Устройство управления зарядкой батареи и способ управления зарядкой батареи для электромобиля
Иллюстрации
Показать всеГруппа изобретений относится к устройству и способу управления зарядкой батареи электромобиля. Устройство управления содержит блок детектирования текущего местоположения, блок установки области управления, блок детектирования дорожной информации, блок оценки энергии, блок выделения максимума/минимума, блок вычисления целевых значений управления, блок вычисления интервала для управления энергией батареи, блок изменения области управления, блок управления зарядкой. Способ управления заключается в том, что выполняют операции детектирования текущего местоположения транспортного средства, установки области управления энергией батареи с использованием текущего местоположения, детектирования проезжаемого маршрута в области для управления энергией батареи, оценки энергии на основе текущего местоположения, выделения максимального и минимального значений энергии для перемещения, вычисления верхнего предельного и нижнего предельного значений для управления энергией батареи на основе максимального и минимального значений энергии, вычисления интервала для управления энергией батареи, изменения области управления, управления устройством генерирования электроэнергии. Технический результат заключается в повышении эффективности при управлении зарядкой батареи. 2 н. и 4 з.п. ф-лы, 28 ил.
Реферат
Область техники
Настоящее изобретение относится устройству и способу для управления зарядкой батареи, установленной в электромобиле.
Предшествующий уровень техники
В документе JP3417389B, опубликованном Патентным ведомством Японии в 2003 году, раскрыто устройство для управления устройством генерирования электроэнергии, установленном в гибридном электромобиле для управления зарядкой батареи.
В этом способе управления зарядкой батареи используется дорожная информация, такая как маршрут перемещения, расстояние перемещения и высота над уровнем моря, полученная от автомобильной навигационной системы. Верхнее предельное значение для управления энергией батареи и нижнее предельное значение для управления энергией батареи устанавливают таким образом, чтобы перед движением по спуску вниз остаточная энергия батареи была минимально возможной, а перед движением вверх остаточная энергия батареи была максимально возможной.
Краткое изложение существа изобретения
Однако в зависимости от условий эксплуатации транспортного средства нижнее предельное значение для управления энергией батареи может оказаться больше верхнего предельного значения. В этом случае невозможно реализовать управление зарядкой батареи.
Задачей настоящего изобретения является обеспечение управления зарядкой батареи, так чтобы соотношение между верхним предельным значением для управления энергией батареи и нижним предельным значением для управления энергией батареи не изменилось на обратное.
Для решения указанной задачи, устройство, которое управляет устройством генерирования электроэнергии, установленным в электромобиле, чтобы управлять зарядкой батареи, согласно настоящему изобретению содержит: блок детектирования текущего местоположения, который детектирует текущее местоположение ведущего транспортного средства; блок установки области управления, который устанавливает область для управления энергией батареи, используя текущее местоположение в качестве опорного; блок детектирования дорожной информации, который детектирует по меньшей мере один проезжаемый маршрут в области для управления энергией батареи; блок оценки энергии, необходимой для перемещения, который оценивает значения энергии, необходимые для перемещения в соответствующие точки на проезжаемом маршруте, исходя из текущего местоположения на основе информации, относящейся к текущему местоположению, и информации, относящейся к соответствующим точкам; блок выделения максимума/минимума, который выделяет максимальное значение и минимальное значение из необходимых значений энергии для перемещения; блок вычисления целевых значений для управления, который вычисляет верхнее предельное значение для управления энергией батареи и нижнее предельное значение для управления энергией батареи на основе максимального значения и минимального значения энергии, необходимой для перемещения; блок вычисления интервала для управления энергией батареи, который вычисляет интервал для управления энергией батареи путем вычитания нижнего предельного значения для управления энергией батареи из верхнего предельного значения для управления энергией батареи; блок изменения области управления, который изменяет область для управления энергией батареи, когда интервал управления энергией батареи не входит в заранее определенный диапазон, так чтобы интервал управления энергией батареи вошел в заранее определенный диапазон; и блок управления зарядкой, который управляет устройством генерирования электроэнергии, установленном на автомобиле, так чтобы остаточная энергия батареи находилась в интервале для управления батареей между верхним предельным значением для управления энергией батареи и нижним предельным значением для управления энергией батареи.
Подробности, а также другие признаки и преимущества настоящего изобретения изложены далее в остальной части описания и показаны на сопроводительных чертежах.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:
Фиг. 1 изображает схему системы, показывающую силовую установку и систему управления гибридного электромобиля, к которым применим вариант настоящего изобретения;
Фиг. 2 изображает блок-схему, показывающую основную процедуру, выполняемую главным контроллером;
Фиг. 3 изображает блок-схему процедуры управления зарядкой с использованием энергии, вырабатываемой с помощью двигателя, которая выполняется главным контроллером;
Фиг. 4 изображает блок-схему, показывающую процедуру управления внешней зарядкой, выполняемую главным контроллером;
Фиг. 5 изображает диаграмму, где показан пример взаимосвязи между скоростью транспортного средства, величиной перемещения педали акселератора и тяговым усилием, которая запоминается контроллером;
Фиг. 6 изображает блок-схему, где показана процедура управления прокладкой маршрута, выполняемая автомобильным навигационным контроллером;
Фиг. 7 изображает блок-схему, где показана процедура вычисления целевых значений для управления, выполняемая автомобильным навигационным контроллером;
Фиг. 8 изображает диаграмму, где показан пример контрольной области для управления энергией батареи;
Фиг. 9 изображает примерную диаграмму, показывающую взаимосвязь между скоростью транспортного средства и прогнозным расстоянием, которое запоминается контроллером;
Фиг. 10 изображает таблицу, где показан пример упорядоченных данных, запоминаемых в буфере данных на этапе S1602 по фиг. 7;
Фиг. 11 изображает таблицу, где показан пример упорядоченных данных, запоминаемых в буфере данных на этапе S1603 по фиг. 7;
Фиг. 12 изображает примерную диаграмму, показывающую взаимосвязь между средней скоростью транспортного средства и средним сопротивлением движению, которая запоминается контроллером;
Фигуры 13А-13В изображают примерные диаграммы, показывающие взаимосвязь между минимальным значением энергии для перемещения и верхним предельным значением заряженности (SOC) батареи и взаимосвязь между максимальным значением энергии для перемещения и нижним предельным значением SOC, которые запоминаются контроллером;
Фиг. 14 изображает диаграмму, иллюстрирующую функционирование системы согласно данному варианту;
Фигуры 15А-15В изображают примерные диаграммы, показывающие взаимосвязь между верхним предельным значением SOC и нижним предельным значением SOC батареи;
Фиг. 16 изображает диаграмму, иллюстрирующую функционирование системы согласно данному варианту в случае сокращения области управления энергией батареи;
Фиг. 17 изображает диаграмму примера взаимосвязи, запоминаемого контроллером, между верхним предельным значением SOC и нижним предельным значением SOC в том случае, когда в области для управления энергией батареи существует внешняя зарядная база;
Фиг. 18 изображает временную диаграмму функционирования согласно данному варианту;
Фиг. 19 изображает временную диаграмму функционирования согласно сравнительному варианту;
Фигуры 20А-20В изображают диаграммы, иллюстрирующие случай, когда область управления энергией батареи сокращается;
Фигуры 21А-21В изображают диаграммы, иллюстрирующие случай, когда область управления энергией батареи увеличивается;
Фиг. 22 изображает диаграмму, иллюстрирующую состояние, в котором внешняя зарядная база существует вне области для управления энергией батареи перед местоположением ведущего транспортного средства в направлении перемещения;
Фиг. 23 изображает диаграмму, иллюстрирующую состояние, в котором ведущее транспортное средство перемещается из состояния, показанного на фиг. 22, так что внешняя зарядная база оказывается в области для управления энергией батареи;
Фиг. 24 изображает временную диаграмму, показывающую изменение энергии батареи, когда внешняя зарядная база оказывается в области для управления энергией батареи.
Описание предпочтительных вариантов воплощения изобретения
Далее со ссылками на чертежи описывается вариант осуществления настоящего изобретения.
Силовая установка
На фиг. 1 представлена схема системы, изображающая силовую установку и систему управления гибридного электромобиля, к которым применимо настоящее изобретение.
Показанный на фиг. 1 гибридный электромобиль (далее «HEV») относится к HEV последовательного типа, где батарея может заряжаться от внешнего источника питания. Следует заметить, что данное изобретение также применимо к HEV параллельного типа или HEV смешанного типа. Настоящее изобретение также применимо к транспортным средствам HEV, в которых не предусмотрена зарядка от внешнего источника питания.
HEV, показанный на фиг. 1, включает в себя двигатель 1, машину 2 генерирования электроэнергии, инвертор 9, батарею 3, инвертор 10, электродвигатель 4, конечную понижающую передачу 5, левое приводное колесо 6L, правое приводное колесо 6R и зарядное устройство 11.
Двигатель 1 приводит в движение машину 2 генерирования электроэнергии. Машина 2 генерирования электроэнергии генерирует электроэнергию, когда приводится в движение двигателем 1. Машина 2 генерирования электроэнергии также действует в качестве стартера, который запускает двигатель 1, при ее возбуждении от батареи 3. Машина 2 генерирования электроэнергии представляет собой высоковольтную трехфазную машину. Инвертор 9 подсоединен между машиной 2 генерирования электроэнергии и батареей 3. Инвертор 9 представляет собой преобразователь переменного тока в постоянный (AC/DC). При выполнении AC/DC преобразования инвертор 9 управляет мощностью между машиной 2 генерирования электроэнергии и батареей 3.
Батарея 3 установлена в HEV. Батарея 3 является высоковольтной батареей. Батарея 3 заряжается энергией, вырабатываемой машиной 2 генерирования электроэнергии. Батарея 3 также заряжается энергией, подаваемой от бытового источника питания 7 или зарядной установки (оборудование для коммерческого использования) 8, служащей в качестве внешней зарядной базы, через зарядное устройство 11. Батарея 30 подает питание на электродвигатель 4, когда это необходимо.
Инвертор 10 подсоединен между батареей 3 и электродвигателем 4. Инвертор 10 представляет собой AC/DC преобразователь. При выполнении AC/DC преобразования инвертор 10 управляет потоком энергии между батареей и электродвигателем 4.
Электродвигатель 4 является высоковольтной трехфазной машиной. Электродвигатель 4 создает тяговое усилие, используя мощность, подаваемую от батареи 3. Электродвигатель 4 приводит в движение левое приводное колесо 6L и правое приводное колесо 6R. Электродвигатель 4 также имеет функцию рекуперативного торможения для зарядки батареи 3 путем преобразования энергии вращения левого приводного колеса 6L и правого приводного колеса 6R в электроэнергию при замедлении транспортного средства.
Конечная понижающая передача 5 включает в себя устройство дифференциальной передачи. Конечная понижающая передача 5 расположена между электродвигателем 4 и левым и правым приводными колесами 6L, 6R.
Левое приводное колесо 6L и правое приводное колесо 6R приводятся в движение тяговым усилием, создаваемым электродвигателем 4.
Зарядное устройство 11 подсоединено к батарее 3. Зарядное устройство 11 включает в себя разъем 11а и разъем 11b. Разъем 11а вставляют в бытовой источник 7 питания. Разъем 11b вставляют в источник питания зарядной установки 8. Бытовой источник 7 питания представляет собой низковольтный внешний источник питания. Источником питания зарядной установки 8 является высоковольтный внешний источник питания. При использовании зарядной установки 8 обеспечивается быстрая зарядка батареи 3.
В автомобиле HEV данного типа двигатель 1 приводит в движение машину 2 генерирования электроэнергии. В результате машина 2 генерирования электроэнергии генерирует электрическую энергию. Эта энергия обеспечивает зарядку батареи 3, служащей в качестве источника питания, установленного на транспортном средстве. Запасенная в батарее энергия подается в электродвигатель 4, когда это необходимо. В результате электродвигатель 4 создает тяговое усилие. Тяговое усилие приводит в движение левое приводное колесо 6L и правое приводное колесо 6R через конечную понижающую передачу 5.
Таким образом, согласно настоящему изобретению, двигатель 1 и машина 2 генерирования электроэнергии образуют устройство генерирования электроэнергии, установленное на транспортном средстве. Электродвигатель 4 согласно настоящему изобретению соответствует источнику энергии для перемещения.
Следует заметить, что при использовании в этом варианте в качестве двигателя 1 и машины 2 генерирования электроэнергии небольших устройств, имеющих сравнительно низкую выходную мощность и сравнительно высокий кпд, достигается повышение кпд и снижение затрат. Дополнительно, при использовании в качестве электродвигателя 4 большого двигателя сравнительно высокой мощности улучшается управляемость (повышается быстродействие).
Система управления
Далее описывается установленный на транспортном средстве контроллер, управляющий вышеуказанной силовой установкой.
Установленный на транспортном средстве контроллер включает в себя контроллер 20 электродвигателя/генератора, контроллер 21 двигателя, контроллер 22 батареи, автомобильный навигационный контроллер 23, контроллер 24 зарядного устройства и главный контроллер 25 силовой установки.
Контроллер 20 электродвигателя/генератора увеличивает и уменьшает входной/выходной крутящий момент (генераторная нагрузка) машины 2 генерирования электроэнергии путем управления инвертором 9. Контроллер 20 электродвигателя/генератора увеличивает и уменьшает входной/выходной крутящий момент (двигательная нагрузка) электродвигателя 4 путем управления инвертором 10.
Контроллер 21 двигателя управляет выходным крутящим моментом двигателя путем регулировки количества поступающего воздуха, установки угла опережения зажигания и количества впрыскиваемого топлива двигателя 1.
Контроллер 22 батареи оценивает значения характеристик внутреннего состояния батареи, такие как состояние заряда (SOC) и энергия заряда/разряда и выполняет защиту батареи.
Автомобильный навигационный контроллер 23 детектирует местоположение ведущего транспортного средства, принимая сигнал (сигнал GPS) от системы 26 глобального позиционирования (далее «GPS»). В этой связи автомобильный навигационный контроллер 23 соответствует блоку детектирования местоположения ведущего транспортного средства. Автомобильный навигационный контроллер 23 также загружает данные карты (дорога, высота над уровнем моря, градиент дороги, кривизна дороги и т.д.), хранящиеся на носителе, например, на DVD. Автомобильный навигационный контроллер 23 также получает данные связи (информацию о пробках и т.п.) от наземной дорожной инфраструктуры (например, системы автомобильной информации и связи (далее «VICS»)). На основе этих данных автомобильный навигационной контроллер 23 осуществляет поиск маршрута к месту назначения и прокладывает маршрут для водителя к месту назначения.
Контроллер 24 зарядного устройства управляет работой зарядного устройства 11, выполняя или прекращая зарядку батареи 3 с использованием энергии от бытового источника 7 питания или зарядной установки 8.
Главный контроллер 25 силовой установки управляет контроллерами 20-24, координируя управление электродвигателем 4 в соответствии с запросами водителя и управление двигателем 1 и машиной 2 генерирования электроэнергии с учетом управляемости и топливной экономичности.
Управление зарядкой батареи
Контроллеры 20-25 осуществляют связь друг с другом по высокоскоростной сети связи для совместного использования различных данных. Главный контроллер 25 силовой установки управляет зарядкой батареи, выполняя программы управления, показанные на фигурах 2-4, на основе указанных совместно используемых данных. На фиг. 2 представлена блок-схема, где показана основная процедура, выполняемая главным контроллером 25. Главный контроллер 25 выполняет основную процедуру многократно с фиксированными периодическими интервалами.
На этапе S1 контроллер 25 детектирует величину воздействия водителя на педаль акселератора (APO). В частности, контроллер 25 детектирует ход педали акселератора при ее нажатии на основе выходного сигнала от датчика 28 (потенциометра) величины воздействия на педаль акселератора.
На этапе S2 контроллер 25 детектирует скорость VSP транспортного средства. В частности, контроллер 25 детектирует скорость VSP транспортного средства на основе выходного сигнала от датчика 29 скорости колеса транспортного средства, который генерирует импульсный сигнал с частотой, соответствующей скорости вращения приводных колес. Следует заметить, что скорость VSP транспортного средства можно детектировать путем преобразования частоты, измеренной в разное время, в скорость VSP транспортного средства в реальном времени.
На этапе S3 контроллер 25 считывает из приемного буфера различные данные, описываемые ниже, которые он получает от контроллеров 20-24 через высокоскоростную сеть связи. В частности, контроллер 25 считывает скорость вращения машины 2 генерирования электрической энергии и скорость вращения электродвигателя 4 из контроллера 20 электродвигателя/генератора. Дополнительно, контроллер 25 считывает флаг определения запуска и скорость вращения двигателя 1 из контроллера 21 двигателя. Контроллер 25 также считывает значение заряженности (далее обозначенную как «SOC») батареи 3 из контроллера 22 батареи. Дополнительно, контроллер 25 считывает верхнее предельное значение SOC батареи, необходимое для управления (далее называемое «верхнее предельное значение SOC»), и нижнее предельное значение SOC батареи, необходимое для управления (далее называемое «нижнее предельное значение SOC»), которые определяются автомобильным навигационным контроллером 23 способом, описываемым ниже. Контроллер 25 дополнительно принимает от контроллера 24 зарядки информацию, указывающую, подсоединен ли к разъему 11а зарядки бытовой источник 7 питания, и информацию, указывающую, подсоединена ли к разъему 11b зарядки зарядная установка 8. Когда к разъему 11а зарядки подсоединен бытовой источник 7 питания, контроллер 25 принимает информацию о зарядной мощности, относящуюся к бытовому источнику 7 питания. Когда к разъему 11а зарядки подсоединена зарядная установка 8, контроллер 25 принимает информацию о зарядной мощности, относящуюся к зарядной установке 8.
На этапе S4 контроллер 25 устанавливает требуемое значение крутящего момента, прикладываемого к электродвигателю 4. В частности, контроллер 25 детектирует заданное тяговое усилие транспортного средства путем использования величины APO воздействия на педаль акселератора и скорости VSP транспортного средства для диаграммы, показанной на фиг. 5, и устанавливает требуемое значение крутящего момента электродвигателя 4 путем умножения заданного тягового усилия на константу (эффективный радиус шины/передаточное отношение понижающей передачи). Когда требуется коррекция крутящего момента для подавления вибрации, вызванной скручиванием приводного вала, причем крутящий момент может быть скорректирован с использованием известной процедуры.
На этапе S5 контроллер 25 осуществляет управление зарядкой посредством генерирования электроэнергии с помощью двигателя внутреннего сгорания (далее называемого «управление выработкой электроэнергии с помощью двигателя»). В частности, контроллер 25 вычисляет требуемое значение крутящего момента для двигателя 1 и требуемое значение генераторной нагрузки для машины 2 генерирования электроэнергии на основе верхнего предельного значения SOC и нижнего предельного значения SOC, полученных на этапе S3, и текущего значения SOC (далее называемого «действительная SOC») батареи 3. Этап S5 соответствует блоку управления зарядкой.
Далее следует более подробное описание этапа S5 с использованием фиг. 3.
На этапе S51 контроллер 25 получает от автомобильного навигационного контроллера 23 верхнее предельное значение SOC и нижнее предельное значение SOC.
На этапе S52 контроллер 25 определяет, следует ли начать генерирование электроэнергии. В частности, контроллер 25 принимает решение о начале генерирования электроэнергии, когда действительное значение SOC меньше нижнего предельного значения SOC.
На этапе S53 контроллер 25 определяет, прекратить ли генерирование электроэнергии. В частности, контроллер 25 принимает решение о прекращении генерирования электроэнергии, когда действительное значение SOC больше верхнего предельного значения SOC.
На этапе S54 контроллер 25 определяет, осуществляется ли генерирование электроэнергии, или, другими словами, осуществлялось ли генерирование электроэнергии в предыдущем периоде вычислений.
На этапе S55 контроллер 25 устанавливает в нуль требуемое значение крутящего момента двигателя и требуемое значение крутящего момента машины генерирования электроэнергии (генераторная нагрузка), чтобы остановить двигатель 1 и машину 2 генерирования электроэнергии, а затем возвращается к управлению на этапе S6 по фиг. 2.
На этапе S56 контроллер 25 вычисляет требуемое значение крутящего момента машины генерирования электроэнергии (генераторная нагрузка) путем вычисления управляющего воздействия для обратной связи по скорости вращения с использованием в качестве целевого значения скорости Ng вращения, при которой двигатель 1 и машина 2 генерирования электроэнергии могут эффективно вырабатывать электроэнергию. Здесь требуемое значение крутящего момента машины генерирования электроэнергии представляет собой значение генераторной нагрузки и, следовательно, имеет отрицательное значение. Машина 2 генерирования электроэнергии вырабатывает электроэнергию для зарядки батареи 3.
На этапе S57 контроллер 25 вычисляет целевую выходную мощность двигателя на основе верхнего предельного значения SOC, нижнего предельного значения SOC и действительного значения SOC. Затем контроллер 25 определяет требуемое значение крутящего момента двигателя, при котором целевая выходная мощность двигателя может быть реализована при скорости Ng вращения, описанной выше, а затем возвращается к управлению на этапе S6 по фиг. 2. Следует заметить, что целевая выходная мощность двигателя по существу равна выходной мощности при генерировании электроэнергии.
Таким образом, если определено, что на этапе S54 генерирование электроэнергии осуществляется в настоящий момент, то контроллер 25 переходит к управлению на этапах S56 и S57, а, если определено, что генерирование электроэнергии не происходит, то контроллер 25 переходит к управлению на этапе S55. Таким образом, контроллер 25 поддерживает текущее состояние генерирования электроэнергии.
Как очевидно из приведенного выше описания, управление генерированием электроэнергии с помощью двигателя 1, показанное на фиг. 3, выполняется для обеспечения того, чтобы действительное значение SOC было меньше верхнего предельного значения SOC (верхнее предельное значение для управления энергией батареи), и было больше нижнего предельного значения SOC (нижнее предельное значение для управления энергией батареи).
Далее со ссылками на фиг. 4 описывается управление процессом внешней зарядки, выполняемое на этапе S6 по фиг. 2.
Управление внешней зарядкой выполняется тогда, когда батарея 3 заряжается энергией извне, например, от бытового источника 7 питания или зарядной установки 8, другими словами, от внешней зарядной базы.
На этапе S601 контроллер 25 определяет, имеется ли запрос водителя на внешнюю зарядку. В частности, контроллер 25 может определить, запросил ли водитель внешнюю зарядку, исходя из состояния переключателя внешней зарядки, расположенного рядом с сиденьем водителя, или от автомобильной навигационной системы. Если указанный запрос имеется, то контроллер 25 устанавливает значение флага запроса внешней зарядки равным единице. Если запрос отсутствует, то контроллер 25 устанавливает значение флага запроса внешней зарядки равным нулю.
На этапе S602 контроллер 25 определяет, был ли сделан запрос на внешнюю зарядку, путем определения того, равно ли единице значение флага запроса на внешнюю зарядку. Если запрос на внешнюю зарядку отсутствует, то контроллер 25 выходит из процедуры по фиг. 4 и возвращается к управлению на этапе S7 по фиг. 2. Если запрос на внешнюю зарядку имеется, то контроллер 25 переходит к управлению на этапе S603.
На этапе S603 контроллер 25 определяет, движется ли транспортное средство. Если транспортное средство движется, то контроллер 25 не может выполнить внешнюю зарядку. Следовательно, когда автомобиль движется, контроллер 25 выходит из процедуры по фиг. 4 и возвращается к управлению на этапе S7 по фиг. 2. Когда транспортное средство не движется, контроллер 25 переходит к управлению на этапе S604.
На этапе S604 контроллер 25 дает команду водителю ввести целевое значение SOC, которое должно быть достигнуто в момент завершения внешней зарядки (далее называемый «целевое значение SOC по завершении внешней зарядки»). Водитель вводит целевое значение SOC по завершении внешней зарядки с помощью переключателя, расположенного рядом с сиденьем водителя, или, например, устройства ввода автомобильной навигационной системы.
На этапе S605 контроллер 25 определяет, возможна ли внешняя зарядка. В частности, когда бытовой источник 7 питания подсоединен к разъему 11а внешней зарядки, контроллер определяет, что внешняя зарядка возможна. В альтернативном варианте, когда к разъему 11b внешней зарядки подсоединена зарядная установка 8, контроллер 25 определяет, что внешняя зарядка возможна. Контроллер 25 ждет, пока не станет возможным внешняя зарядка, и когда внешняя зарядка становится возможной, переходит к управлению на этапе S606.
На этапе S606 контроллер 25 определяет, достигло ли действительное значение SOC целевого значения SOC по завершении внешней зарядки.
На этапе S607 контроллер 25 устанавливает значение флага выполнения внешней зарядки равным 1, и продолжает внешнюю зарядку.
На этапе S608 контроллер 25 определяет, подсоединен ли разъем 11а внешней зарядки или разъем 11b внешней зарядки. Если это так, то контроллер 25 переходит к управлению на этапе S606. Благодаря выполнению вышеописанной обработки, поддерживается подсоединение разъема 11а или 11b внешней зарядки (этап S608), и благодаря продолжению внешней зарядки (этап S607) действительное значение SOC возрастает. Как только действительное значение SOC достигнет целевого значения SOC по завершении внешней зарядки, управление переходит с этапа S606 на этап S610. Когда разъем 11а внешней зарядки или разъем 11b внешней зарядки окажется выдернутым в ходе внешней зарядки (прерывание соединения), контроллер 25 переходит к управлению на этапе S609.
На этапе S609 контроллер 25 информирует водителя о том, что разъем 11а внешней зарядки или разъем 11b внешней зарядки выдернут, в результате чего имеет место прерывание внешней зарядки. Водитель может быть проинформирован о прерывании внешней зарядки путем отображения соответствующей информации на экране автомобильной навигационной системы. В альтернативном варианте может быть выдано голосовое сообщение.
На этапе S610 контроллер 25 информирует водителя о том, что действительное значение SOC достигло целевого значения SOC завершения внешней зарядки, что приводит к завершению внешней зарядки. Водитель может быть проинформирован о завершении внешней зарядки путем отображения соответствующей информации на экране автомобильной навигационной системы. В альтернативном варианте может быть выдано речевое сообщение.
На этапе S611 контроллер 25 устанавливает значение флага выполнения внешней зарядки в нуль, чтобы прекратить внешнюю зарядку, а затем управление переходит к этапу S7 по фиг. 2.
Вернемся к фиг. 2, где на этапе S7 контроллер 25 передает на соответствующие контроллеры через высокоскоростную сеть связи, показанную на фиг. 1: флаг выполнения внешней зарядки, установленный/сброшенный на этапах S607 и S611 по фиг. 4; требуемое значение крутящего момента двигателя, определенное на этапах S55 и S57 по фиг. 3; требуемое значение крутящего момента машины генерирования электроэнергии, определенное на этапах S55 и S56 по фиг. 3; требуемое значение крутящего момента электродвигателя, определенное на этапе S4 по фиг. 2; и флаг запроса остановки/запуска двигателя, созданный на этапах S55 и S57 по фиг. 3. Затем контроллеры выполняют соответствующие команды.
Верхнее предельное значение SOC и нижнее предельное значение SOC
Далее описываются целевые значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC), полученные главным контроллером на этапе S51 по фиг. 3.
Целевые значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC) вычисляются вычислительной программой, показанной на фиг. 7, когда автомобильный навигационный контроллер 23 выполняет навигационное управление транспортным средством, показанное на фиг. 6. В этом варианте автомобильный навигационный контроллер 23 выполняет указанную вычислительную программу, но эту программу не обязательно должен выполнять автомобильный навигационный контролер 23, поскольку ее может выполнять другой контроллер, отличный от автомобильного навигационного контроллера 23, начиная с главного контроллера 25.
Во всех случаях показанная на фиг. 6 автомобильная навигационная программа выполняется многократно с фиксированными периодическими интервалами вычислений. Соответственно, программа вычисления целевых значений для управления энергией батареи, показанная на фиг. 7, также выполняется многократно с идентичными фиксированными периодическими интервалами.
На этапе S11 получают информацию о местоположении ведущего транспортного средства (долгота, широта, высота над уровнем моря) и информацию о направлении перемещения ведущего транспортного средства на основе сигнала GPS от спутника 26 Глобальной системы позиционирования (далее называемый «спутник GPS»).
На этапе S12 контроллер 23 принимает дорожную информацию, например, информацию о пробках на дорогах, относящуюся к району, где находится ведущее транспортное средство, от наземной инфраструктуры 27 трафика (например, от системы VICS) и записывает полученную информацию в приемный буфер. Следует заметить, что информация о пробках может быть получена от системы, отличной от системы VICS.
На этапе S13 контроллер 23 получает данные карты (маршрут, высота над уровнем моря, градиент дороги, кривизна дороги и т.д.), относящиеся к дорогам вблизи местонахождения ведущего транспортного средства, с носителя данных, например, DVD, и записывает полученные данные в приемный буфер.
На этапе S14 контроллер 23 получает значение скорости VSP транспортного средства, детектированное главным контроллером 25 на этапе S2 по фиг. 2, и записывает полученное значение скорости VSP транспортного средства в приемный буфер.
На этапе S15 контроллер 23 прокладывает маршрут от текущего местоположения ведущего транспортного средства до места назначения на основе информации о местоположении ведущего транспортного средства (долгота, широта, высота над уровнем моря), информации о направлении перемещения ведущего транспортного средства, данные карты (маршрут, высота над уровнем моря, градиент дороги, кривизна дороги и т.д.), записанные в приемном буфере, и информации о месте назначения, установленной водителем. Затем контроллер 23 направляет водителя по маршруту, используя изображения и голос.
Автомобильный навигационный контроллер обеспечивает прокладку маршрута, применяя способ, уже нашедший практическое использование, в связи с чем его подробное описание опущено.
На этапе S16 контроллер 23 устанавливает целевые значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC). Конкретное содержание этой процедуры установки будет описано ниже.
На этапе S17 контроллер 23 передает заданные значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC) на главный контроллер 25. Как было описано выше, главный контроллер 25 получает заданные значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC) на этапе S51 по фиг. 3.
На фиг. 7 представлена блок-схема, иллюстрирующая процедуру, выполняемую контроллером 23 для установки целевых значений для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC).
В этом варианте целевые значения для управления энергией батареи (верхнее предельное значение SOC и нижнее предельное значение SOC) вычисляют на основе информации о местоположении ведущего транспортного средства (долгота, широта, высота над уровнем моря) и информации о направлении перемещения ведущего транспортного средства (азимут), полученной из сигнала GPS и данных карты (маршрут, высота над уровнем моря, градиент дороги, кривизна дороги и т.д.), записанных в приемном буфере. Далее описывается конкретное содержание этой процедуры.
На этапе S1601 контроллер 23 устанавливает контрольную область с информацией о дороге (контрольная область для управления энергией батареи), в которой выполняется поиск для управления энергией батареи на основе информации о местоположении ведущего транспортного средства (долгота, широта, высота над уровнем моря), информации о направлении перемещения ведущего транспортного средства и скорости VSP транспортного средства. Этап S1601 соответствует блоку установки области управления.
Далее подробно описывается контрольная область для управления энергией батареи. Контроллер 23 устанавливает контрольную область в качестве максимальной области поиска дорожной информации для управления энергией батареи. Затем контроллер 23 устанавливает верхнее предельное значение SOC и нижнее предельное значение SOC, постепенно сужая область поиска. Установка верхнего предельного значения SOC и нижнего предельного значения SOC при постепенном сужении области поиска является ключевым моментом этого варианта воплощения.
Следует заметить, что в последующем описании контрольная область для управления энергией батареи имеет форму круга, но эта область не обязательно должна иметь такую форму. Дополнительно, скорость VSP транспортного средства не ограничивается значением, вычисленным главным контроллером 25, но может быть вычислена, исходя из скорости изменения во времени информации о местоположении ведущего транспортного средства (долгота, широта), полученной из сигнала GPS.
На этапе S1601 контроллер 23 устанавливает контрольную область для управления энергией батареи. Далее со ссылками на фиг. 8 описывается конкретный способ такой установки.
Как показано на фиг. 8, контроллер 23 устанавливает в качестве контрольной области для управления энергией батареи окружность радиусом Rbase с центром в опорной точке области. Радиус Rbase контрольной области имеет произвольное заранее определенное значение. Координаты по долготе и широте (LObase, LAbase) точки контрольной области вычисляют, как показано ниже, на основе координат по долготе и широте (LOcur, LAcur) ведущего транспортного средства, азимута q, характеризующего направление перемещения ведущего транспортного средства, и прогнозного расстояния Rf, определенного, исходя из скорости VSP транспортного средства.
Прогнозное расстояние Rf определяют заранее путем использования скорости VSP транспортного средства применительно к графику, показанному в качестве примера на фиг. 9. Как видно из фиг. 9, когда скорость VSP транспортного средства ниже заранее определенного значения, прогнозное расстояние Rf увеличивается с ростом скорости VSP транспортного средства. Другими словами, в качестве точки отсчета контрольной области устанавливают точку, неизменно находящуюся далее по отношению к местоположению ведущего транспортного средства, когда скорость транспортного средства увеличивается. Когда скорость VSP транспортного средства превышает заранее определенное значение,