Подошва для полуботинка, в частности для кроссовки

Иллюстрации

Показать все

Изобретение относится к подошве для обуви, в частности для кроссовки, которая содержит подложку из полиуретана, сформированную инжекционным формованием; продольно проходящий геленок и наружную подошву; причем упомянутый геленок проходит от части подошвы для переднего отдела стопы через область для свода стопы к пяточной области и содержит отверстие в его пяточной области для расположения в нем полиуретана, причем геленок (4) смещен таким образом, чтобы в пяточной области (25) он был расположен ближе к наружной подошве (3), чем в области для свода стопы, причем элемент (9) для обеспечения удобства, обладающий большей упругостью, чем полиуретан подложки, помещен в полость (17) поверх упомянутого отверстия (8) в геленке, и прикреплен к полиуретану подложки (1). Технический результат заключается в обеспечении амортизации ботинка и уменьшение его веса. 9 з.п. ф-лы, 18 ил.

Реферат

Изобретение относится к подошве для полуботинка, в частности, для кроссовки. Один тип кроссовок, соответствующих современному уровню техники в данной области, изготавливают, основываясь, в общем, на концепции защиты ступни потребителя. Более точно, кроссовку рассматривают, как укрывающее средство для ступни. Эта защитная концепция привела к появлению относительно тяжелых кроссовок, часто содержащих подошву или стельку, обладающую высокой степенью амортизации, для смягчения реакции сил, возникающих при столкновении пятки с землей и воздействующих на голеностопный сустав и на голень. Увеличенный вес обуви отбирает энергию у бегуна. Другой тип кроссовок является сверхлегким, и кроссовки часто весят меньше 300 г. Этот тип является минималистским, содержащим тонкую подошву и тонкий верх. При проектировании кроссовок в обувной промышленности в течение продолжительного периода времени принимали за идеальное движение естественное движение стопы, например, при беге босыми ногами по траве, где стопа, не ограниченная полуботинком, может осуществлять естественное движение. Однако если полуботинок надет на ногу, то естественное движение ноги ограничено. В качестве примера можно сказать, что угол поворота плюсневого межфалангового сустава значительно уменьшается при ношении обуви. Угол поворота плюсневого сустава - это угол между землей и плюсневыми фалангами. Если измерять этот угол в момент непосредственно перед отталкиванием от земли, при беге босяком, то он близок к 60°, а при так называемом техническом, или атлетическом, беге, когда используют спортивную обувь, он уменьшается до только 35°. Под помехами для естественного движения стопы, помимо прочего, понимают то, что мышцы голени и стопы, активно действующие во время бега босяком, также ограничены при беге в обуви. Этим мышцам не предоставляют возможность действовать в их полную силу, и, поэтому, если обувь сконструирована неправильно, она будет ограничивать способность бегуна двигаться эффективно. Его достижения снижаются в сравнении с бегом босяком. Некоторые из основных мышц, действующих при ходьбе и беге, являются мышцами для сгибания большого пальца стопы и мышцами для разгибания большого пальца стопы. Важное значение этих сильных мышц при сравнении бега босяком и бега в обуви, уже признано в патенте США № 5384973, включенного в настоящее описание путем ссылки. Более конкретно в патенте США № 5384973 описана подложка для кроссовки, подошва которой содержит множество гибких соединений или канавок, расположенных в продольном и поперечном направлениях. Ряд дискретных элементов подошвы соединен с подложкой. Такая конструкция позволяет носку стопы действовать независимо и повышать стабильность полуботинка. В частности, посредством гибких соединений создана изолированная область подошвы для большого пальца стопы, что позволяет сгибателю большого пальца стопы и разгибателю большого пальца стопы играть большую роль во время бега.

Как указано выше, хотя при использовании более тяжелых кроссовок обеспечивается амортизация, но они отбирают энергию у бегуна из-за амортизации и из-за того, что тяжелая кроссовка из-за ее массы и отдаленности точки приложения силы тяжести вызывает противодействующий крутящий момент, воздействующий на стопу, при изгибе спины во время бега. Бегун должен затрачивать энергию на преодоление этого противодействующего крутящего момента. С другой стороны, сверхлегкие кроссовки, соответствующие современному уровню техники в данной области, не обеспечивают большую конструкционную опору для стопы, и в них не учтены в достаточной мере биометрические аспекты.

Уменьшение веса полуботинка может быть осуществлено посредством минимизации размеров верха и конструктивных изменений подошвы. Что касается подошвы, то материал может быть удален или заменен материалами других типов. В производстве обуви много лет использовали полиуретан (ПУ), а в последние годы стал доступен его специальный вариант - легкий полиуретан (ЛПУ). Изготавливая подложку из ПУ, а особенно - из ЛПУ, снижают вес. Использование ПУ в качестве подложки, однако, не гарантирует большие удобства при беге. В подошве требуется устанавливать геленок для обеспечения стабильности в продольном и поперечном направлениях полуботинка, так как ПУ обладает высокой степенью упругости. Испытания при беге, проведенные авторами, показали, однако, что простое размещение геленка между стопой человека и подложкой мало способствует повышению удобства бегуна. В немецком патенте DE 19608488 A1 описан геленок, заделанный в ПУ подложку, и предложено изготавливать отверстие в пяточной области геленка. Полиуретаном подложки заполняют отверстие, и благодаря этому пяточная область становится мягкой и упругой. Однако описанный полуботинок не является кроссовкой, и подошва все еще остается слишком жесткой для бега. Этот недостаток (жесткая подошва), к сожалению, перевешивает преимущества, достигнутые полным пренебрежением амортизации полуботинка и уменьшением его веса.

Задача, решенная настоящим изобретением, заключается в создании способа конструирования подошвы, в частности, для кроссовки, которая имеет малый вес, но посредством которой обеспечивают достаточное удобство.

Этого достигают с помощью решения, описанного в п.1 формулы изобретения.

Посредством смещения продольно проходящего геленка в пяточную область подошвы создают полость в пяточной зоне. Эта смещенная пяточная область является платформой, на которой размещают элемент для обеспечения удобства и полностью или частично заделывают и прикрепляют к полиуретану (ПУ) подложки во время процесса впрыскивания. ПУ вводят в полость через отверстие, выполненное в полости, или, более точно, через отверстие, выполненное в смещенной пяточной области геленка, и к ПУ прикрепляют элемент для обеспечения удобства. Прикрепление производят во время и после процесса впрыскивания ПУ, и при этом фиксируют элемент для обеспечения удобства в его положении. ПУ распределяют в полости посредством давления, прикладываемого с помощью оборудования для впрыскивания ПУ. Такое закрепление является благоприятным, так как без этого сцепления элемент для обеспечения удобства создавал бы шум при беге, обычно возникающий из-за захвата воздуха. Элемент для обеспечения удобства более эластичный, чем ПУ, используемый для изготовления подложки, и, таким образом, с его помощью обеспечивают более высокую степень возврата энергии, чем посредством ПУ подложки. Пяточная область смещена к наружной подошве, ко второй горизонтальной плоскости, отличающейся от первой горизонтальной плоскости геленка в области для свода стопы. Испытания, проведенные авторами, показали, что при такой конструкции бегун испытывает более приятные ощущения, так как пяточная область подошвы стала мягче. Предложенное в изобретении решение превосходит первое альтернативное решение, которое не было подтверждено как успешное, а именно: решение, согласно которому геленок был размещен между подложкой и наружной подошвой. Такое размещение приводило к возникновению проблем, связанных с трением между пяткой человека и пяточной областью подложки, так как подложку при беге сжимают, и она разжимается в пяточной области, и при каждом сжатии возникает возможность смещения пятки человека вниз, а при каждом разжимании возникает возможность смещения пятки человека вверх. В результате повторяемых смещений вверх и вниз относительно пяточной области кроссовки создается трение, вызывающее дискомфорт бегуна. С другой стороны, согласно второму альтернативному решению геленок может быть размещен поверх подложки, и таким образом может быть уменьшено трение, так как посредством геленка, как ранее вводимого в действие ужесточенного слоя, уменьшают длину смещений вверх и вниз. Однако, как уже было описано, было подтверждено, что при этом решении получается слишком жесткая подошва. Предложенное в изобретении решение находится, так сказать, между этими двумя альтернативными решениями, так как части геленка для переднего отдела стопы и для свода стопы размещают поверх подложки или вблизи верха подложки, а пяточную область геленка опускают и заделывают в подложку, и размещают близко к наружной подошве.

Поверхность элемента для обеспечения удобства, обращенная к текстильной подошве верха, должна быть предпочтительно оставлена свободной от ПУ материала подложки, чтобы, таким образом, обеспечивать возможность проявления его упругости при столкновении пятки с землей. Таким образом, все стороны элемента для обеспечения удобства окружены материалом подложки, за исключением упомянутой поверхности и тех краевых частей элемента для обеспечения удобства, которые лежат на геленке.

Элемент для обеспечения удобства предпочтительно выполнен с выступом, введенным в отверстие геленка. Этим обеспечивают даже еще большую упругость в пяточной зоне, так как в то же самое время уменьшено количество относительно более жесткого ПУ материала подложки. Выступ вводят на 1-2 мм в отверстие в направлении подошвы, и он может в некоторых случаях даже проходить ниже отверстия в геленке.

Как было упомянуто, элемент для обеспечения удобства обладает эластичностью, большей эластичности ПУ, используемого для подложки. Посредством варьирования отношения высоты слоя для обеспечения удобства к высоте ПУ слоя, расположенного в полости или ниже полости, можно получать широкий диапазон различных значений жесткости. Предпочтительное отношение получают при точном заполнении ПУ отверстия до входа в полость, а элементом для обеспечения удобства заполняют остальную часть полости. Однако отношение высоты элемента для обеспечения удобства к высоте ПУ подложки ниже полости не должно быть слишком большим, так как это приводило бы к слишком большой амортизации, недостатки которой уже были описаны. Отношение можно варьировать в диапазоне 2:1, а предпочтительно оно должно быть меньше 1,5:1,0.

Так как подложка должна быть как можно более тонкой, чтобы не увеличивать вес кроссовки, жесткий геленок может в некоторых случаях ощущаться потребителем при беге. Это может быть в случае, если геленок во время процесса впрыскивания ПУ был заделан слишком близко к стопе человека, т.е. при отсутствии или при наличии только тонкого слоя ПУ подложки между текстильной подошвой верха и геленком. Для уменьшения влияния этой проблемы, непосредственно под текстильной подошвой размещают тонкий слой материала, поглощающего энергию. Тонкий слой может быть дискретным слоем или матом, или он может быть интегрированной частью текстильной подошвы, покрывающей сторону, обращенную к подложке и геленку.

Переход от области для свода стопы геленка к смещенной пяточной области должен быть выполнен под небольшим углом. Резкий переход, скажем, под углом 90° от плоскости для свода стопы к пяточной плоскости, вызывает дискомфорт у бегуна, который может ощущать острый край. Таким образом, геленок в переходной зоне должен иметь угол относительно горизонтальной плоскости смещенной пяточной области геленка, составляющий максимум 50°, более предпочтительно - меньше 30°.

Переходная зона не только наклонена от области для свода стопы в направлении пяточной области, но также от внутренней стороны геленка к полевой стороне. Таким образом, геленок поднимают для обеспечения опоры для свода стопы.

Предпочтительно отверстие, или проем, в пяточной области геленка является по существу эллиптическим и расположенным над точкой соприкосновения с землей при беге. Таким образом достигают полного эффекта смягчения в области пятки. На практике отверстие располагают в середине смещенной пяточной области. Эллиптическая форма повторяет форму пятки человека, и при расположении отверстия в середине смещенной пяточной области геленка создают кромку, на которую укладывают элемент для обеспечения удобства.

Геленок содержит изогнутые пальцы в области для переднего отдела стопы и жесткую часть, и мягкую часть. Пальцы можно сгибать относительно линии сгиба, расположенной между жесткой частью и мягкой частью геленка, при этом жесткая часть начинается там, где начинаются пальцы, идущие от основного тела геленка, и оканчивается у пяточного конца. Этими пальцами поддерживают, в частности, первую, четвертую и пятую плюсневые фаланги.

Изобретение ниже описано со ссылками на чертежи, на которых изображено:

на фиг.1 - вид в разобранном состоянии подошвы, предложенной в изобретении;

на фиг.2a - сечение А-А подошвы, предложенной в изобретении;

на фиг.2b - сечение подошвы, предложенной в изобретении, и подошвы Стробеля;

на фиг.3a - геленок, используемый в подошве, предложенной в изобретении, вид в перспективе;

на фиг.3b - геленок, представленный на фиг.3a, вид сбоку;

на фиг.3c - геленок, представленный фиг.3a, вид сзади;

на фиг.4 - подложка, вид снизу;

на фиг.5 - рисунок костей стопы человека, медиальная сторона;

на фиг.6 - рисунок костей правой стопы человека, вид снизу;

на фиг.7 - подложка и наружная подошва, дополнительный вид снизу;

на фиг.8 - подложка и наружная подошва, еще один дополнительный вид снизу;

на фиг.9 - подложка и наружная подошва, еще один дополнительный вид снизу;

на фиг.10 - подложка, вид с полевой стороны;

на фиг.11 - подложка, вид с внутренней стороны;

на фиг.12 - верх с альтернативной подложкой, вид с внутренней стороны;

на фиг.13 - верх с альтернативной подложкой, вид с полевой стороны;

на фиг.14 - пяточная область подложки, вид первой версии;

на фиг.15 - пяточная область подложки, вид второй версии.

На фиг.1 изображен вид в перспективе подошвы 7, предложенной в изобретении. В этом предпочтительном варианте осуществления подошва состоит из трех слоев и геленка, а именно, из: первого слоя-подложки 1, второго промежуточного слоя 2 и третьего слоя 3, представляющего наружную подошву. Геленок 4 показан расположенным сверху от подложки, но он располагается после впрыскивания полиуретана (ПУ), в полностью или частично заделанном состоянии, в подложке 1. На фиг.2a показана подошва, продольное сечение А-А на фиг.1.

Подложка 1 в предпочтительном варианте осуществления выполнена из легкого полиуретанового материала, называемого также «легким полиуретаном» (ЛПУ), основанным на сложном полиэфире. ЛПУ является известным вариантом ПУ, обладающим низкой объемной плотностью (0,35 г/см3), т.е. он является легким материалом. Его дополнительной характеристикой является хорошие амортизирующие свойства, и эта характеристика важна при беге на длинные дистанции. Твердость по Шору, по шкале А, составляет от 38 ед. до 40 ед. Часто изготовители обуви используют сополимер этилена и винилацетата (СЭВА) в качестве материала для подложки, так как он обладает меньшей удельной массой, чем ЛПУ, благодаря чему в результате получают более легкую подошву. Однако СЭВА обладает тенденцией к быстрому старению при частом воздействии сил, прикладываемых стопой. Это старение наблюдают в виде морщин в материале. СЭВА не обладает стабильностью, и спустя некоторое время уплотняется и не восстанавливается в его первоначальной форме.

Подложка 1 покрыта вторым промежуточным слоем 2, имеющим тот же профиль, что и подложка. На фиг.2a показан этот профиль, и второй слой 2 является, так сказать, копией нижней стороны подложки 1. Слой 2 обладает функцией защитного слоя, он состоит из термопластичного полиуретана (ТПУ) и является тонким промежуточным слоем, с толщиной, обычно составляющей 0,5-2,0 мм.

Третий слой 3 является наружной подошвой, состоящей из ряда дискретных элементов наружной подошвы (например, элементов 120-123 на фиг.8), при сложении которых вместе получается наружная подошва. Под термином «дискретные элементы наружной подошвы» понимают часть наружной подошвы, которую не отливают, или формуют, в том же процессе, в котором изготавливают подложку или промежуточный слой 2, а прибавляют или прикрепляют, например, к слою 2 позднее. Кроме того, дискретный элемент наружной подошвы не соединен с другими элементами наружной подошвы. Более подробно, наружная подошва 3 состоит из множества элементов наружной подошвы, которые можно воспринимать как острова, взаимно не соединенные, отделенные одной или большим числом канавок в подложке. Элементы предпочтительно изготавливают из каучука. В качестве материала для изготовления дискретных элементов наружной подошвы можно вместо каучука использовать ТПУ, но характеристики сцепления ТПУ меньше тех же параметров каучука. Используемым каучуком является обычный бутадиен-нитрильный каучук (БНК), предпочтительный для кроссовок благодаря его относительно малому весу. Для других типов обуви можно использовать латекс (состоящий из смеси натурального и синтетического каучуков). Элементы наружной подошвы отделены друг от друга канавками 5, 6 в промежуточном слое 2 ТПУ и в подложке 1, и они уложены на выступы, или бобышки, 10-13 (см. фиг.2a), выполненные в промежуточном слое ТПУ. Бобышки и канавки промежуточного слоя сопрягают с соответствующими бобышками и канавками подложки.

Изготовление подошвы 7, состоящей из частей 1, 2 и 3 подошвы и геленка 4 (см. фиг.1), осуществляют следующим способом. На первой стадии промежуточный слой 2 ТПУ и элементы наружной подошвы 3 обрабатывают в отдельном процессе изготовления для получения одного интегрированного объекта. На второй стадии подложку 1 соединяют с интегрированным объектом, состоящим из слоя 2 и наружной подошвы 3. Ниже описаны первая и вторая стадии.

На первой стадии изготавливают промежуточный слой 2 ТПУ и дискретные элементы наружной подошвы 3 для получения интегрированного объекта. Сначала изготавливают дискретные элементы наружной подошвы в процессе вулканизации каучука. Затем элементы наружной подошвы размещают в пресс-форме, в которую вводят ТПУ поверх элементов. Пресс-форму закрывают, и при приложении тепла и давления формуют ТПУ, придавая ему требуемую форму. После отверждения завершают изготовление интегрированного объекта из элементов наружной подошвы и промежуточного слоя ТПУ. Хотя слой ТПУ изготавливают, используя процесс отливки, можно также использовать альтернативные процессы изготовления для получения второго слоя 2. Таким образом, можно формовать ТПУ под давлением посредством впрыскивания известным способом, или ТПУ может быть пленкообразным сырьевым материалом, подобным листу, который укладывают поверх элементов наружной подошвы 3 до соединения этих элементов и ТПУ с использованием тепла и давления. Промежуточный слой 2 ТПУ и элементы наружной подошвы 3 прикрепляют клеем, который активируют подводом тепла во время формования ТПУ, наложенного поверх элементов наружной подошвы. Было подтверждено, что при использовании просто адгезии между ТПУ и каучуком, без применения клея во время формования, продукт получается недолговечным. До добавления клея между промежуточным слоем 2 ТПУ и элементами наружной подошвы 3 каучуковая поверхность элементов наружной подошвы 3 должна быть галогенизирована в процессе, в ходе которого удаляют жир с каучука и, таким образом, улучшают адгезию.

На второй стадии изготовления подошвы 7 подложку 1 соединяют с интегрированным объектом, состоящим из слоя 2 и элементов наружной подошвы 3, полученным на первой стадии, а также с верхом кроссовки. Более конкретно, промежуточный слой 2 ТПУ с элементами наружной подошвы 3 укладывают в пресс-форму для впрыскивания вместе с верхом кроссовки и геленком 4 (уложенным на стельку верха), после чего в пресс-форму впрыскивают ПУ и прикрепляют к верху кроссовки с геленком и к интегрированному объекту, состоящему из слоя 2 и элементов наружной подошвы 3. Таким образом ПУ прикрепляют к стороне промежуточного слоя 2 ТПУ, располагаемого наиболее близко к стопе человека. После этой второй стадии, элементы 1, 2 и 3 подошвы становятся интегрированными в один объект.

Промежуточный слой 2 ТПУ выполняет две функции: с его помощью снижают ломкость подложки и сокращают продолжительность цикла действия оборудования для впрыскивания ПУ. Это подробно описано ниже.

В принципе, промежуточный слой ТПУ может быть исключен, а отдельные элементы наружной подошвы могут быть уложены непосредственно в пресс-форму оператором до впрыскивания ПУ. Однако это вело бы к увеличению времени и повышению стоимости обработки на машине для впрыскивания ПУ, так как укладка множества дискретных элементов наружной подошвы занимает много времени. Вместо этого, посредством изготовления промежуточного слоя 2 ТПУ и элементов наружной подошвы 3 в отдельных процессах, как это описано выше, машина для впрыскивания ПУ освобождена от затраты большей части времени на изготовление подложек. Время ожидания машины уменьшено. Однако благодаря использованию промежуточного слоя ТПУ получают дополнительные преимущества, а именно: уменьшается тенденция к поломке подложек из ЛПУ. Если дискретные элементы наружной подошвы 3 укладывают непосредственно на подложку из ЛПУ без какого-либо промежуточного слоя 2, то подложка обладает тенденцией к поломке, выявляемой в ходе испытаний на долговечность. Из-за такой поломки появляется возможность проникновения воды в кроссовку во время носки. Причиной возникновения тенденции к поломке является то, что при впрыскивании ПУ в пресс-форму во время изготовления, имеет место тенденция к появлению пузырьков воздуха в подложке. Пузырьки появляются из-за того, что полиуретаном (ПУ) невозможно выдавить воздух из пространства вокруг острых краев каналов пресс-формы. Это, вероятно, происходит из-за малого удельного веса ПУ. В результате этого в подложке содержатся пузырьки воздуха, что, таким образом, делает подошву подверженной проникновению воды при поломке подложки или при появлении в ней трещин. ТПУ обладает большим удельным весом, и при его использовании не возникают проблемы, связанные с захватом пузырьков воздуха во время изготовления. Другими словами, подложка 1 не подвержена проникновению воды, вызываемому наличием пузырьков воздуха и поломками, благодаря защите посредством промежуточного слоя 2, который вносит свой вклад в сохранение внутренности кроссовки в сухом состоянии.

В качестве материала для подложки 1 был выбран ПУ вместо ТПУ. В принципе, вся подложка может быть изготовлена из ТПУ, но ЛПУ обладает меньшим удельным весом, благодаря чему уменьшают вес кроссовки. Кроме того, ПУ обладает хорошей амортизирующей характеристикой, что особенно важно для кроссовок.

Геленок 4 (см. фиг.1) состоит из смеси термопластичного полиэтилена (ТПЭ) и найлона и является частично упругим. Он проходит в продольном направлении от части подошвы для переднего отдела стопы, через часть подошвы для области свода стопы, к пяточной области, и предпочтительно содержит в пяточной области отверстие 8 (см. фиг.3a), куда вводят полиуретан, используемый для подложки 1, во время процесса впрыскивания. В переднем конце геленок содержит два изогнутых в продольном направлении пальца 15 и 16 и малый палец 14, расположенный посередине. Этими пальцами поддерживают, в частности, первую, четвертую и пятую плюсневые фаланги. Установлено, что достаточно использовать от двух до трех пальцев вместо того, чтобы использовать по одному опорному пальцу для каждого луча стопы. Геленок сконструирован таким образом, чтобы он был «анатомическим», т.е. чтобы он более близко соответствовал средней стопе, чем обычные геленки. Геленок изготавливают, используя процесс впрыскивания, таким образом, чтобы он был гибким в поперечном направлении точно в том месте, где начинаются пальцы геленка, соответствующем отдаленным концам первой, четвертой и пятой плюсневым фалангам (см. линию, обозначенную позицией 18 на фиг.1). В зависимости от конструктивных требований линия 18 может быть расположена в любом месте в зоне между проксимальным и дистальным концами первой, четвертой и пятой плюсневыми фалангами. Таким образом, геленок является сгибаемым в направлении, перпендикулярном к продольной оси подошвы. Сгибаемость геленка обеспечивают в процессе изготовления, когда термопластичный полиэтилен впрыскивают с пяточного конца, а найлон с носочного конца. Две композиции встречаются на линии сгиба, и подошва получается сгибаемой относительно этой линии 18, так как сложный полиэфир мягче, чем жесткое стекловолокно. Дополнительной особенностью является то, что геленок обладает также упругостью в его продольном направлении вдоль линии 19, так как геленок должен быть предпочтительно более упругим с его полевой стороны, чем с внутренней стороны. При такой особенности жесткость при кручении в продольном направлении является регулируемой. На фиг.3a-3c геленок представлен более подробно.

Во время изготовления геленок приклеивают к подошве Стробеля, которую вместе с верхом устанавливают на колодке. Такая подошва Стробеля является эластичной текстильной подошвой, обычно пришитой к верху. Колодку с верхом и подошвой Стробеля и геленком помещают в пресс-форму, которую закрывают, после чего в пресс-форму впрыскивают ПУ.

Согласно изобретению геленок 4 содержит смещенную пяточную область, как это показано на фиг.3a. В этой смещенной пяточной области определена полость 17 для введения ПУ и/или элемента 9 для обеспечения удобства. Смещенная пяточная область выполняет функцию платформы для ПУ, вводимого в отверстие 8, по существу эллиптической формы. Полость выполнена посредством кромки геленка, проходящей вокруг отверстия 8. Кромка наклонена внутрь в направлении отверстия, и таким образом определяет полость 17. Согласно изобретению полиуретаном (ПУ) частично заполняют полость, после чего получается слоеная структура (если рассматривать центр отверстия), состоящая из следующих слоев в пяточной области сверху к наружной подошве: подошва Стробеля, элемент для обеспечения удобства, ПУ, промежуточный слой 2 ТПУ и наружная подошва 3. Однако в области для свода стопы подошвы порядок расположения слоев является следующим: подошва Стробеля, ПУ, геленок 4, ПУ и промежуточный слой 2 ТПУ. Так как в отверстии 8 пяточной области нет материала геленка, эта область является более эластичной.

Элементы для обеспечения удобства хорошо известны и коммерчески доступны. В данном варианте осуществления высота элементов для обеспечения удобства составляет 9 мм; высота подложки из ПУ, расположенной ниже, составляет 8 мм; высота промежуточного слоя ТПУ составляет 1 мм; а высота дискретной каучуковой наружной подошвы 3 составляет 2 мм. На фиг.2b показана, в сечении, подошва, предложенная в изобретении, где подошва Стробеля обозначена позицией 53 (на фиг.2b верх кроссовки не показан). Отношение между высотой элемента для обеспечения удобства и высотой ПУ подложки, расположенной ниже, можно варьировать в широком диапазоне вплоть до 2:1, но оно предпочтительно не должно превышать 1,5:1,0. В противном случае конструкция приближалась бы к обычным амортизирующим технологическим решениям, которые, как уже было описано, обладают недостатками. Предпочтительно, ПУ прикрепляют к элементу для обеспечения удобства посредством заполнения отверстия 8 в геленке и окружения боковых сторон элемента для обеспечения удобства, таким образом обеспечивая прикрепление материала без каких-либо дополнительных стадий обработки. Поверхность 65 элемента 9 для обеспечения удобства, обращенную к подошве Стробеля, сохраняют свободной от какого-либо ПУ подложки, так как даже небольшой слой ПУ подложки ограничивал бы его способность к сжиманию и разжиманию и, следовательно, к уменьшению удобства в пяточной зоне. В одном варианте осуществления элемента 9 для обеспечения удобства, элемент содержит плоскую поверхность, как показано на фиг.2a. В другом варианте осуществления, как показано на фиг.2b, элемент 9 может быть снабжен выступом, или выступающей частью, 58, который садится точно в отверстие 8, и он только немного меньше. Элемент для обеспечения удобства, таким образом, садится на кромку геленка и имеет первую высоту, тогда как выступающая часть, проходящая в отверстие, сообщает элементу для обеспечения удобства вторую, большую высоту. Элемент для обеспечения удобства предпочтительно изготавливают из ПУ, и он обладает меньшей плотностью, чем ПУ подложки, т.е. является более мягким. Посредством выполнения элемента для обеспечения удобства с выступающей частью 58, как это описано выше, достигают увеличения степени мягкости управляемым способом, и его располагают только в особой и ограниченной области в пяточной зоне. Предпочтительно, чтобы элемент для обеспечения удобства, выполненный из ПУ, обладал более высокими характеристиками возврата энергии, чем ПУ подложки.

Переходная зона 39 (см. фиг.3b) геленка между областью для свода стопы и пяточной областью образует угол β с горизонтальной плоскостью смещенной пяточной области геленка, который предпочтительно не должен превышать 50°. При большем угле бегун испытывает дискомфорт из-за острого края. Угол β предпочтительно составляет около 30°. На фиг.3c показан геленок, вид сзади. Переходная зона 39 не только наклонена от области для свода стопы в направлении к пяточной области, но также - в направлении от внутренней стороны геленка к его полевой стороне. Таким образом, геленок приподнимают для поддержания стопы в области для свода стопы.

Геленок 4 полностью или частично заделан в ПУ подложки, как это показано на фиг.2b. В области для переднего отдела стопы и в области для свода стопы геленок уложен близко к подошве 53 Стробеля, где при этом между подошвой Стробеля и геленком может быть или не быть ПУ. В смещенной пяточной области геленок уложен близко к наружной подошве. Так как подложка должна быть как можно более тонкой для сохранения малого веса кроссовки, потребитель может в некоторых случаях чувствовать жесткий геленок при беге. Это может быть в том случае, если геленок во время процесса впрыскивания ПУ был заделан слишком близко к стопе человека, т.е. так, чтобы отсутствовал ПУ или имелся бы только тонкий слой ПУ подложки между подошвой Стробеля и геленком. Для уменьшения влияния этого недостатка, непосредственно под подошвой Стробеля укладывают тонкий слой материала 51, поглощающего энергию. Этот слой, так сказать, защищает ступню от геленка, и бегун не будет чувствовать края или поверхности геленка при столкновении пятки с землей, так как материал будет поглощать большую долю энергии толчка. Такой материал под торговой маркой Poron® XRD может быть приобретен у компании Rogers Corporation. Слой состоит из пенополиуретана, и его толщина составляет от 0,5 мм до 1,5 мм, предпочтительно - 1 мм, и он может представлять собой дискретный мат в форме, соответствующей форме подошвы Стробеля. После укладки мата на подошву Стробеля верха, расположенного на колодке, к мату прикрепляют геленок, и объединенную структуру, состоящую из верха, материала, поглощающего энергию, подошвы Стробеля и геленка, помещают в пресс-форму для впрыскивания ПУ подложки. В другом варианте осуществления ПУ материал, поглощающий энергию, уже является частью подошвы Стробеля, т.е. этот растяжимый ПУ был в более раннем процессе изготовления прикреплен к текстильному материалу, использованному в качестве подошвы Стробеля, и составляет одну сторону подошвы Стробеля.

ПУ материал, поглощающий энергию, можно растягивать во всех направлениях, и он обладает малой объемной плотностью (меньше 0,35 г/см3). Таким образом, он обладает меньшей объемной плотностью и является более мягким, чем ПУ, используемый для изготовления подложки.

Использовали специальную стельку. Стелька состоит из двух слоев. Верхний слой является материалом из сложного полиэфира, являющимся легким и воздухопроницаемым («дышащим»). Нижний слой выполняют в двух версиях. Для бегунов класса А нижний слой изготавливают из СЭВА, который предпочтительно обладает небольшим весом, а для бегунов класса B нижний слой изготавливают из пеннополиуретана (ППУ). Стелька согласно этому решению является более дорогой, но она лучше по качеству. Нижний слой содержит сквозные отверстия для обеспечения воздухопроницаемости. В пяточной части стельки располагают область с амортизирующим материалом, а в области стельки для переднего отдела стопы располагают материал, возвращающий энергию, из которого во время толчка высвобождается большая часть энергии, полученной при столкновении пятки с землей и при полном контакте стопы с землей.

На фиг.4 показана подложка 1, вид снизу. Подложка содержит часть 23 для переднего отдела стопы, верхний конец 22, нижнюю пяточную часть 20, часть 21 для свода стопы и полевую часть 24. Четыре канавки сгиба 27, 29, 31 и 34 проходят в поперечном направлении части 23 для переднего отдела стопы. Канавки имеют глубину, составляющую приблизительно 50-60% толщины части подложки для переднего отдела стопы, в данном примере - 3-4 мм. Изогнутая канавка сгиба 63 проходит от внутренней боковой стороны 49 части 21 для свода стопы и продолжается вдоль частей 48, 32, 59, 60 и 61. Посредством канавок сгиба созданы выступы, или бобышки, 26, 28, 30, 33, 35, 38, 40, 46, 50, 52, 54, 56, 62, по форме соответствующие форме дискретных элементов наружной подошвы 3, но имеющие большую площадь. Таким образом, бобышки расположены ближе друг к другу, чем дискретные элементы наружной подошвы, установленные в промежуточном слое 2 ТПУ. Как описано ниже, это должно оказывать положительное воздействие на сопротивление скольжению. Бобышки 33 и 35 проходят в поперечном горизонтальном направлении и становятся самыми крайними точками на полевой стороне подошвы. Когда элементы наружной подошвы накладывают на бобышки, это удлинение вносит свой вклад в стабилизацию, особенно при повороте стопы наружу. Армирующая балочка 47 проходит наклонно от внутренней боковой стороны к полевой стороне. Армирующая балочка является частью подложки, и ее изготавливают во время процесса впрыскивания. Она толще подложки в полевой части 37 и во внутренней боковой части 49, и с ее помощью увеличивают жесткость подложки. Она проходит параллельно геленку 4 (не виден на фиг.4), который уложен с другой стороны подложки, т.е. со стороны, обращенной к стопе.

Изогнутая канавка сгиба значительно шире других канавок сгиба. В одном варианте осуществления она имеет ширину 6 мм, канавка сгиба 34 имеет ширину 3 мм, а канавка сгиба 31 - 4 мм. Как правило, изогнутая канавка сгиба в 1,5 и 3,0 раза шире других канавок сгиба. Ширину изогнутой канавки сгиба можно варьировать, но она предпочтительно имеет ширину, которая в 1-2 раза больше расстояния между третьей и четвертой плюсневыми фалангами. Однако расстояние может быть не слишком большим, так как это привело бы к слишком большой гибкости. Кроме того, канавка сгиба имеет по существу постоянную ширину вдоль ее изогнутой траектории в части для переднего отдела стопы.

Изогнутая канавка сгиба 63 пересекает поперечные канавки сгиба 29, 31 и 34. Изогнутая канавка сгиба, таким образом, проходит в продольном направлении от внутренней боковой стороны части для свода стопы к вершинной точке 59 в части для плюсневой зоны стопы. От этой вершинной точки канавка продолжается в противоположном направлении вдоль тракта 60 и пересекает канавки сгиба 57 и 55. Она заканчивается приблизительно под возвышением большого пальца ноги канавкой сгиба 61. Кривизна канавки по существу задает последовательности бобышек подложки спиралеобразный характер. Таким образом, начиная с исходной точки O в бобышке 62, может быть проведена кривая 64, которая описывает в некоторой степени сжатую, или эксцентричную, спиральную линию. При использовании позднее в процессе изготовления дискретные элементы наружной подошвы 3 описывают такую же кривую.

Функцией изогнутой канавки сгиба 63 является обеспечение возможности естественного бега посредством создания в подложке линии сгиба в продольном направлении между четвертой и третьей плюсневыми фалангами и, таким образом, придания характеристики «разделения 2-3» лучей стопы. Это более подробно описано ниже. На фиг.5 показаны кости правой стопы с медиальной (внутренней) стороны первой плюсневой фаланги 85, пятки 69, пяточного бугра 68 и большого бугра 67. На фиг.6 показана правая стопа человека снизу. Позицией 70 обозначены кости лодыжки, позицией 71 - ладьевидная кость, а позициями 72, 73 и 74 три клиновидные кости, т.е. медиальная, промежуточная и латеральная клиновидные кости, соответственно. Лини