Способ получения покрытий из платиновых металлов
Изобретение относится к технологии получения покрытий из тугоплавких металлов методом химического осаждения из газовой фазы, а именно к методам получения защитных покрытий из иридия и родия, и может быть использовано в производстве полупроводниковых приборов и устройств, а также для получения высокотемпературных защитных покрытий. Осуществляют контактирование прекурсора с поверхностью нагретого изделия, термическое разложение нанесенного на поверхность соединения и удаление летучих продуктов разложения. Получают покрытия из иридия или родия, при этом процесс термического разложения осуществляют при температуре 250-450°C и давлении 0,01-0,05 мм рт.ст., а в качестве прекурсора используют гидрид тетра-трифторфосфин иридия формулы HIr(PF3)4 или гидрид тетра-трифторфосфин родия формулы HRh(PF3)4 соответственно. Обеспечивается получение беспористых мелкокристаллических покрытий с высокой адгезией к материалу подложки. 4 табл., 1 пр.
Реферат
Изобретение относится к области получения покрытий из платиновых металлов и в частности пленок из иридия и родия. Иридий и родий обладают комплексом уникальных свойств: высокой температурой плавления, прочностью при высокой температуре, стойкостью к окислению. Поэтому они находят широкое применение в электропике, оптике и высокотемпературной технике.
Для получения покрытий из этих металлов разработаны и применяются в промышленности различные технологии (Е.K. Ohriner. Processing of Iridium and Iridium Alloys. Metods from purification to fabrication. Platinum Metals Rev., 2008, 52 (3), pp.186-197); электроосаждение, электроосаждение из расплавленных солей, методы физического осаждения из паровой фазы и химическое осаждение из газовой фазы (Chemical Vapor Deposition, CVD). Метод химического осаждения из газовой фазы обеспечивает получение высококачественных равномерных покрытий па изделиях сложной формы.
Характеристики покрытия в CVD-технологии определяются в значительной степени природой соединения - источника металла - прекурсора. В качестве источника иридия в CVD-процессах описано использование различных неорганических, комплексных и металлорганических соединений иридия и родия (J.R. Vargas Garcia, Takashi Goto. Chemical Vapor Deposition of Iridium, Platinum, Rhodium and Palladium. Materials Transaction, 2003, Vol.44, №9, pp.1717-1728). Соединения-прекурсоры подаются в виде паров к поверхности нагретого изделия. При их термическом разложении на поверхности изделия формируется металлическое покрытие, а летучие продукты реакции разложения удаляются из зоны реакции, например, вакуумной системой.
Известен способ осаждения иридиевых покрытий из неорганических соединений-галогенидов иридия (IrCl3, IrCl4, IrBr3 и IrF6) - на графите водородным восстановлением при температуре более 700°С. Наиболее высококачественные, беспористые покрытия на графите и металлах толщиной до 70 мкм были получены с использованием IrF6 (P. Netter and Ph. Campros: Mat. Res. Soc. Symp. Proc. 168 (1990), pp.247-252).
Известен также способ использования в качестве прекурсоров комплексных соединений иридия и родия (соединения этих металлов с β-дикетонатами и кетоиминатами), осаждаемых при температуре подложки 300°С и выше с использованием кислорода в качестве окислителя.
Известен способ использования металлорганических соединений иридия и других платиновых металлов. Они имеют низкую температуру плавления, высокое давление пара (>0,075 мм. рт.ст.) при температуре испарителя менее 100°С и образуют металлические пленки при достаточно низкой температуре подложки (~200°С) (Patent US 721797017, 15.05.2007; Patent US 7393785, 01.07.2008).
Наиболее близким к заявленному является способ получения покрытий из иридия и платины методом CVD по патенту США 6426292.
Способ заключается в нанесении соединения общей формулы LyMYz где Ly - нейтральный или анионный лиганд, который выбирается из групп: полиамипов, триалкилфосфинов, циклопептадиенов, карбоксилатов, дикетонатов, кислород-, азот-, циано- и карбонил- содержащих лигандов, y=1-4; М - платиновый металл; Yz - π - связанный лиганд из группы СО, NO, CN, CS, PX3, AsX3, где Х - галоген. Процесс осуществляется при повышенной температуре и давлении 3-5 мм. рт.ст.
Недостатком данного способа использования металлорганических соединений является получение покрытия, содержащего примеси углерода и кислорода, что ухудшает качество покрытия.
Задачей настоящего изобретения является устранение указанного недостатка. Поставленная задача решается использованием тетра - трифторфосфин - гидридных соединений иридия и родия, общей формулы НМ(PF3)4, где H - водород, выступающий в качестве катиона, М - иридий или родий, P - фосфор, F - фтор, для получения покрытий обладающих высоким давлением паров при температуре менее 100°С, жидких при комнатной температуре, не содержащих в своем составе углеводородных радикалов и способных термически распадаться с образованием металлических покрытий при технологически удобной, относительно не высокой (≤400-500°С) температуре.
Физико-химические свойства указанных соединений представлены в таблице 1.
Таблица 1 | ||||
Комплекс № | Металл | тетра-трифторфосфин-гидрид металла | Температура плавления,t пл, °С | Температура кипения, t кип., °С |
I | Iridium | HIr(PF3)4 | - 39 | 98 |
II | Rhodium | HRh(PF3)4 | - 40 | 96 |
Синтез данных веществ может проводиться из безводных галогепидов металлов (John F. Nixon, J. Richard Swain. Trifluorophosphine Complexes of the Platinum Metals. Platinum Metals Review, 1975, Volume 19, Issue 1, pp.22-29) или соответствующих гексахлориридатов или гексахлорродатов калия или натрия (А.И. Костылев и др.. Заявка RU 2011105461, 14.02.2011) при действии трифторфосфина и водорода при высоком давлении в присутствии меди:
M C l 3 + P F 3 + H 2 + C u → H M ( P F 3 ) 4 ( 1 )
K 2 M C l 6 + P F 3 + H 2 + C u → H M ( P F 3 ) 4 + K C l ( 2 )
где M - Ir, Rh.
Комплекс I неограниченно устойчив при комнатной температуре, комплекс II устойчив под небольшим избыточным давлением (~760-1520 мм. рт.ст.) трифторфосфина и водорода, обладают высоким давлением паров, что является важным технологическим преимуществом и позволяет реализовать высокие скорости осаждения покрытий. В таблицах 2 и 3 представлены данные по давлению паров комплексов I и II в сравнении с данными для соединений иридия и родия, используемых в CVD - технологии (N.В. Morozova et al., Vapor pressure of some volatile iridium(I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. Journal of Thermal Analysis and Calorimetry, Volume 96, Number 1, pp.261-266; J. Hierso et al., MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: Novel process for one-step preparation of noble-metal catalysts. Applied Organometallic Chemistry, 1998, Volume: 12, Issue: 3, Pages: 161-172).
Таблица 2 | ||
Соединения иридия | Давление мм рт.ст. при 20°С (±10%) | Давление мм рт.ст. при 100°С (±10%) |
IrH(PF3)4 | 17 | 780 |
Ir(асас)(СО)2 | 1·10-4 | 0,25 |
Ir(Ср*)(СО)2 | 2·10-4 | 2,0 |
Ir(COD)(acac) | <1·10-5 | 4·10-3 |
Ir(Cp')(COD) | 4-10-4 | 0,1 |
Таблица 3 | ||
Соединения родия | Давление мм рт.ст. при 20°С (±10%) | Давление мм рт.ст. при 100°С (±10%) |
RhH(PF3)4 | ~15 | ~760 |
[Rh(PF3)2Cl]2 | 0,038 | 114 |
[Rh(CO)2Cl]2 | 0,002 | 2,7 |
Rh(С3Н5)3 | 0,012 | 6,1 |
Rh(acac)(CO)2 | 0,001 | 1,66 |
Процесс проводят следующим образом. Покрываемые изделия (подложки) помещают в реакционную камеру на держатель, выполненный из металлической сетки. Камеру вакуумируют до остаточного давления 1·10-3 мм рт.ст. при температуре проведения процесса (250-450°С) в течение 20-30 минут. После этого включают привод вращения держателя подложек и осуществляют подачу паров комплекса I или II с заданной скоростью к поверхности изделий. Пары комплекса I или II поступают к нагретому изделию, где в результате гетерогенной реакции на поверхности протекает реакция термического разложения:
H I r ( P F 3 ) 4 → I r m e t . + H 2 + P F 3 ( 3 )
H R h ( P F 3 ) 4 → R h r m e t . + H 2 + P F 3 ( 4 )
Газообразные продукты реакции и не вступивший в реакции комплекс удаляются из реакционной камеры вакуумной системой. Зона нагрева изделий и зона осаждения разнесены друг от друга, что снижает паразитное осаждение иридия и родия на поверхности электронагревателей. Процесс осуществляется непрерывно до получения требуемой толщины покрытия. Температура регулируется мощностью электронагревателей. Давление в реакционной камере определяется скоростью подачи паров комплексов и производительностью вакуумной системы и составляет, как правило, не более 5·10-2 мм рт.ст.
Структура и морфология образующихся покрытий определяется условиями проведения процесса (температурой изделия, давлением в реакционной камере и скоростью подачи комплексов). В оптимальной области формируются блестящие, равномерные микрокристаллические покрытия.
Качество покрытий определялось рентенографически. Из данных по уширению рентгеновских линий иридиевого покрытия следует, что размер кристаллитов в покрытие составляет 30-50 нм. До толщин ~10 мкм на полированной металлической поверхности покрытие является гладким и зеркальным, при больших толщинах становится матовым. При изменении температуры осаждения от 350-360°С до 470-500°С при скорости осаждения 12-15 мкм/час наблюдается изменение структуры покрытия, связанное с протеканием побочного процесса гомогенного разложения. Покрытие становится темным и непрочным.
Аналогичные закономерности наблюдаются при осаждении родиевых покрытий. В оптимальной температурной области покрытия мелкокристаллические, равномерные и блестящие, имеют размер кристаллитов ~50 нм. При высокой скорости осаждения покрытия (>15 мкм/час) характер покрытия меняется, они приобретают неравномерную структуру и отслаиваются.
Таким образом, использование тетра - трифторфосфин - гидридных соединений иридия (комплекс I-HIr(PF3)4) и родия (комплекс II - HRh(PF3)4) позволяет получать качественные покрытия из этих металлов на керамических и металлических изделиях. Скорости роста покрытия составляют до 12-15 мкм/час. Формирующиеся покрытия имеют микрокристаллическую структуру (размер зерна 5:50 им) и хорошую адгезию (100-120 кг/см2). Микротвердость покрытий составляет ~1000 кг/мм2 для иридия и ~1000 кг/мм2 для родия.
Согласно данному изобретению осаждение покрытий проводят при:
- температуре подложки 250-450°С. При температуре процесса ниже 250°С значительная часть исходного комплекса не распадается и собирается в ловушках. Поэтому проведение процесса в указанном температурном диапазоне (<250°С) является нерациональным. При температурах более 450°С наблюдается протекание побочных процессов: гомогенный распад комплекса в газовой фазе с образованием на подложке темного, неплотного покрытия. В этих условиях также снижается химическая чистота металла вследствие расщепления или диспропорционирования трифторфосфина. Следовательно, повышение температуры процесса более 450°С не желательно из-за резкого снижения качества покрытия.
- давлении в пределах 1·10-2-5·10-2 мм. рт.ст. Рабочее давление в реакционной камере определяется соотношением между скоростью подачи исходных реагентов (комплексов I и II) и производительностью вакуумной системы. Однако проведение процесса при давлении ниже 1·10-2 мм. рт.ст. технически не целесообразно, так как может проводиться только с очень низкой скоростью (<3,0 мкм/час). При давлении свыше 5·10-2 мм. рт.ст. становится существенным вклад гомогенной реакции разложения, что ведет к ухудшению качества покрытия: покрытие становится пористым, адгезия к подложке уменьшается. В предельном случае получаются темные, рыхлые слои.
- скорости покрытия 12-15 мкм/час. Скорость роста покрытия определяется в основном скоростью подачи в реакционную камеру комплексов I и II. При использовании высоко производительной вакуумной системы, способной обеспечить давление в системе не ниже 1·10-2 мм. рт.ст., возможно осаждение покрытий со скоростью до 10-12 мкм/час. При скорости роста покрытия более 15 мкм/час наблюдается формирование блочной, глобулообразной морфологии, отслаивание и растрескивание. Поэтому эту скорость (12 мкм/час) следует считать близкой к предельной.
Выбор в качестве материала покрытия иридия или родия определяется условиями эксплуатации и экономическими требованиями.
Пример
Покрываемые изделия (подложки) помещают в реакционную камеру на держатель, выполненный из металлической сетки. Камеру вакуумируют до остаточного давления 10-3 мм. рт.ст. Температура подложки составляет 250-450°С. Включают привод вращения держателя подложек и осуществляют подачу паров комплекса I или II с заданной скоростью к поверхности изделий. Подачу паров осуществляют через питатель. Пары комплекса I или II поступают к нагретому изделию в течение 20-30 минут, где в результате гетерогенной реакции на поверхности протекает реакция термического разложения.
Результаты проведенных опытов занесены в таблицу 4.
Таблица 4 | ||
Состав покрытия | Иридий | Родий |
Исходное соединение | HIr(PF3)4 | HRh(PF3)4 |
Рабочее давление, мм рт.ст. | 0,01-0,05 | 0,01-0,05 |
Температура подложки, °С | 350-360 | 325-335 |
Скорость роста, мкм/час | 12-15 | 12-15 |
Морфология поверхности | Мелкокристаллическая, зеркальная | |
Толщина покрытия, мкм | 3,2-3,5 | 1,5-2,0 |
Скорость окисления на воздухе | ||
(потеря массы), г/см2·час, | ||
при 900°С | ≤1·10-4 | ≤1·10-6 |
при 1150°С | ≤1·10-3 | ≤1·10-6 |
Адгезия, кг/см2 | 120 | 100 |
Из представленных в таблице результатов испытаний следует, что использование указанных соединений иридия и родия для метода CVD имеет ряд преимуществ по сравнению с прототипом. Прекурсоры имеют высокое давление паров при температуре менее 100°С, не имеют в своем составе углеводородов и элементов, при разложении превращающихся в агрессивные побочные продукты.
Способ получения покрытий из платиновых металлов, включающий контактирование прекурсора общей формулы LyMYz, где Ly - лиганд, y=1, М - платиновый металл, Yz - лиганд, содержащий группу РХ3, где Х - галоген, z=4 с поверхностью нагретого изделия, термическое разложение нанесенного на поверхность соединения и удаление летучих продуктов разложения, отличающийся тем, что получают покрытия из иридия или родия, при этом процесс термического разложения осуществляют при температуре 250-450°C и давлении 0,01-0,05 мм рт.ст., а в качестве прекурсора используют гидрид тетра-трифторфосфин иридия формулы HIr(PF3)4 или гидрид тетра-трифторфосфин родия формулы HRh(PF3)4 соответственно.