Смесевые продукты базовых масел

Настоящее изобретение относится к смесевому продукту базового масла, содержащему (i) легкое базовое масло, полученное на основе процесса Фишера-Тропша, и (ii) газойль, полученный на основе процесса Фишера-Тропша, при этом концентрация газойля, полученного на основе процесса Фишера-Тропша, составляет от 1 до 20 вес.%. Также настоящее изобретение относится к электротехнической и гидравлической жидкостям, к способу получения смесевого продукта базового масла, к применению газойля, полученного на основе процесса Фишера-Тропша, в смесевом продукте базового масла, полученного на основе процесса Фишера-Тропша, для улучшения характеристик холодной текучести смесевого продукта, к способу улучшения характеристик холодной текучести и/или понижения кинематической вязкости смесевого продукта базового масла и к применению газойля, полученного на основе процесса Фишера-Тропша, в смесевом продукте базового масла, содержащем легкое базовое масло, полученное на основе процесса Фишера-Тропша, для снижения концентрации добавки, улучшающей холодную текучесть в смесевом продукте. Техническим результатом настоящего изобретения является получение смесевого продукта базового масла, обладающего улучшенными свойствами. 7 н. и 2 з.п. ф-лы, 1 пр., 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к смесевым продуктам базовых масел, их приготовлению и применению, а также к использованию некоторых типов масел в смесевых продуктах базовых масел для новых целей.

Уровень техники

Процесс конденсации по Фишеру-Тропшу представляет собой реакцию, в которой оксид углерода и водород превращаются в углеводороды, обычно парафиновые, с более длинной цепью в присутствии подходящего катализатора и, как правило, при высоких температурах (например, 125-300°C, преимущественно 175-250°C) и/или давлениях (например, от 5 до 100 бар, преимущественно от 12 до 50 бар).

Процесс Фишера-Тропша может использоваться для получения определенного диапазона углеводородных топлив, включая сжиженный нефтяной газ (СНГ), лигроин, керосин и газойлевые фракции. Из них газойли используются в среднедистиллятных топливных композициях, таких, в частности, как автомобильные дизельные топлива, как правило, в смесях с газойлями нефтяного происхождения. Из более тяжелых фракций с помощью гидропереработки и вакуумной перегонки может быть получен ряд базовых масел, обладающих разными дистилляционными свойствами и вязкостями, которые могут быть использованы как исходные базовые масла для смазочных материалов. Эти базовые масла имеют широкий спектр применений, включая смазочные материалы, диэлектрические жидкости (например, электротехнические, или трансформаторные масла), гидравлические жидкости (например, в амортизаторах) и технологические масла, например, в производстве эластомеров.

Например, в WO-A-02070627 и WO-A-02070629 описаны способы получения изопарафиновых базовых масел из воска, получаемого в процессе Фишера-Тропша. Такие базовые масла на основе процесса Фишера-Тропша имеют тенденцию проявлять великолепные низкотемпературные свойства, например низкие температуры застывания, и привлекательны также тем, что их получают относительно простым способом по сравнению с подобными им маслами, получаемыми из минеральных сырьевых источников.

Получаемые указанным способом продукты включают в себя (наряду с другими) поток газойля и базового масла, имеющий номинальную кинематическую вязкость при 100°C (КВ100) равную примерно 4 сСт, который пригоден для использования в смазочных смесевых продуктах.

Эти продукты включают также легкое базовое масло с КВ100 от примерно 2 до 3 сСт, которое имеет температуры кипения между температурой конца кипения газойля и началом кипения базового масла с вязкостью 4 сСт. Пределы кипения этого промежуточного продукта определяются пределами кипения газойля и базового масла с вязкостью 4 сСт, а температура начала кипения базового масла с вязкостью 4 сСт является фиксированной, поскольку это масло должно удовлетворять техническим требованиям по вязкости и летучести. Следствием этого является относительно низкая степень регулирования пределов кипения и отсюда связанных с ними свойств, таких как вязкость и температура застывания для легкого базового масла с вязкостью 3 сСт. Это, в свою очередь, может ограничивать потенциальные области применения легкого масла, так как на его основе трудно готовить продукты с требуемыми техническими характеристиками. Его вязкость и температура застывания могут быть, например, неподходящим образом высокими для масла, предназначенного для применения в качестве электротехнического масла, и в то же время его вязкость также будет слишком низкой для применения в качестве смазочного масла.

Таким образом, было бы желательно иметь возможность в большей степени регулировать свойства фракции легкого базового масла с целью расширения потенциальных областей его применения.

В зависимости от его предполагаемого применения базовое масло часто нуждается в том, чтобы оно соответствовало жестким требованиям в отношении вязкости и индекса вязкости, температуры вспышки, дистилляционных свойств и характеристик текучести (в частности, низкотемпературных характеристик). Высокая температура вспышки особенно важна для продуктов на основе базовых масел, которые предназначаются для применения в качестве электротехнических масел, в особенности, когда они эксплуатируются в высокотемпературном окружении или в ситуациях, включающих повышенные пиковые температуры. Так, если в подобном случае предполагается использовать легкое базовое масло, то, чтобы оно соответствовало существующим техническим требованиям, будет необходимо тщательно отрегулировать не только его вязкость и температуру застывания, но также и температуру вспышки.

В настоящем изобретении было неожиданным образом обнаружено, что в случае приготовления из легкого базового масла на основе процесса Фишера-Тропша смесевого продукта, улучшенные свойства могут быть получены без нежелательно сильного понижения температуры вспышки путем добавления газойля на основе процесса Фишера-Тропша. Благодаря этому газойль на основе процесса Фишера-Тропша можно использовать для регулирования свойств легкого базового масла. Это, в свою очередь, может расширить разнообразие возможностей легкого масла и, в частности, может позволить получать конечную смесь, подходящую для применения в качестве электротехнического масла.

Раскрытие сущности изобретения

Согласно первому аспекту настоящего изобретения, предложен смесевой продукт базового масла, содержащий (i) легкое базовое масло, полученное на основе процесса Фишера-Тропша, и (ii) газойль, полученный на основе процесса Фишера-Тропша.

Включение газойля процесса Фишера-Тропша может позволить легко подгонять свойства продукта на основе легкого базового масла до соответствия его желаемым техническим требованиям.

В частности, газойль может понижать как вязкость, так и, что более существенно, температуру застывания легкого базового масла, благодаря чему получаемый продукт может быть пригоден в качестве, например, электротехнического масла или амортизаторной жидкости.

Неожиданным образом, однако, как это более подробно описано ниже, оказалось, что газойль не приводит к слишком большому снижению температуры вспышки продукта. Таким образом, изобретение может обеспечить альтернативные области применения для легких базовых масел процесса Фишера-Тропша и расширить существующие возможности для тех, кто бы желал производить из базовых масел смесевые продукты.

В настоящем контексте выражение «полученный на основе процесса Фишера-Тропша» означает, что материал является синтетическим продуктом или получен из синтетического продукта процесса конденсации Фишера-Тропша. Выражение «полученный не на основе процесса Фишера-Тропша» можно интерпретировать соответствующим образом. Таким образом, базовое масло, полученное на основе процесса Фишера-Тропша, представляет собой углеводородный поток, значительная часть которого, за исключением добавленного водорода, получают непосредственно или опосредованно из процесса конденсации Фишера-Тропша.

Продукт, полученный на основе процесса Фишера-Тропша, можно также называть GTL-продуктом (продуктом процесса превращения газа в жидкость).

Углеводородные продукты можно получать непосредственно реакцией Фишера-Тропша или опосредованно, например, фракционированием продуктов синтеза Фишера-Тропша или из гидрообработанных продуктов синтеза Фишера-Тропша.

Гидрообработка может включать в себя гидрокрекинг с целью регулировки пределов кипения (см., например, GB-B-2077289 и ЕР-А-0147873) и/или гидроизомеризацию, которая может улучшить характеристики холодной текучести путем повышения доли разветвленных парафинов. В ЕР-А-0583836 описан двухстадийный способ гидрообработки, в котором продукт синтеза Фишера-Тропша подвергается вначале гидроконверсии в таких условиях, при которых он не претерпевает значительной изомеризации или гидрокрекинга (происходит гидрогенизация олефиновых и кислородсодержащих компонентов), после чего по крайней мере часть образовавшегося продукта подвергается гидроконверсии в таких условиях, при которых происходит гидрокрекинг и гидроизомеризация с образованием существенно парафинового углеводородного продукта. После этого можно выделять, например, перегонкой, желаемую фракцию(ии). Для модифицирования свойств продуктов конденсации Фишера-Тропша могут использоваться и другие проводимые после синтеза процессы обработки, такие как полимеризация, алкилирование, перегонка, крекинг-декарбоксилирование, изомеризация и гидрориформинг, как это описано, например, в US-A-4125566 и US-A-4478955.

Типичные катализаторы для синтеза парафиновых углеводородов по Фишеру-Тропшу содержат в качестве каталитически активного компонента металл группы VIII периодической таблицы, в частности рутений, железо, кобальт или никель. Подходящие катализаторы описаны, например, в ЕР-А-0583836 (стр.3 и 4).

Одним из примеров процесса Фишера-Тропша является процесс SMDS (синтез средних дистиллятов фирмы Shell), описанный в «The Shell Middle Distillate Synthesis Process (Процесс Shell для синтеза средних дистиллятов)», van der Burgt et al., статья, представленная на Пятом Всемирном симпозиуме по синтетическим топливам (5th Synfuels Worldwie Symposium), Washington DC, ноябрь 1985. См. также публикацию в ноябре 1989 под тем названием от Shell International Petroleum Company Ltd, London, Великобритания. Этот процесс (иногда называемый «газ-в-жидкости» фирмы Shell, или GTL-технология) дает продукты в пределах кипения средних дистиллятов путем превращения получаемого из природного газа (преимущественно метана) синтез-газа в воск, состоящий из тяжелых длинноцепочечных углеводородов (парафинов), который вслед за тем может быть подвергнут гидроконверсии и фракционированию с образованием жидких моторных топлив, таких как газойли, пригодные для использования в композициях дизельных топлив. С помощью этого процесса можно также получать базовые масла с определенным диапазоном вязкости и включающие как легкие, так и более тяжелые фракции. Благодаря процессу Фишера-Тропша топливо или топливный компонент, полученные на основе процесса Фишера-Тропша, по существу не имеет или имеет недетектируемые уровни содержания серы и азота.

Соединения, содержащие эти гетероатомы, имеют тенденцию действовать как яды для катализаторов Фишера-Тропша и по этой причине их удаляют из исходного синтез-газа. Это может давать дополнительные преимущества смесевым продуктам базовых масел согласно настоящему изобретению.

Далее, проводимый обычным образом процесс Фишера-Тропша не производит или практически не производит ароматические компоненты. Содержание ароматики в масле, полученном на основе процесса Фишера-Тропша, подходящим образом определяемое согласно ASTM D-4629, как правило, бывает ниже 1 вес.%, преимущественно ниже 0,5 вес.% и, более предпочтительно, ниже 0,1 вес.%.

При оценке в целом углеводородные продукты, полученные на основе процесса Фишера-Тропша имеют относительно низкие уровни полярных компонентов, в частности полярных ПАВ, например, по сравнению с топливами нефтяного происхождения. Это может благоприятствовать улучшенным противовспенивающим и препятствующим помутнению характеристикам. Такие полярные компоненты могут включать в себя, например, оксигенаты и серу- и азотсодержащие соединения. Низкий уровень серы в продукте, полученном на основе процесса Фишера-Тропша, обычно указывает на низкие уровни оксигенатов и азотсодержащих соединений, так как все они удаляются с помощью одних и тех же способов обработки.

Легкое базовое масло, полученное на основе процесса Фишера-Тропша, представляет собой базовое масло, которое имеет источником воск, образующийся в процессе Фишера-Тропша. Как было указано выше, фракция базового масла имеет пределы кипения между началом кипения базового масла с вязкостью 4 сСт и температурой конца кипения газойля. Обычно это фракция 350-400°С из полного спектра депарафинизации парафинистого рафината процесса Фишера-Тропша.

Такое легкое базовое масло имеет, соответственным образом, кинематическую вязкость при 100°C (KB100, измеренную согласно ASTM D-445) от 2,1 до 3,5 сСт, преимущественно от 2,5 до 3 сСт.

Соответственным образом, это масло имеет кинематическую вязкость при 40°C (КВ40, измеренную согласно ASTM D-445) от 7 до 12 сСт, преимущественно от 8 до 11 сСт.

Используемое в настоящем изобретении легкое базовое масло, полученное на основе процесса Фишера-Тропша, может быть базовым маслом группы II или группы III, преимущественно последним. Базовое масло группы II можно определить как базовое масло, которое содержит по меньшей мере 90 вес.% насыщенных соединений и не более 0,03 вес.% серы, имея при этом индекс вязкости не ниже 80 и ниже 120. Эти качества становятся более достижимыми, если подвергнуть масло относительно жесткой переработке, как правило, гидропереработке. Базовое масло группы III можно определить как базовое масло, которое отвечает тем же требованиям в отношении насыщенных соединений и серы, что и базовое масло группы II, но имеет при этом индекс вязкости выше 120.

В этом случае указанные выше качества также становятся более достижимыми при проведении операций относительно жесткой гидрообработки и каталитической депарафинизации.

Таким образом, подходящие значения индекса вязкости (ASTM D-445) используемого в настоящем изобретении легкого базового масла составляют от 105 до 124, преимущественно выше 120 и, более предпочтительно, от 121 до 123.

Оно может содержать летучие компоненты по методу Ноака (CEC L-40-A-93) в количестве от 40 до 65 вес.%.

Подходящая температура вспышки легкого базового масла, измеренная согласно ASTM D-92, равна 170°C или выше, преимущественно 180°C или выше, еще более предпочтительно 190 или 195°C или выше. В общих чертах установлено, что при некоторой данной вязкости температуры вспышки базовых масел, полученных на основе процесса Фишера-Тропша, могут быть более высокими по сравнению с базовыми маслами минерального происхождения, что является преимуществом.

Температуры вспышки могут измеряться с использованием более точного стандартного испытательного метода ASTM D-93.

Точка застывания легкого базового масла (ASTM D-5950) равна преимущественно -39°C или ниже, более предпочтительно -40, -42 или -45°C или ниже.

Базовые масла, полученные на основе процесса Фишера-Тропша, характеризуются тенденцией иметь высокую чистоту и высокое содержание парафинов, а также содержать непрерывные ряды изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода, которые описаны ниже. Такие базовые масла имеют тенденцию обладать великолепными низкотемпературными свойствами и при этом их относительно легко получать по сравнению с их аналогами минерального происхождения.

Используемое в настоящем изобретении легкое базовое масло получают преимущественно с помощью гидрокрекинга воска, образующегося в процессе Фишера-Тропша, и предпочтительно путем депарафинизации получаемого в результате этого парафинистого рафината. Этот рафинат может быть перегнан, в результате чего образуется ряд различных продуктов, в том числе поток базового масла с КВ100 примерно 4 сСт и низкокипящий депарафинизированный газойль.

Используемое в настоящем изобретении базовое масло может иметь источником промежуточный поток между этими двумя продуктами. Пределы его кипения и его вязкость будут, таким образом, определены параметрами, которыми обладают потоки базового масла с вязкостью 4 сСт и газойля.

Поскольку используемое в настоящем изобретении легкое базовое масло имеет источником воск из процесса Фишера-Тропша, оно по своей природе является в основном парафинистым и, как правило, содержит большую долю изопарафинов. Таким образом, это базовое масло представляет собой парафинистое базовое масло с суммарным содержанием парафинов по меньшей мере 80 вес.%, преимущественно по меньшей мере 85 или 90 вес.%. Соответственно, это масло имеет содержание насыщенных углеводородов (измеренное согласно IP-368) выше 98% и преимущественно содержит ряд изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода, где n может быть равен от 20 до 35. Содержание насыщенных углеводородов базового масла преимущественно выше 99 вес.% и, более предпочтительно, выше 99,5 вес.%. Максимальное содержание н-парафинов в нем преимущественно составляет 0,5 вес.%.

Содержание нафтеновых соединений в базовом масле составляет преимущественно от 0 до менее 20 вес.%, преимущественно от 1 до 10 вес.%.

Соответственно, пределы кипения масла будут от 340 до 400°C.

Содержание нафтеновых соединений в легком базовом масле и присутствие желательных непрерывных рядов изопарафинов могут быть измерены методом масс-спектрометрии с ионизацией полем (FIMS). Согласно этому методу, образец масла вначале разделяют на полярную (ароматическую) фазу и неполярную (насыщенные углеводороды) фазу с помощью метода высокоэффективной жидкостной хроматографии (ВЭЖХ) согласно IP 368/01, но с использованием в качестве подвижной фазы пентана вместо гексана. После этого ароматическую и насыщенную фракции анализируют с использованием масс-спектрометра Finnigan МАТ90, оборудованного FD/FI-интерфейсом, где FI (метод «мягкой» ионизации) используется для определения типов углеводородов по числу атомов углерода и дефициту водорода.

Типовая классификация соединений в масс-спектрометрии основана на образующихся характеристических ионах и обычно выражается с помощью «числа z». Последнее берется из общей формулы для всех типов углеводородов: CnH2n+z. Поскольку насыщенную фазу анализируют отдельно от ароматической фазы, можно определять содержание различных изопарафинов, имеющих одну и ту же стехиометрию или число n. Для установления относительных пропорций каждого типа углеводородов получаемые с помощью масс-спектрометра результаты могут быть обработаны с помощью имеющегося в продаже программного обеспечения (например, Poly 32 от Sierra Analytics LLC, 3453 Dragoo Park Drive, Modesto, California GA95350, США).

Используемое в продукте согласно изобретению легкое базовое масло, которое преимущественно содержит указанные выше непрерывные ряды изопарафинов, получают главным образом с помощью гидроизомеризации парафинового воска, преимущественно с последующей депарафинизацией какого-либо типа, например с использованием депарафинизации растворителем или каталитической депарафинизации. Парафинистым воском может быть парафиновый гач. Более предпочтительно, чтобы парафинистым воском был воск на основе процесса Фишера-Тропша благодаря его чистоте и высокому содержанию парафинов, а также благодаря тому факту, что продукты таких восков содержат ряд изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода в желаемом диапазоне молекулярного веса.

Примерами процессов Фишера-Тропша, которые могут быть использованы для получения базового масла на основе процесса Фишера-Тропша, являются так называемая промышленная технология дистиллятов суспензионной фазы фирмы Sasol, упомянутый выше процесс синтеза средних дистиллятов фирмы Shell и процесс «AGC-21» фирмы Exxon Mobil. Эти и другие процессы более детально описаны, например, в ЕР-А-776959, ЕР-А-668342, US-A-4943672, US-A-5059299, WO-A-9934917 и WO-A-9920720. Обычно продукты этих синтезов Фишера-Тропша содержат углеводороды, имеющие от 1 до 100 или даже более 100 атомов углерода. Такие продукты содержат нормальные парафины, изопарафины, кислородсодержащие компоненты и ненасыщенные компоненты.

В том случае, когда базовое масло является одним из целевых изопарафиновых продуктов, может оказаться полезным использовать относительно тяжелое сырье на основе процесса Фишера-Тропша. Такое сырье, соответственно, содержит по меньшей мере 30 вес.%, преимущественно по меньшей мере 50 вес.% и, более предпочтительно, по меньшей мере 55 вес.% соединений, имеющих по меньшей мере 30 атомов углерода. При этом весовое отношение в сырье соединений, имеющих по меньшей мере 60 атомов углерода, к углеводородам, имеющим по меньшей мере 30 атомов углерода, составляет преимущественно не менее 0,2, более предпочтительно по меньшей мере 0,4 и, наиболее предпочтительно, по меньшей мере 0,55.

Сырье, полученное на основе процесса Фишера-Тропша, преимущественно содержит фракцию С20+, имеющую значение ASF-alpha (фактор роста цепи Андерсона-Шульца-Флори) по меньшей мере 0,925, преимущественно по меньшей мере 0,935, более предпочтительно по меньшей мере 0,945 и, еще более предпочтительно, по меньшей мере 0,955. Такое сырье на основе процесса Фишера-Тропша может быть получено с помощью любого способа, который дает в должной степени тяжелый продукт типа описанного выше. Один из примеров подходящего процесса Фишера-Тропша описан в WO-A-9934917.

Базовое масло на основе процесса Фишера-Тропша не содержит или содержит очень мало серу- и азотсодержащих соединений. Это типично для продукта на основе реакции Фишера-Тропша, в которой использован синтез-газ, почти не содержащий примесей. Уровни серы и азота, как правило, ниже пределов детектирования, которые в настоящее время составляют 5 мг/кг для серы и 1 мг/кг для азота, соответственно.

В своем наиболее широком смысле настоящее изобретение охватывает применение парафинистого легкого базового масла, обладающего одним или более из описанных выше свойств, в продукте на основе базового масла вместе с газойлем, полученном на основе процесса Фишера-Тропша, вне зависимости от того получено ли в действительности базовое масло в процессе Фишера-Тропша или нет.

Однако способ получения легкого базового масла преимущественным образом включает синтез Фишера-Тропша, стадию гидроизомеризации и, возможно, стадию снижения температуры застывания, в котором (способе) стадию гидроизомеризации и необязательную стадию снижения температуры застывания осуществляют путем:

(a) гидрокрекинга/гидроизомеризации продукта реакции Фишера-Тропша и

(b) выделения из продукта стадии (a) легкого базового масла или промежуточной фракции базового масла, или, более предпочтительно, разделения продукта стадии (а) на по меньшей мере (i) одну или более дистиллятных топливных фракций и (ii) легкое базовое масло или промежуточную фракцию базового масла.

Если вязкость и температура застывания базового масла, полученного на стадии (b), являются такими, как заданы, необходимость в дополнительной переработке отсутствует и масло может быть использовано непосредственно в виде продукта согласно изобретению. Однако, при желании точку застывания промежуточной фракции базового масла можно дополнительно понизить на стадии (c) с помощью депарафинизации с использованием растворителя или, предпочтительно, каталитической депарафинизации масла.

Желаемую вязкость базового масла можно получить путем выделения (с помощью перегонки) из промежуточной фракции базового масла или из депарафинизированного масла продукта с подходящими пределами кипения и соответствующей вязкостью. Перегонка может быть стадией вакуумной перегонки.

Реакцию гидроконверсии/гидроизомеризации стадии (а) преимущественно проводят в присутствии водорода и катализатора, который может быть выбран из известных специалистам катализаторов, примеры которых более подробно описаны ниже. Катализатор может быть в принципе любым из катализаторов, известных в технике в качестве катализаторов, пригодных для изомеризации парафиновых молекул. Как правило, подходящими для гидроконверсии/гидроизомеризации катализаторами являются катализаторы, содержащие гидрогенизационный компонент на жаростойком оксидном носителе, такой как аморфный алюмосиликат (ASA), оксид алюминия, фторированный оксид алюминия, молекулярные сита (цеолиты) или смеси двух или более из них.

Предпочтительные катализаторы для использования на стадии (а) гидроконверсии/гидроизомеризации включают катализаторы, содержащие в качестве гидрогенизационного компонента платину и/или палладий. Наиболее предпочтительные катализаторы гидроконверсии/гидроизомеризации содержат платину и палладий, нанесенные на аморфный алюмосиликатный носитель. Платина и/или палладий присутствуют в количестве предпочтительно от 0,1 до 5,0 вес.% и, более предпочтительно, от 0,2 до 2,0 вес.% в расчете на элемент и общий вес носителя. В случае присутствия обоих элементов весовое отношение платины к палладию может изменяться в широких пределах, но предпочтительно в интервале от 0,05 до 10 и, более предпочтительно, от 0,1 до 5. Примеры подходящего благородного металла на алюмосиликатных катализаторах раскрыты, например, в WO-A-9410264 и ЕР-А-0582347. Другие подходящие катализаторы на основе благородных металлов, такие как платина на фторированном алюмооксидном носителе, раскрыты, например, в US-A-5059299 и WO-A-9220759.

Второй тип подходящих катализаторов гидроконверсии/гидроизомеризации включает катализаторы, содержащие в качестве гидрогенизационного компонента по меньшей мере один металл группы VIB, преимущественно вольфрам и/или молибден, и по меньшей мере один неблагородный металл группы VIII, преимущественно никель и/или кобальт. Любой или оба этих металлов могут присутствовать в виде оксида, сульфида или их комбинации.

Металл группы VIB присутствует преимущественно в количестве от 1 до 35 вес.% и, более предпочтительно, от 5 до 30 вес.%, в расчете на элемент и общий вес носителя. Неблагородный металл группы VIII присутствует преимущественно в количестве от 1 до 25 вес.%, предпочтительно, от 2 до 15 вес.%, в расчете на элемент и общий вес носителя. Катализатором гидроконверсии этого типа, оказавшимся наиболее подходящим, является катализатор, содержащий никель и вольфрам на фторированном оксиде алюминия.

Названные выше катализаторы на основе неблагородных металлов применяют преимущественно в их сульфидированной форме. Для поддержания сульфидированной формы катализатора во время его использования необходимо присутствие в сырье некоторого количества серы. Предпочтительно присутствие в сырье серы в количестве по меньшей мере 10 мг/кг и, более предпочтительно, от 50 до 150 мг/кг.

Предпочтительный катализатор, который может применяться в несульфидированной форме, содержит неблагородный металл группы VIII, например железо или никель, в сочетании с металлом группы IB, например медью, нанесенной на кислый носитель. Медь присутствует преимущественно для подавления гидрогенолиза парафинов до метана. Объем пор катализатора лежит преимущественно в пределах от 0,35 до 1,10 мл/г по определению методом поглощения воды, площадь поверхности преимущественно составляет 200-500 м2/г по определению БЭТ-методом адсорбции азота и насыпная плотность составляет 0,4-1,0 г/мл. Носитель катализатора готовят преимущественно из аморфного алюмосиликата, в котором оксид алюминия может содержаться в пределах от 5 до 96 вес.%, преимущественно от 20 до 85 вес.%. Содержание оксида кремния в таком носителе в расчете на SiO2 составляет преимущественно от 15 до 80 вес.%. Носитель может также содержать небольшие количества, например 20-30 вес.%, связующего, такого как оксид алюминия, оксид кремния, оксид металлов группы IVA, глина, оксид магния и т.д., преимущественно оксид алюминия или оксид кремния.

Приготовление микросфер из аморфного алюмосиликата описано у Ryland Lloyd В., Tamele M.W. и Wilson J.N. Cracking Catalysts, Catalysts: том VII, Изд. Paul H. Emmet, Reinhold Publishing Corporation, New York, 1960, стр.5-9. Катализатор может быть приготовлен совместной пропиткой носителя металлами из растворов, сушкой при 100-150°C и прокаливанием на воздухе при 200-550°C. Металл группы VIII содержится в количествах примерно 15 вес.% или менее, преимущественно 1-12 вес.%, в то время как металл группы IB обычно присутствует в меньших количествах: например весовое отношение металла группы IB к металлу группы VIII может быть от примерно 1:2 до примерно 1:20.

Ниже охарактеризован типичный катализатор:

Ni, вес.% 2,5-3,5
Cu, вес.% 0,25-0,35
Al2O3-SiO2, вес.% 65-75
Al2Oз (связующее), вес.% 25-30
Площадь поверхности 290-325 м2
Объем пор (по Hg) 0,35-0,45 мл/г
Насыпная плотность 0,58-0,68 г/мл

Другой класс подходящих катализаторов гидроконверсии/гидроизомеризации включает катализаторы на основе материалов типа молекулярных сит, преимущественно содержащих в качестве гидрогенизационного компонента по меньшей мере один металлический компонент группы VIII, преимущественно Pt и/или Pd. В этом случае подходящие цеолитные или какие-либо другие алюмосиликатные материалы включают в себя цеолит бета, цеолит Y, ультрастабильный цеолит Y, ZSM-5, ZSM-12, ZSM-22, ZSM-23, ZSM-48, МСМ-68, ZSM-35, SSZ-32, ферриерит, морденит и силикааминофосфаты такие как SAPO-11 и SAPO-31. Примеры подходящих катализаторов гидроконверсии/гидроизомеризации описаны, например, в WO-A-9201657. Возможны также комбинации этих катализаторов.

Подходящими процессами гидроконверсии/гидроизомеризации являются процессы, включающие в себя первую стадию, на которой используют катализатор на основе цеолита бета или ZSM-48, и вторую стадию, на которой используется катализатор на основе ZSM-5, ZSM-12, ZSM-22, ZSM-23, ZSM-48, МСМ-68, ZSM-35, SSZ-32, ферриерита или морденита. Из последней группы предпочтительны ZSM-23, ZSM-22 и ZSM-48. Примеры таких процессов описаны в US-A-20040065581, в котором раскрыто применение катализатора первой стадии, содержащего платину и цеолит бета, и катализатор второй стадии, содержащий платину и ZSM-48.

Предпочтительными способами получения базового масла для применения в настоящем изобретении были также признаны комбинации способов, в которых продукт Фишера-Тропша вначале подвергают гидроизомеризации первой стадии с использованием аморфного катализатора, содержащего, как описано выше, алюмосиликатный носитель, после чего следует вторая стадия гидроизомеризации с использованием катализатора, содержащего молекулярное сито. Предпочтительно проводить первую и вторую стадии гидроизомеризации в последовательном режиме. Более предпочтительно проводить обе стадии в одном реакторе, содержащем слои указанного выше аморфного и/или кристаллического катализаторов.

На стадии (а) сырье Фишера-Тропша вводится в контакт с водородом в присутствии катализатора при повышенных температуре и давлении. Температуры, как правило, должны быть в пределах от 175 до 380°C, преимущественно выше 250°C и, более предпочтительно, от 300 до 370°C. Давление, как правило, должно быть в пределах от 10 до 250 бар и предпочтительно от 20 до 80 бар. Водород можно подавать с часовой объемной скоростью газа от 100 до 10000 нл/л/ч и преимущественно от 500 до 5000 нл/л/ч. Углеводородное сырье можно подавать с весовой часовой объемной скоростью от 0,1 до 5 кг/л/ч, преимущественно выше 0,5 кг/л/ч и, более предпочтительно, ниже 2 кг/л/ч.

Отношение водорода к углеводородному сырью может составлять от 100 до 5000 нл/кг и преимущественно от 250 до 2500 нл/кг.

Конверсия на стадии (а), определяемая как весовое процентное содержание сырья, кипящего выше 370°C, которое реагирует за один проход с образованием фракции, кипящей ниже 370°C, равна, соответственно, по меньшей мере 20 вес.%, преимущественно не ниже 25 вес.%, но предпочтительно не выше 80 вес.% и, более предпочтительно, не выше 65 вес.%. Сырье, как это определено выше, представляет собой все количество углеводородов, подаваемых на стадию (а), включая, следовательно, и возможный рециркулят высококипящей фракции, которая может быть получена на стадии (b).

На стадии (b) продукт стадии (a) преимущественно разделяют на одну или более дистиллятных топливных фракций и базовое масло или фракцию-предшественник базового масла, имеющую заданную вязкость. Если точка застывания базового масла или предшественника лежит вне желаемых пределов, ее можно дополнительно понизить с использованием стадии (с) депарафинизации, предпочтительно каталитической депарафинизации. При таком варианте осуществления можно получить дополнительное преимущество, подвергая депарафинизации фракцию продукта стадии (а) с более широкими пределами кипения. После этого из получаемого в результате депарафинизированного продукта легкое базовое масло или, возможно, другие масла, имеющие заданную вязкость, могут быть затем выделены, например, с помощью перегонки. Депарафинизацию преимущественно проводят как каталитическую депарафинизацию, которая, например, описана в публикации WO-A-02070627, которая, таким образом, включена в настоящую заявку в качестве ссылки (см., в частности, на стр.8, строка 27 до стр.11, строка 6 примеры подходящих условий и катализаторов депарафинизации). Температура конца кипения направлемого на стадию (с) депарафинизации сырья может быть температурой конца кипения продукта стадии (а) или, по желанию, ниже. Как правило, поступающее в каталитический депарафинизатор сырье должно содержать С1840-углеводороды.

Перед применением продукта согласно изобретению, например после стадии (с) депарафинизации, базовое масло может быть подвергнуто одной или более дополнительным обработкам, таким как завершающая гидрообработка, как описано в примере на стр.11, строка 7 до стр.12, строка 12 в WO-A-02070627.

Используемый в продукте согласно изобретению газойль, полученный на основе процесса Фишера-Тропша, может быть также отогнан от воска, образующегося в процессе Фишера-Тропша. Его также следует подвергнуть депарафинизации (предпочтительно каталитической) перед смешением с легким базовым маслом. Это должно повысить содержание в нем изопарафинов и благодаря этому улучшить его характеристики холодной текучести по сравнению со стандартным газойлем, полученным на основе процесса Фишера-Тропша, который не был подвергнут каталитической депарафинизации. Температура застывания (ASTM D-5950) используемого в настоящем изобретении газойля, полученного на основе процесса Фишера-Тропша, равна преимущественно -42°C или ниже, более предпочтительно -45, или -50, или -51°C или ниже.

Таким образом, согласно одному из вариантов осуществления изобретения, как светлое базовое масло, так и газойль могут быть получены из одного и того же потока воска, образующегося в процессе Фишера-Тропша. Например, воск может быть подвергнут гидрокрекингу и депарафинизации, а полученный рафинат может быть перегнан, в результате чего наряду с другими продуктами будут получены как светлое базовое масло, так и газойлевая фракция. Обе этих фракции могут быть затем смешаны друг с другом (т.е. газойль может быть «возвращен» в поток базового масла) с образованием улучшенного продукта на основе базового масла согласно изобретению.

Один из путей, с помощью которого этого можно достичь, состоит в проведении описанных выше стадий (а) и (b) и разделении на стадии (b) продукта стадии (а) на по меньшей мере газойлевую фракцию и подходящее базовое масло или фракцию-предшественник базового масла. Газойль подвергают должным образом операции депарафинизации, преимущественно операции каталитической депарафинизации, после чего он может быть смешан в соответствующей пропорции с базовым маслом согласно настоящему изобретению. В альтернативном случае фракция базового масла и газойлевая фракция могут быть депарафинизированы совместно, возможно с другими также присутствующими фракциями, после чего производится их разделение и последующее воссоединение.

Подходящий способ одновременного производства газойля на основе процесса Фишера-Тропша и легкого базового масла на основе процесса Фишера-Тропша описан, например, в WO-A-02070627.

Газойль, полученный на основе процесса Фишера-Тропша, должен, как правило, содержать в основном (например, 95 об.% или больше) компонентов, имеющих температуры кипения в пределах температур кипения типичного дизельного топлива («газойля»), т.е. от примерно 150 до 400°C или от 170 до 370°C. В этом случае газойль будет содержать 90 об.% материала, перегоняемого от 300 до 370°C.

Газойль, полученный на основе процесса Фишера-Тропша, будет, как правило, иметь плотность (IP - 365/97) от 0,76 до 0,79 г/см3 при 15°C; цетановое число (ASTM D-613) выше 70, конкретнее от 74 до 85; КВ40 (ASTM D-445) от 2 до 4,5 сСт, преимущественно от 2,5 до 4,0 сСт и, более предпочтительно, от 2,9 до 3,7 сСт; и содержание серы (ASTM D-2622) 5 мг/кг или менее, преимущественно 2 мг/кг или менее.

Газойль должен, соответственно, иметь температуру вспышки (ASTM D-92) равную 100°C или выше, преимущественно 110°C или выше, например от 110 до 120°C.

Используемый в настоящем изобретении газойль, полученный на основе процесса Фишера-Тропша, представляет собой продукт, получаемый реакцией конденсации метана по Фишеру-Тропшу при использовании отношения водород/оксид углерода ниже 1,75, более предпочтительно от 0,4 д