включает в себя декодер с процессором, который реализует исполнимые процессором команды из памяти для декодирования радиосигнала посредством: (a) определения грани ромбовидного созвездия, на которой или в пределах которой лежит символ данных радиосигнала, (b) определения поднабора точек на грани, в пределах которой лежит символ данных радиосигнала, (c) определения точки в поднаборе точек, которая находится ближе всех к значениям координат символа данных, и (d) определение символа данных из комбинации грани, поднабора точек и ближайшей точки.
Согласно еще одному аспекту настоящее изобретение предоставляет приемник, который декодирует радиосигнал с уменьшенным отношением пиковой к среднеквадратической амплитуде и ограниченной пиковой составной амплитудой символа. В одном варианте осуществления, приемник включает в себя декодер с процессором, который реализует исполнимые процессором команды из памяти для декодирования радиосигнала посредством: (a) формирования гипотезы о первой из множества точек созвездия на первом ромбовидном созвездии, где эта первая точка созвездия связана с символом данных радиосигнала, (b) установления, с учетом гипотетической первой точки созвездия, второй точки созвездия на втором ромбовидном созвездии, где эта вторая точка созвездия связана с символом данных радиосигнала, (c) установление метрики, описывающей то, насколько точно гипотетическая первая точка созвездия и связанная с ней установленная вторая точка созвездия предсказывают принятый радиосигнал, и (d) сравнение метрики для всех возможных гипотез о первой точке созвездия и выбор гипотезы с наилучшей метрикой в качестве правильной гипотезы, тем самым декодируя радиосигнал.
Дополнительные аспекты изобретения будут изложены, частично, в нижеследующих подробном описании, чертежах и пунктах формулы изобретения, а частично, будут выведены из подробного описания, или о них можно узнать посредством применения изобретения на практике. Должно быть понятно, что как вышеизложенное краткое описание, так и нижеследующее подробное описание являются только иллюстративными и поясняющими, и они не ограничивают раскрытое изобретение.
Краткое описание чертежей
Более полное понимание настоящего изобретения можно получить при обращении к нижеследующему подробному описанию и в совокупности с прилагаемыми чертежами:
Фиг.1 - схема традиционной многокодовой системы сотовой связи HSPA 4+(2,2), которая используется для содействия пониманию настоящего изобретения.
Фиг.2 - схема, на которой изображены 16 точек созвездия 16QAM, которая используется для содействия пониманию настоящего изобретения.
На фиг.3 изображены схемы, связанные с традиционной многокодовой системой сотовой связи 4+4+4, которые используются для содействия пониманию настоящего изобретения.
Фиг.4 - схема, на которой наглядно изображен фазовый поворот на 45 градусов символов 16QAM, модулированных на коде с длиной=4, относительно символов 16QAM, модулированных на коде с длиной=2 двойной мощности (√2 умножить на амплитуду), которая используется для содействия пониманию настоящего изобретения.
Фиг.5 - график, на котором изображена плоскость для I1, I2, I3 при I1+I2+I3=1, который используется для содействия пониманию настоящего изобретения.
Фиг.6 - схема, на которой изображено ромбовидное созвездие, которая используется для содействия пониманию настоящего изобретения.
Фиг.7 - схемы, которые иллюстрируют различные пути, которыми можно сгруппировать шесть измерений I1, Q1, I2, Q2, I3 и Q3 для формирования многомерных символов, которые используются для содействия пониманию настоящего изобретения.
Фиг.8 - схема, на которой изображено ромбовидное созвездие с вогнутыми вершинами, которая используется для содействия пониманию настоящего изобретения.
Фиг.9 - блок-схема мобильного телефона с передатчиком, который выполнен согласно одному варианту осуществления настоящего изобретения.
Фиг.10 - схема, на которой изображено назначение кода Грея из 6-битовых групп ромбовидному созвездию, изображенному на фиг.8, которая используется для содействия пониманию настоящего изобретения.
Фиг.11 - график, на котором изображена частота появления ошибок в зависимости от отношения общей передаваемой мощности сигнала к шуму, который используется для содействия пониманию настоящего изобретения.
Фиг.12 - схема, на которой изображено ромбовидное созвездие с выемками, которая используется для содействия пониманию настоящего изобретения.
Фиг.13 - блок-схема базовой станции с приемником, которая выполнена согласно одному варианту осуществления настоящего изобретения.
Фиг. 14-16 - схемы, которые используются для содействия пониманию того, как приемник, изображенный на фиг.13, декодирует радиосигнал согласно одному варианту осуществления настоящего изобретения.
Фиг.17 - блок-схема базовой станции с приемником, которая выполнена согласно другому варианту осуществления настоящего изобретения.
Подробное описание
Настоящее изобретение включает в себя передатчик (например, заключенный в пределах мобильного телефона) и способ, который уменьшает отношение пиковой к среднеквадратической амплитуде в радиосигнале при наложении ограничения на пиковую составную амплитуду символа при использовании многомерной модуляции. В частности, передатчик кодирует информацию в поток двоичных битов, и группы битов комбинируются для представления символами данных. Далее, каждый символ данных представляется набором координат в многомерном пространстве, причем количество измерений в этом многомерном пространстве соответствует, по меньшей мере, трем ортогональным компонентам, которые содержат передаваемый радиосигнал. Координаты каждого символа данных выбираются так, что каждый символ данных расположен на минимальном расстоянии от ближайшего другого символа данных в многомерном пространстве, а также так, что отношение пиковой амплитуды к среднеквадратической амплитуде передаваемого радиосигнала является минимальным. После более подробного описания вышеупомянутой традиционной трехкодовой многокодовой схемы с конфигурацией 4+4+4 и вышеупомянутой традиционной трехкодовой многокодовой схемы HSPA с конфигурацией 4+(2,2) обеспечивается подробное описание различных способов, которыми может быть реализовано настоящее изобретение.
Обратимся к фиг.1, на которой представлена блок-схема традиционной трехкодовой многокодовой системы 100 сотовой связи HSPA, в которой мобильный телефон 102 имеет передатчик 108, который передает радиосигнал с тремя символами 16QAM S1, S2 и S3 в каждый период модуляции четырех элементарных сигналов в базовую станцию 104. Как изображено, код с длиной=2 повторяется дважды и используется для переноса двух символов 16QAM S2 и S2 последовательно, в то время как код с длиной=4, ортогональный коду с длиной=2, аддитивно налагается и используется для переноса третьего символа 16QAM S1 в течение такого же периода четырех элементарных сигналов. Созвездие символов 16QAM имеет обычный вид, изображенный на фиг.2. Каждый символ 16QAM S1, S2 и S3 переносит 4 бита, поэтому с тремя символами S1, S2 и S3 переносятся 12 битов в интервале времени четырех элементарных сигналов, представляющем 22=4096 возможностей. Соответственно, декодирование в базовой станции 104 может включать в себя тестирование всех 4096 возможностей (способ решения "в лоб") или может использоваться способ уменьшенной сложности, раскрытый в совместной заявке на патент США № 12/035970, поданной 22 февраля 2008 г. и озаглавленной "Efficient Multicode Detection", содержимое которой заключено в этот документ по ссылке.
Связь с использованием символов 16QAM содержит передачу двух битов на каждой из компонентов I и Q сигнала, причем эти биты равномерно расположены вокруг нуля по каждому из двух измерений комплексной плоскости сигналов. Соответственно, I-компонента может принимать значения +1,5, +0,5, -0,5 и -1,5, в то время как Q-компонента независимо принимает аналогичные значения. На фиг.2 изображены 16 возможных точек сигнала, которые расположены на плоскости I, Q на пересечениях равномерной прямоугольной решетки. Отношение пиковой к среднеквадратической амплитуде одного символа 16QAM может вычисляться посредством определения пиковой амплитуды и среднеквадратического значения. Пиковая амплитуда имеет место, когда и I и Q одновременно принимают свои максимальные значения амплитуды +/-1,5, что дает чистую длину вектора 1,5√2, при этом среднеквадратическое значение вычисляется с усреднением квадрата амплитуды по всем 16 точкам, причем существуют 4 угловые точки, каждая со значением квадрата амплитуды (1,5√2)2=4,5, 8 точек на сторонах, каждая с квадратом амплитуды (1,52+0,52)=2,5, и четыре точки в середине с квадратом амплитуды (0,5√2)2=0,5. Среднее значение этих точек равно (4×4,5+8×2,5+4×0,5)/16=2,5. Соответственно, среднеквадратическое значение равно √2,5 или 1,58. Отношение пиковой к среднеквадратической амплитуде амплитуды равно, соответственно, 1,5√2/√2,5, что в децибелах составляет 2,55 дБ.
Для модуляции по фиг.1, видно, что два значения I и два значения Q накладываются друг на друга в каждом периоде элементарного сигнала. I-значение кода с длиной=4 может быть одним из четырех значений 1,5, 0,5, -1,5, -0,5, но I-значения кода с длиной=2 в √2 раз больше. Q-значения масштабируются аналогично. Соответственно, применение такой же процедуры, как вышеуказанная, для вычисления отношения пиковой к среднеквадратической амплитуде дает решение 5,44 дБ для этого типа многокодовой модуляции, как упоминалось в разделе уровень техники. Если, с другой стороны, используются три кода с длиной=4 традиционной конфигурации 4+4+4, изображенной на фиг.3, то I-значениями для каждого являются любое из значений 1,5, 0,5, -0,5 или 1,5, которые дают пиковое I-значение 4,5 и аналогичное пиковое Q-значение, или пиковую амплитуду комбинированных I и Q 4,5√2. Среднеквадратическое значение, однако, в √3 раз больше среднеквадратического значения одной передачи 16QAM, которое, как было вычислено выше, равно √2,5. Соответственно, отношение пиковой к среднеквадратической амплитуде наложенных трех кодов с длиной=4 равно, соответственно, 4,5√2/(√3×√2,5)=2,32 или 7,32 дБ, как также упоминалось в разделе уровень техники. Следовательно, когда пиковая амплитуда является ограниченной, конфигурация 4+(2,2) по фиг.1 является предпочтительной по сравнению с конфигурацией кода 4+4+4 по фиг.3.
Передатчик 108 мобильного телефона также имеет усилитель 106 мощности, который генерирует среднюю выходную мощность без искажения, которая наряду с другими факторами зависит от отношения пиковой к среднеквадратической амплитуде сигнала. Для усилителя 106 мощности класса B, максимальная эффективность без искажения имеет место, когда он генерирует максимальную мощность, причем максимальная эффективность определяется следующим образом:
η max = П и к о в а я в ы х о д н а я м о щ н о с т ь М а к с и м а л ь н а я п о т р е б л я е м а я м о щ н о с т ь D C ( 1 a )
и при нормализации к единичному сопротивлению нагрузки максимальная эффективность может быть задано следующим образом:
η max = ( П и к о в а я а м п л и т у д а ) 2 М а к с и м а л ь н а я п о т р е б л я е м а я м о щ н о с т ь D C ( 1 b )
С другой стороны, средняя эффективность с сигналом с переменной амплитудой задано следующим образом:
η = С р е д н я я в ы х о д н а я м о щ н о с т ь С р е д н я я п о т р е б л я е м а я м о щ н о с т ь D С ( 2 а )
= ( с р е д н е к в а д р а т и ч е с к а я а м п л и т у д а ) 2 С р е д н я я п о т р е б л я е м а я м о щ н о с т ь D С ( 2 b )
= ( П и к о в а я а м п л и т у д а / о т н о ш е н и е п и к о в о й к с р е д н е к в а д р а т и ч е с к о й а м п л и т у д е ) 2 С р е д н я я п о т р е б л я е м а я м о щ н о с т ь D C ( 2 c )
Кроме того, потребляемая мощность усилителя 106 мощности класса B с нулевым смещением в состоянии покоя оказывается пропорциональной амплитуде выходного сигнала. Следовательно, средняя потребляемая мощность DC равна пиковой потребляемой мощности, умноженной на отношение средней амплитуды к пиковой амплитуде, что с нормализацией к единичному сопротивлению нагрузки дает следующее:
С р е д н я я п о т р е б л я е м а я м о щ н о с т ь D C = с р е д н я я а м п л и т у д а × ( п и к о в а я а м п л и т у д а ) 2 п и к о в а я а м п л и т у д а ( 3 а )
= п и к о в а я а м п л и т у д а × с р е д н я я а м п л и т у д а ( 3 b )
В результате комбинирования уравнений 1b, 2c и 3b получаем следующее:
η = η max / ( о т н о ш е н и е п и к о в о г о к r m s × о т н о ш е н и е с р е д н е г о к r m s ) ( 4 )
В то время как η max является величиной, зависящей от реализации усилителя мощности, значение (отношение пиковой к среднеквадратической амплитуде) * (отношение средней к среднеквадратической амплитуде) является характеристикой модуляции. Для максимальной эффективности усилителя мощности, следовательно, требуется минимизировать последнюю величину. Другой рабочей характеристикой модуляции является легкость или трудность, с которой базовая станция 104 может перепутать два разных символа. Эта рабочая характеристика модуляции определяется минимальным расстоянием dmin, которое является евклидовым расстоянием в пространстве сигналов, между двумя символами, которые расположены ближе всего друг к другу. В общем, если символы одной пары лежат ближе друг к другу в пространстве сигналов, чем любой другой пары, то их пытаются отделить для получения более эквидистантного разбиения с большим dmin. Для сравнения различных модуляций в этом отношении, dmin должно быть нормализовано к такому же среднеквадратическому значению сигнала, то есть к такой же средней передаваемой мощности. Соответственно, величина dmin/(среднеквадратическая амплитуда) является показателем эффективности связи, в то время как η является показателем эффективности усилителя 106 мощности передатчика. При максимизации последней желательно, чтобы первая предпочтительно сохранялась и существенно не ухудшалась. Это выполняется посредством настоящего изобретения.
Снова обратимся к тройной модуляции 16QAM HSPA, изображенной на фиг.1, одним способом получения небольшого (0,5 дБ) уменьшения отношения пиковой к среднеквадратической амплитуде без изменения эффективности связи является поворот созвездия 16QAM на коде с длиной=4 на 45 градусов относительно созвездия на коде с длиной=2, как изображено на фиг.4. Эта конкретная схема поворота была раскрыта в вышеупомянутой заявке на патент США № 12/166883, которая озаглавлена "Reduced Peak-to-RMS Ratio Multicode Signal" (номер поверенного в книге записей P25701). В вышеупомянутой заявке на патент США № 12/166883 (номер поверенного в книге записей P25701), также было показано, что улучшения в отношении пиковой к среднеквадратической амплитуде различных схем/способов модуляции, определенные до спектрально ограничивающей фильтрации, как правило, давали такое же улучшение после фильтрации, несмотря на то, что спектральное ограничение увеличивало отношение пиковой к среднеквадратической амплитуде для всех тестируемых модуляций. Принимая это во внимание, настоящее изобретение ориентировано на способ для достижения уменьшения отношений пиковой к среднеквадратической амплитуде, которое о