Способы стимуляции биогенного продуцирования метана в углеводородсодержащих пластах
Иллюстрации
Показать всеИзобретение относится к области биотехнологии и может быть использовано для повышения биогенного продуцирования метана. Способ включает: (a) получение последовательности нуклеиновой кислоты от одного или более микроорганизмов, выделенных из среды углеводородсодержащего пласта; (b) определение присутствия одного или более генных продуктов указанной последовательности нуклеиновой кислоты, где указанный генный продукт представляет собой фермент на пути метаболизма, вовлеченного в преобразование углеводорода в метан, выбранный из группы, состоящей из пероксидаз, фенолоксидаз, алкогольоксидаз, лакказ, гидролаз, гликозилгидролаз, эстераз, этераз, оксидаз, нитрогеназ, целлюлаз, амилаз, глюканаз, пуллуланаз, редуктаз, дисмутаз, оксигеназ, монооксигеназ, диоксигеназ, каталаз, гидрогеназ, карбоксилаз и метилредуктаз; или фермент, вовлеченный в гомоацетогенез, метаногенез, ацетокластический метаногенез или CO2-восстановительный метаногенез; и (c) идентификацию субстрата, реактанта или кофактора указанного фермента, который повышает продуцирование метана, будучи доступным одному или более микроорганизмам в указанном углеводородсодержащем пласте, и (d) идентификация тем самым стимулятора, который повышает биогенное продуцирование метана в углеводородсодержащем пласте по сравнению с продуцированием метана в углеводородсодержащем пласте в отсутствие стимулятора. Изобретение позволяет эффективно стимулировать биогенное продуцирование метана в углеводородсодержащих пластах. 4 н. и 11 з.п. ф-лы, 16 ил., 3 табл., 3 пр.
Реферат
Перекрестная ссылка на родственную заявку
По настоящей заявке испрашивается приоритет согласно предварительной заявке США № 61/052624, поданной 12 мая 2008 года, которая включена в настоящее описание посредством ссылки во всей своей полноте.
Уровень техники
Настоящее изобретение в основном относится к молекулярной характеристике автохтонных метан-продуцирующих микроорганизмов и их определенных сообществ из углеводородсодержащих пластов, таких как угольные пласты; и более конкретно, к анализам геномных данных окружающей среды из таких микроорганизмов и применению таких данных и микроорганизмов для увеличения степени конверсии и извлечения метана с использованием стимуляторов, идентифицированных путем определения присутствия ферментов в метаболических путях, участвующих в конверсии углеводорода в метан.
Метан угольных пластов (CBM) является источником природного газа, образующегося либо биологически, либо термогенно в угольных месторождениях. Биогенное продуцирование CBM является результатом микробного метаболизма и разложения угля с последующим обменом электронами между многочисленными микробными популяциями. Термогенное продуцирование CBM является результатом термического крекинга осадочного органического вещества или нефти, происходящего позже при углефикации, когда температуры поднимаются выше уровней, при которых могут существовать метан-продуцирующие микроорганизмы. В угольных пластах давление вышележащих горных пород и окружающей воды вынуждает CBM связываться с поверхностью угля и абсорбироваться в твердую матрицу угля в виде свободного газа в микропорах и зонах кливажа (расщепление угольной породы сетью трещин на тонкие пластины и т.д.), в виде растворенного в воде газа, в виде адсорбированного газа, удерживаемого силами молекулярного притяжения на поверхности мацералов (органических составляющих, которые образуют угольную массу), микропор и зон кливажа в угле, и в виде газа, абсорбированного внутри молекулярной структуры угля.
Уголь представляет собой осадочную породу c различными степенями проницаемости, причем метан находится преимущественно в зонах кливажа. Эти трещины в угле действуют в качестве основных каналов, обеспечивающих возможность течения CBM. Для извлечения CBM в угольном пласте бурят скважину со стальной обсадной колонной, которая дает возможность снизить давление благодаря выходу скважины на поверхность или откачивать небольшое количество воды из угольного пласта (обезвоживание). CBM имеет очень низкую растворимость в воде и легко выделяется при снижении давления, что дает возможность откачивать его из скважины отдельно от воды. Затем CBM поступает в компрессорную станцию и в трубопроводы для природного газа.
CBM составляет значительную часть природного газа, добываемого в США, обеспечивая, по оценкам, приблизительно 10% поставок природного газа, или примерно 1,8 триллиона кубических футов (TCF) (50 миллиардов кубических метров). Международные ресурсы обеспечивают огромные возможности добычи CBM в будущем. К наиболее продуктивным областям относится бассейн Сан-Хуан (San Juan), расположенный в Колорадо и Нью-Мексико. При наличии таких огромных месторождений CBM минимальные улучшения степени извлечения CBM могут, таким образом, привести к значительному увеличению добычи из скважины, и в соответствии с этим разрабатываются различные способы для улучшения степени извлечения CBM из угольных пластов.
Чисто физические воздействия могут включать оптимизацию способов бурения и разрыва пласта. Другие способы усовершенствования включают воздействие внешних факторов непосредственно на угольные пласты. Они включают, например, нагнетание газов, таких как азот (см., например, Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako M. и Ishijima, Y. 2007. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology, 5(4): 423-433; патент США 4883122) и CO2 (см., например, патент США 5402847); и закачивание горячих текучих сред, таких как вода или пар (см., например, патент США 5072990). Различные способы предназначены для увеличения проницаемости угольных пластов либо физическими (см., например, патент США 5014788), либо химическими (см., например, патент США 5865248) методами.
Впоследствии разрабатывались усовершенствованные способы стимуляции биогенного продуцирования метана в существующих скважинах. В патенте США 5424195 раскрыто использование консорции микроорганизмов, культивируемых in situ или на содержащем уголь субстрате, для биологического превращения угля в метан. В PCT/GB2006/004443 (WO2007/060473) представлены способы получения и применения культуры подземных микроорганизмов. В PCT/US2006/039352 (WO2008/041990) раскрыты способы и системы для стимуляции биогенного продуцирования путем нагнетания закачиваемой текучей среды, которая способствует анаэробному биологическому разложению нежидких углеводородов в пласте автохтонными микроорганизмами. В PCT/US2007/080161 (WO2008/042888) раскрыты способы, включающие нагревание in situ пласта с нежидкими углеводородами для обеспечения биогенного продуцирования метана. В патенте США 7426960 раскрыты способы стимуляции биогенного продуцирования метаболита с повышенным содержанием водорода, включающие закачивание воды в выработку для распределения в ней консорции микроорганизмов. В патенте США 6543535 раскрыты способы стимуляции активности микробных сообществ в углеводородсодержащем подземном пласте для превращения углеводородов в метан с использованием информации, полученной в результате анализа компонентов пласта и характеризации микроорганизмов в консорциях. Хотя в патенте США 6543535 предусмотрено сравнение выделенных микроорганизмов с известными микроорганизмами, для установления филогенетической идентичности таким известным организмам, в нем не раскрыта идентификация или использование специфических генов, кодирующих ферменты, которые участвуют в биотрансформации угля в метан, из метанобразующих бактерий в пределах сообществ, или использование анализа активности ферментов для выявления новых стимуляторов. В публикации патентной заявки США № 2008/0289816 раскрыты способы введения микроорганизмов в углеродсодержащий материал в анаэробной среде и увеличения биогенного продуцирования углеводородов, включающие использование модифицированных пластовых вод. В публикации патентной заявки США № 2008/0299635 раскрыты способы стимуляции продуцирования метана из углеродного материала с метаногенной консорцией. В публикации патентной заявки США № 2009/0023612 раскрыты способы увеличения биогенного продуцирования горючего газа из углеродного материала, предусматривающие использование анаэробного сообщества, включающего виды Pseudomonas. В публикации патентной заявки США № 2009/0023611 раскрыты изолированные микробные сообщества для биогенного продуцирования метана из сложных углеводородов, включающие виды Thermotoga. В публикации патентной заявки США № 2008/0286855 раскрыт способ увеличения продуцирования материалов с повышенным содержанием водорода, включающий введение сообщества, содержащего выделенную культуру Thermacetogenium phaeum. В патенте США № 7416879 раскрыты способы стимуляции биологической активности Thermacetogenium phaeum в геологическом пласте, включающие введение в пласт модификатора. В публикации патентной заявки США № 2008/0182318 раскрыты выделенные микробные сообщества для биогенного продуцирования метана, содержащие виды Desulfuromonas. В публикации патентной заявки США № 2007/0295505 раскрыты способы стимуляции биогенного продуцирования продукта метаболизма с повышенным содержанием водорода в геологическом пласте, который включает углеродный материал, включающие обеспечение фосфорного соединения для присутствующих в них микроорганизмов. В публикации патентной заявки США № 2007/0261843 раскрыты способы стимуляции биогенного продуцирования продукта метаболизма с повышенным содержанием водорода в геологическом пласте, который включает углеродный материал, включающие обеспечение доступности соединений водорода и фосфора для присутствующих в них микроорганизмов. В PCT/US2006/031723 (WO2007/022122) раскрыты системы для усиления биогенного продуцирования метана, включающие модифицирующую CBM воду и другие содержащие микроорганизмы среды, уменьшающие конкуренцию за восстановление сульфатов и увеличивающие концентрацию органических веществ.
Биогенное продуцирование метана является результатом многочисленных возможных ферментативных путей метаболизма, которые последовательно разрушают комплексные макромолекулярные полициклические органические вещества, образующиеся из лигнина. Например, лигнинолитические ферменты могут включать пероксидазы (марганецпероксидаза, лигнинпероксидазы и т.д.), фенолоксидазы (лакказы), гидролазы, эстеразы и оксидазы (см., например, Fakoussa, R.M. и Hofrichter, M. 1999. Biotechnology and Microbiology of Coal Degradation. Appl. Microbiol. Biotechnol. 52:25-40). Когда происходит первичная фрагментация, в реакцию начинают вступать ферменты, участвующие в деметилировании и раскрытии кольца, окислении ароматических и алифатических фрагментов и последующих метаболических путях ферментации и метаногенеза. Считается, что микроорганизмы, обитающие в углеводородсодержащих пластах, включая метан-продуцирующие бактерии, являются облигатными анаэробами.
В данной области остается потребность в эффективной стимуляции биогенного продуцирования в углеводородсодержащих пластах, таких как угольные, и в повышении производительности по CBM существующих скважин. Настоящее изобретение предлагает способы не только для идентификации и применения микроорганизмов, обитающих в окружающей среде пласта, но и для идентификации точно приспособленных воздействий (таких как стимуляторы, которые могут быть введены в окружающую среду для усиления биогенного продуцирования метана) после установления присутствия специфических генных продуктов, принимающих участие в путях метаболизма, приводящих к образованию метана.
Сущность изобретения
Настоящее изобретение предоставляет методы и способы идентификации и применения стимуляторов и ферментов для биогенного продуцирования метана в углеводородсодержащих пластах. Способы по настоящему изобретению включают использование информации о нуклеиновых кислотах, полученной от многочисленных микроорганизмов, идентифицированных в углеводородсодержащем пласте, для идентификации генных продуктов, которые представляют собой ферменты, присутствующие в микроорганизмах, которые могут функционировать в различных путях метаболизма, начиная от источника углеводорода и приводя к образованию метана. См., например, фиг.1.
В первом аспекте изобретение предоставляет способы идентификации стимулятора, который увеличивает биогенное продуцирование метана в углеводородсодержащем пласте, включающие: (а) получение последовательности нуклеиновой кислоты из одного или нескольких микроорганизмов, выделенных из среды углеводородсодержащего пласта; (b) определение присутствия одного или нескольких генных продуктов указанной последовательности нуклеиновой кислоты, где генный продукт является ферментом метаболического пути, вовлеченного в конверсию углеводорода в метан; и (с) идентификацию субстрата, реактанта или кофактора указанного фермента, который увеличивает продуцирование метана, будучи доступным для одного или нескольких микроорганизмов в указанном углеводородсодержащем пласте.
В одном варианте осуществления один или несколько микроорганизмов из углеводородсодержащего пласта улучшают путем отбора по способности к росту на угле в качестве единственном источнике углерода.
В еще одном варианте осуществления указанная выше стадия (с) включает тестирование in vitro одного или нескольких субстратов, реактантов или кофакторов при более чем одной концентрации для мониторинга и оптимизации продуцирования метана в системе культур, включающей по меньшей мере один микроорганизм, выделенный из указанного углеводородсодержащего пласта, где дополнительно для указанной системы культур уголь является единственным источником углерода.
В одном предпочтительном варианте осуществления по меньшей мере один микроорганизм представляет собой бактериальный вид или архебактериальный вид, способный преобразовывать углеводород в продукт, выбранный из группы, состоящей из водорода, диоксида углерода, ацетата, формиата, метанола, метиламина и метаногенного субстрата; вид разлагающих углеводороды бактерий, вид метаногенных бактерий или метаногенный архебактериальный вид. В еще одном предпочтительном варианте осуществления такой микроорганизм представляет собой вид бактерий, выбранных из группы родов, состоящей из Pseudomonas, Arcobacter, Desulfuromonas, Pelobacter, Desulfovibrio, Spirochaeta, Erysipelothrix, Thauera, Clostridium, Acholeplasma, Magnetospirillum и Sulfurospirillum; или вид архебактерий, выбранных из группы, состоящей из Methanolobus, Methanocalculus и членов типа Crenarcheaota.
В альтернативном варианте осуществления стадию (с) выполняют с использованием определенного микробного сообщества, которое объединяет культуру единичного штамма микроорганизма из углеводородсодержащего пласта по меньшей мере с одной другой определенной культурой еще одного единичного штамма микроорганизма так, что члены указанного определенного микробного сообщества проявляют синергическое действие в продуцировании метана; и, дополнительно, где для указанной системы культур уголь является единственным источником углерода. Предпочтительное определенное микробное сообщество включает по меньшей мере два вида микроорганизмов, выбранных из группы родов, состоящей из Pseudomonas, Arcobacter, Desulfuromonas, Pelobacter, Desulfovibrio, Spirochaeta, Erysipelothrix, Thauera, Clostridium, Acholeplasma, Magnetospirillum, Sulfurospirillum; Methanolobus, Methanocalculus и членов типа Crenarcheaota.
В различных вариантах осуществления углеводородсодержащий пласт выбирают из группы, состоящей из угля, торфа, бурого угля, битуминозного сланца, нефтеносного пласта, традиционных тяжелых нефтяных остатков, вязкой нефти, нефтеносных песков и битуминозных песков. В предпочтительном варианте осуществления пласт представляет собой уголь в угольном пласте или угольной залежи.
В различных вариантах осуществления фермент, вовлеченный в конверсию углеводорода в метан, выбирают из группы, состоящей из пероксидаз, фенолоксидаз, алкогольоксидаз, лакказ, гидролаз, гликозилгидролаз, эстераз, этераз, оксидаз, нитрогеназ, целлюлаз, амилаз, глюканаз, пулланаз, редуктаз, дисмутаз, оксигеназ, монооксигеназ, диоксигеназ, каталаз, гидрогеназ и карбоксилаз. В предпочтительном варианте осуществления фермент выбирают из группы, состоящей из оксигеназ, монооксигеназ и диоксигеназ.
В различных вариантах осуществления субстрат, реактант или кофактор выбирают из группы, состоящей из серосодержащего соединения, азотсодержащего соединения, фосфорсодержащего соединения, микроэлемента, электроноакцептора, электронодонора, галогена, металла, спирта, органической кислоты, алкана, алкена, алкина, ароматического соединения, амина, простого эфира, альдегида, кетона, тиола, ацетата, ароматического углеводорода и газа. В предпочтительном варианте осуществления реактантом является кислород.
Во втором аспекте изобретение предоставляет способы увеличения биогенного продуцирования метана в углеводородсодержащем пласте, где указанный способ включает введение в углеводородсодержащий пласт стимулятора, идентифицированного любым из описанных выше способов согласно первому аспекту.
В одном варианте осуществления способ предусматривает введение кислорода в указанный углеводородсодержащий пласт. В предпочтительном варианте осуществления углеводородсодержащий пласт представляет собой уголь.
В третьем аспекте изобретение предоставляет способы увеличения биогенного продуцирования метана в углеводородсодержащем пласте, где указанный способ включает модуляцию фермента, выбранного из группы, состоящей из пероксидаз, фенолоксидаз, алкогольоксидаз, лакказ, гидролаз, гликозилгидролаз, эстераз, этераз, оксидаз, нитрогеназ, целлюлаз, амилаз, глюканаз, пулланаз, редуктаз, дисмутаз, оксигеназ, монооксигеназ, диоксигеназ, каталаз, гидрогеназ и карбоксилаз.
В альтернативных вариантах осуществления фермент присутствует в существующем в углеводородсодержащем пласте микроорганизме, или его вводят в углеводородсодержащий пласт. В последнем варианте осуществления фермент вводят в указанный углеводородсодержащий пласт внесением микроорганизма, экспрессирующего указанный фермент. В одном варианте осуществления вводимый микроорганизм, экспрессирующий указанный фермент, представляет собой рекомбинантный микроорганизм, полученный путем модифицирования микроорганизма, выделенного из указанного углеводородсодержащего пласта. В еще одном варианте осуществления микроорганизм, экспрессирующий указанный фермент, представляет собой искусственный микроорганизм.
В четвертом аспекте изобретение предоставляет способы идентификации определенного микробного сообщества для конверсии угля в метан, включающий: (а) получение последовательности нуклеиновой кислоты из одного или нескольких микроорганизмов, выделенных из среды угля; (b) определение присутствия одного или нескольких генных продуктов указанной последовательности нуклеиновой кислоты, где указанный генный продукт является ферментом метаболического пути, вовлеченного в конверсию угля в метан; (с) получение культуры единичного штамма указанного одного или нескольких микроорганизмов из указанной среды угля, где единичный штамм микроорганизма содержит указанные один или несколько генных продуктов; и (d) объединение указанного культивированного единичного штамма микроорганизма по меньшей мере с одной другой определенной культурой еще одного единичного штамма микроорганизма, для создания определенного микробного сообщества; где члены указанного определенного микробного сообщества проявляют синергическое действие в продуцировании метана.
В одном варианте осуществления создают определенное микробное сообщество для конверсии угля в метан, идентифицированное описанными выше способами согласно изобретению.
В еще одном варианте осуществления способ дополнительно включает (е) обеспечение указанному определенному микробному сообществу, которое увеличивает продуцирование метана, доступа к субстрату, реактанту или кофактору.
В предпочтительных вариантах осуществления определенное микробное сообщество включает по меньшей мере два вида микроорганизмов, выбранных из группы родов, состоящей из Pseudomonas, Arcobacter, Desulfuromonas, Pelobacter, Desulfovibrio, Spirochaeta, Erysipelothrix, Thauera, Clostridium, Acholeplasma, Magnetospirillum, Sulfurospirillum; Methanolobus, Methanocalculus и членов типа Crenarcheaota.
В пятом аспекте изобретение предоставляет способы увеличения биогенного продуцирования метана из угля путем введения в угольный пласт определенного микробного сообщества, идентифицированного описанными в данном описании способами согласно изобретению.
В предпочтительном варианте осуществления такие способы включают введение определенного микробного сообщества, идентифицированного, как указано выше, в угольный пласт вместе с указанным субстратом, реактантом или кофактором.
Краткое описание чертежей
Фиг.1 иллюстрирует многообразие потенциальных ферментативных путей метаболизма при конверсии угля в метан.
Фиг.2A и 2B иллюстрируют бактериальный и архебактериальный таксономический состав репрезентативной метан-продуцирующей обогащенной культуры после 10 и 30 дней культивирования.
Фиг.3 иллюстрирует бактериальное разнообразие в конкретном образце пластовых вод по данным анализа генных последовательностей из метагенома с использованием белка RecA.
Фиг.4 иллюстрирует и приводит сравнение профиля оксигеназ в конкретных образцах пластовых вод, метан-продуцирующей обогащенной культуры и двух индивидуальных штаммах, для которых было проведено секвенирование геномов.
Фиг.5 иллюстрирует и приводит сравнение профиля оксигеназ в конкретном продуктивном пласте и образцах метан-продуцирующей обогащенной культуры.
Фиг.6 иллюстрирует и приводит сравнение профиля ответов ферментов на окислительный стресс в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.7 иллюстрирует и приводит сравнение профиля ферментов метаногенеза в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.8 иллюстрирует и приводит сравнение профиля эстераз в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.9 иллюстрирует и приводит сравнение профиля сахаролитических ферментов в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.10 иллюстрирует и приводит сравнение профиля гидрогеназ в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.11 иллюстрирует и приводит сравнение профиля азотфиксирующих белков в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.12 иллюстрирует и приводит сравнение профиля денитрифицирующих белков в конкретном продуктивном пласте, метан-продуцирующей обогащенной культуре и образцах из скважины.
Фиг.13 иллюстрирует увеличение продуцирования метана определенным микробным сообществом после стимуляции различными электроноакцепторами и кислородом.
Фиг.14 иллюстрирует увеличение продуцирования метана определенным микробным сообществом после стимуляции водородом и ацетатом.
Фиг.15 иллюстрирует увеличение продуцирования метана определенным микробным сообществом после стимуляции глицерином или триметиламином.
Фиг.16 иллюстрирует способ введения внешнего фактора, такого как фермент или стимулятор, в угольный пласт путем повторного закачивания пластовых вод для увеличения продуцирования метана.
Подробное описание изобретения
Настоящее изобретение предоставляет новые методы и способы стимуляции биогенного продуцирования метана в углеводородсодержащем пласте, таком как угольные пласты и скважины для добычи метана из угольных пластов, с использованием культивированных микроорганизмов, выделенных из пласта. Геномную информацию, полученную для резидентных микробных популяций, обитающих в углеводородсодержащем пласте, используют для идентификации и стимуляции ферментов, вовлеченных в различные пути метаболизма, реализуемые при конверсии углеводорода в метан, которые присутствуют в одном или нескольких микроорганизмах в пласте или вводятся в пласт, предпочтительно, вместе с идентифицированным стимулятором.
Способы согласно настоящему изобретению предоставляют постадийный подход к идентификации стимуляторов и/или определенных микробных сообществ (DMA), пригодных для увеличения биогенного продуцирования метана. Приведенные в настоящем описании примеры демонстрируют поэтапный подход в успешной идентификации стимуляторов для увеличения продуцирования метана. Коротко, в приведенных в настоящем описании примерах образцы пластовых вод отбирали из скважины для добычи метана из угольных пластов в газоносном бассейне Сан-Хуан (San Juan), где ранее проведенные исследования указали на возраст 70 миллионов лет в условиях изоляции от поверхности и отсутствия свидетельств событий подповерхностного перемешивания. Вода может быть отобрана из устья скважины, разделительного резервуара (барабанный сепаратор) или резервуара-хранилища, поскольку эти образцы воды являются наиболее легкодоступными материалами. Образцы воды, содержащие живые микроорганизмы, затем визуально исследовали с помощью световой микроскопии, и микроорганизмы культивировали с использованием пластовых вод в качестве минеральной основы. Культуры микроорганизмов обогащали (накапливали) в отношении содержания метан-продуцирующих микробов, используя уголь в качестве единственного источника углерода. В качестве стимуляторов микробного дыхания испытывали различные комбинации электроноакцепторов, таких как нитрат, сульфат или фосфат железа. Обогащенные микробные культуры затем подвергали скринингу на продуцирование метана с использованием газовой хроматографии. Состав культивированного сообщества микроорганизмов анализировали с использованием филогенетических маркеров для идентификации доминирующих групп микроорганизмов, и несколько видов микроорганизмов независимо культивировали в чистые культуры (деконволюция) для изучения их ферментных профилей, метаболизма и способности разлагать уголь. Сообщество может быть воспроизведено и составлено для оптимизированного продуцирования метана из угля (воссоздание), с образованием целенаправленно спроектированной сложной микробной экосистемы или определенного микробного сообщества (DMA).
Возможности способов согласно настоящему изобретению можно продемонстрировать путем идентификации кислорода в качестве стимулятора, увеличивающего биогенное продуцирование метана из угля. В результате идентификации присутствия большого числа оксигеназ, монооксигеназ и диоксигеназ при проведении геномных анализов образцов, кислород был идентифицирован как стимулятор. Идентификация этих ферментов была неожиданной из-за анаэробной среды, из которой были выделены микроорганизмы. Бактериальные диоксигеназы ароматических углеводородов представляют собой многокомпонентные ферментные системы, которые вводят дикислородный фрагмент в ароматическое ядро с образованием ареновых цис-диолов, в случае окисления бензола толуолдиоксигеназой до цис-1,2-дигидрокси-3,5-циклогексадиена (цис-диол из бензола) (Gibson, D.T., Cardini, G.E., Maseles, F.C., Kallio, R.E. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry. 1970. 9: 1631-1635). Другие типы оксигеназ, выявленных в геномном анализе, в обогащенной метан-продуцирующей культуре и в изолированном штамме Pseudomonas, связаны с пирокатехин-2,3-диоксигеназой. Пирокатехиндиоксигеназы представляют собой металлопротеиновые ферменты, которые осуществляют окислительное расщепление пирокатехинов. Этот класс ферментов присоединяет молекулярный кислород к субстрату. Пирокатехиндиоксигеназы принадлежат к классу оксидоредуктаз и обладают несколькими различными характеристиками субстратной специфичности, включая пирокатехин-1,2-диоксигеназу (EC 1.13.11.1), пирокатехин-2,3-диоксигеназу (EC 1.13.11.2) и протокатехат-3,4-диоксигеназу (EC 1.13.11.3). Активный центр пирокатехиндиоксигеназ наиболее часто содержит железо, но известны также марганецсодержащие формы. В реакциях, катализируемых оксигеназами, выделяется энергия, которая может быть использована для роста микроорганизмов, и в результате такого роста будут продуцироваться другие метаболиты, которые могут быть ассимилированы другими видами.
Кислород может быть релевантным газом в подземных горизонтах, поскольку было описано, что аэробные штаммы процветают в предполагаемо анаэробных средах, таких как залежи нефти (Nazina et al. The phylogenetic diversity of aerobic organotrophic bacteria from the Dagang high temperature oil field. 2007. Microbiology, 74: 343-351)). Однако в этих способах не описан механизм или принцип действия, и возможности регулировать или контролировать лежащие в их основе биологические процессы и сообщества микроорганизмов, реагирующие на такие стимулы, без такого знания ограничены.
Источники микроорганизмов и их характеристика
Как используется в данном описании, термин «углеводородсодержащий пласт» относится к любому источнику углеводородов, из которого может быть получен метан, включающему, но не ограничивающемуся ими, уголь, торф, бурый уголь, битуминозный сланец, нефтеносный пласт, традиционные тяжелые нефтяные остатки, вязкую нефть, нефтеносные пески и битуминозные пески. В обсуждаемых в данном описании различных вариантах осуществления углеводородсодержащий пласт или даже среда, окружающая углеводородсодержащий пласт, могут включать, но, не ограничиваясь ими, битуминозный сланец, уголь, угольный пласт, угольные отвалы, побочные продукты перегонки угля, бурый уголь, торф, нефтеносные пласты, битуминозные пески, загрязненную углеводородами почву, нефтяной шлам, буровой шлам и подобные, и могут также включать такие условия состояния или даже окружения в дополнение к битуминозному сланцу, углю, угольному пласту, угольным отвалам, побочным продуктам перегонки угля, бурому углю, торфу, нефтеносным пластам, битуминозным пескам, загрязненной углеводородами почве, нефтяному шламу, буровому шламу и подобным. В некоторых вариантах осуществления настоящее изобретение может предусматривать in situ (здесь: в природных условиях) углеводородсодержащий пласт, иногда называемый in situ средой, окружающей углеводородсодержащий пласт, или in situ средой продуцирования метана. Варианты осуществления могут включать ex situ (здесь: в искусственных условиях) углеводородсодержащий пласт, иногда называемый ex situ средой, окружающей углеводородсодержащий пласт, или ex situ средой продуцирования метана. Понятие “in situ” может иметь отношение к пласту или окружающей среде, в которых углеводородсодержащие источники могут находиться в их исходных местоположениях, например, in situ окружающие среды могут включать подземное месторождение. Понятие “ex situ” может относиться к пластам или условиям окружающей среды, в которых углеводородсодержащий пласт был извлечен из его исходного местоположения и необязательно может также находиться в биореакторе, ex situ реакторе, шахте, наземных конструкциях и подобных ситуациях. В качестве неограничивающего примера, биореактор может иметь отношение к любому устройству или системе, поддерживающим биологически активную среду.
При использовании угля в качестве примера углеводородсодержащего пласта, существуют многочисленные источники автохтонных микроорганизмов, которые могут играть определенную роль в конверсии углеводорода в метан, и которые могут быть проанализированы. Уголь представляет собой сложное органическое вещество, состоящее из нескольких групп мацералов, или основных типов органического вещества, которые накапливаются в различных типах условий осадконакопления, таких как торфяные болота или травяные болота. Состав мацерала и, тем самым, состав угля, изменяется в горизонтальном и вертикальном направлениях в пределах индивидуальных угольных пластов. После того, как микроорганизмы идентифицированы как содержащие фермент метаболического пути, участвующий в стадии конверсии, различные определенные микробные сообщества или стимуляторы, идентифицированные способами согласно настоящему изобретению, могут более эффективно воздействовать на конкретные группы мацералов, и поэтому каждый угольный пласт может быть уникальным в том отношении, какие типы микроорганизмов и стимуляторов являются наиболее эффективными для in situ биоконверсии угля.
Существуют многочисленные распространенные в природе микроорганизмы, ассоциированные с углем и другими осадочными породами с высоким содержанием органических веществ в подземных условиях. Со временем такие виды микроорганизмов могут стать очень эффективными в метаболизме органического вещества в подземных условиях вследствие естественного отбора. Относительно быстрая адаптация бактерий к условиям местной окружающей среды позволяет предположить, что микроорганизмы, собранные из месторождений или индивидуальных угольных пластов, могут быть генетически уникальными. После сбора проб эти микроорганизмы могут быть выращены в лабораторных культурах, как описано в данном описании, для оценки и определения факторов, увеличивающих и/или ограничивающих конверсию угля в метан. В некоторых случаях, ключевое питательное вещество или микроэлемент могут отсутствовать, и прибавление этого лимитирующего фактора может значительно увеличить продуцирование метана. Когда бактерии лишены доступа к питательным веществам, происходят физиологические изменения, и если состояние голодания продолжается, то все метаболические системы перестают функционировать, и бактерии испытывают остановку метаболизма. Когда условия окружающей среды изменяются, бактерии могут восстанавливаться и снова образовывать жизнеспособную популяцию. Таким образом, возможно, что некоторые бактерии в осадочных породах с высоким содержанием органических веществ достигли состояния остановки метаболизма, и требуется только добавление питательных веществ для активации популяции согласно настоящему изобретению. Путем специального анализа ферментов, присутствующих в таких популяциях, можно определить способы стимуляции путей метаболизма, задействованных в конверсии угля в метан, осуществляемых одним или несколькими членами этих микробных популяций.
Анаэробные бактерии из подземных горизонтов могут быть собраны несколькими разными способами, включающими: (1) добывание или отбирание образцов пластовых вод, (2) бурового шлама, (3) образцов породы со стенок скважины, (4) образцов цельного керна, и (5) образцов спрессованного цельного керна. Образцы спрессованного керна могут обеспечивать наилучшую возможность отбора жизнеспособных микробных популяций, но авторы настоящего изобретения обнаружили, что отбор микробных популяций из пластовых вод обеспечивает получение репрезентативного образца присутствующих микробных популяций. Метан-продуцирующие бактерии являются облигатными анаэробами, но могут оставаться жизнеспособными в присутствии кислорода в течение до 24 часов путем образования многоклеточных скоплений. Кроме того, бескислородные/восстановительные условия микроокружения в кислородсодержащей системе потенциально могут увеличивать срок жизнеспособности анаэробных бактерий. В некоторых случаях, буровой шлам, собранный и помещенный в анаэробные герметизированные контейнеры, будет содержать микроорганизмы, способные конвертировать уголь в метан, в течение нескольких часов, приводя, таким образом, к ошибочным результатам определения содержания газов.
Авторы настоящего изобретения оптимизировали способы отбора проб в полевых условиях для обеспечения оптимального извлечения анаэробных популяций присутствующих в них микроорганизмов. Настоящее изобретение предусматривает отбор проб микробных популяций в анаэробных условиях способами, ранее описанными в заявке PCT № PCT/US2008/057919 (WO2008/116187), и культивирование автохтонных микроорганизмов, обитающих в среде углеводородсодержащего пласта, такой как пластовые воды или скважины для добычи метана угольных пластов.
Предложенные настоящим изобретением способы также обеспечивают возможность генетических изменений микроорганизмов. Благодаря идентификации ферментативных функций в резидентных микроорганизмах и стимуляторах, которые могут быть использованы для увеличения продуцирования метана, авторы настоящего изобретения могут использовать эту информацию для генетического инжиниринга микроорганизмов для сообщения им способностей, которые могут быть связаны со стимулированием и увеличением продуцирования метана. Селекция микроорганизмов описанными в данном описании способами повышает способность эффективно метаболизировать уголь и другие субстраты с высоким содержанием органических веществ. После проведения ферментативных анализов таких обогащенных культур, можно оптимизировать целевые стимуляторы и/или генетически модифицированные бактерии. Различные возможности усиления продуцирования метана из скважин включают введение в пласт идентифицированных стимуляторов, идентифицированных микроорганизмов, определенных сообществ организмов, генетически модифицированных организмов или любых их комбинаций.
В соответствии со способами согласно настоящему изобретению, автохтонные микроорганизмы идентифицируют и затем стимулируют для превращения углеводородов в метан. Микроорганизмы, присутствующие в пласте в природных условиях, являются предпочтительными, поскольку известно, что они способны выживать и активно размножаться в условиях окружающей пласт среды, и должны обеспечивать ферментные компоненты различных путей метаболизма, начиная от гидролиза углеводородов и до метаногенеза. Однако настоящее изобретение не ограничено использованием автохтонных микроорганизмов. При анализе ферментных профилей автохтонных ми