Способ управления рабочим циклом поперечной подачи при шлифовании

Иллюстрации

Показать все

Изобретение относится к области машиностроения и может быть использовано при автоматизации круглошлифовальных, внутришлифовальных и желобошлифовальных станков в массовом и крупносерийном производстве. В момент окончания обработки определяют конечную скорость снятия припуска в основном контуре, на основании которой определяют шероховатость поверхности детали в момент окончания обработки. Момент разладки процесса шлифования и момента начала статистической оценки осуществляют по малой выборке - среднему значению размера детали и размаху шероховатости в момент окончания обработки. Среднее значение и размах погрешности изготовления и шероховатости детали определяются в статических условиях послеоперационного контроля в дополнительном контуре. Используя оценку шероховатости, осуществляют параметрическую идентификацию шероховатости детали в момент окончания обработки. На основе оценки погрешности изготовления выполняют коррекцию припуска на выхаживание в основном контуре системы управления. В результате уменьшается трудоемкость контроля и повышается точность определения момента разладки процесса шлифования и появления особой причины. 3 ил.

Реферат

Изобретение относится к области машиностроения и может быть использовано для автоматизации круглошлифовальных, внутришлифовальных и желобошлифовальных станков в массовом и крупносерийном производстве.

Известен способ управления шлифованием на основе двухконтурных систем (Решетов А.Г., Шелеметьев В.Д. Самонастраивающаяся комбинированная система активного контроля с электронным статистическим компаратором во втором контуре. В сб. «Алгоритмизация и автоматизация технологических процессов и промышленных установок», Куйбышев, КуАИ, 1984, с.157-162), при котором переключение подачи VC шлифовального суппорта осуществляется основным контуром в функции припуска S обрабатываемой детали VC(S).

Обратная связь осуществляется с помощью дополнительного контура, который выполняет контроль размера обработанной детали в ручном или полуавтоматическом режиме. При отклонении размера детали на величину ΔL выполняется коррекция, как правило, припуска на выхаживание ΔSв, т.е.

Δ S в = f ( Δ L ) .                                       ( 1 )

Таким образом, двухконтурная система управления реализует адаптивный алгоритм управления вида VC(S,П), где П - параметр адаптации, определяемый отклонением размера обработанной детали от номинального значения.

Использование двухконтурной системы и адаптивного алгоритма управления поперечной подачей обусловлено наличием возмущающих факторов, носящих случайный функциональный характер. К числу таких факторов, характерных для процесса шлифования, относятся, например, износ и затупление шлифовального круга, тепловые и силовые деформации, износ измерительных наконечников и другие. Результирующее воздействие перечисленных факторов определяет, в конечном итоге, погрешность обработанной детали ΔL.

Управляющее воздействие призвано компенсировать действие суммарного возмущающего фактора за счет коррекции алгоритма управления, в данном случае, путем изменения припуска на выхаживание ΔSв.

В роли дополнительного контура в двухконтурных системах выступают, как правило, приборы послеоперационного контроля со статистической обработкой измерительной информации (Решетов А.Г. Автоматизация шлифования и размерного контроля деталей. Политехник, С.-П., 2003, с.124).

Статистическая обработка результатов контроля производится в таких системах по малой выборке деталей размером 3…5 шт. с интервалом 30…60 минут. Размер выборок и периодичность их отбора имеют принципиальное значение с точки зрения расслоения измерительной информации. Малый размер выборки обеспечивает при этом «мгновенность», а следовательно, лучшие возможности обнаружения действия особых причин. Другим обстоятельством, принимаемым в расчет при определении размера выборки, является трудоемкость контроля, выполняемого большей частью вручную.

Подобным образом влияет и периодичность отбора выборок: короткие интервалы между выборками снижают риск незамеченной разладки, но увеличивают трудоемкость контроля.

К числу недостатков двухконтурных систем контроля со статистической обработкой результатов контроля во втором контуре следует отнести низкую чувствительность устройства к обнаружению особой причины на ранних стадиях ее проявления. Как следствие, статистический контроль и, в частности, метод средних значений (карта X ¯ − R ), использующий в качестве показателя качества размеры обработанных деталей, обладает значительным запаздыванием в реализации управляющего воздействия, что снижает эффективность статистического регулирования технологического процесса обработки деталей.

Лучшие результаты могут быть получены, если обнаружение момента разладки и появления особой причины будут выполнены на основе анализа высокочастотных составляющих, входящих в исходный информационный сигнал, с помощью известного устройства управления рабочим циклом поперечной подачи при шлифовании (прототип - патент RU 2355556 C2, опубл. 20.05.2009 г., БИ №14). Сигнал, содержащий высокочастотные составляющие, принадлежит шероховатости обработанной поверхности и другим проявлениям погрешности формы (Невельсон М.С. Автоматическое управление точностью обработки на металлорежущих станках. Л.: Машиностроение, 1982, с.18). Шероховатость и погрешность формы первыми реагируют на изменение условий обработки, и в этой связи шероховатость может быть использована для обнаружения особой причины в контролируемом технологическом процессе механообработки. С этой целью обработанные на станке детали контролируются прибором послеоперационного контроля по шероховатости на соответствие Ra<Ra доп, где Ra доп - предельно допустимое значение шероховатости. Объем выборки здесь может быть равен одной детали, а периодичность отбора сохраняется такой же, как и при контроле размеров деталей. При обнаружении Ra≥Ra доп оператор начинает выполнять обычный статистический контроль размеров деталей по малой выборке (3…5 деталей) с последующим построением контрольной карты X-R и статистическим регулированием технологического процесса.

Однако данному методу свойственны недостатки:

1) возрастает трудоемкость послеоперационного контроля вследствие необходимости отслеживать показатель качества и по шероховатости и по размеру детали. Как следствие увеличивается стоимость системы послеоперационного контроля, содержащей автономные структуры контроля и статистического анализа двух показателей качества - шероховатости и размера детали;

2) запаздывание в обнаружении особой причины остается значительным, так как контроль шероховатости осуществляется с той же периодичностью, что и контроль размера детали.

Задачей изобретения является уменьшение трудоемкости контроля и повышение точности определения момента разладки и появления особой причины. С этой целью предлагается способ определения показателя качества детали - микрогеометрии поверхности - на основе измерения скорости съема металла в момент окончания обработки и отвода шлифовального круга.

Действительно, микрогеометрия (шероховатость) поверхности детали в момент окончания обработки при прочих равных условиях является функцией конечной скорости съема металла Vмк (Михелькевич В.Н. Автоматическое управление шлифованием. М.: Машиностроение, 1975, с. 24).

R a = C 1 V м к n ,                                               ( 2 )

где С1, n - эмпирические коэффициенты.

Так как при механообработке на обрабатываемую деталь воздействуют многочисленные возмущающие факторы, микрогеометрия поверхности детали формируется случайным образом и поэтому ее количественная оценка осуществляется статистическими методами по малой выборке (3…5 деталей) или методом скользящей средней

R ¯ a = C 2 V ¯ м к ;                                           ( 3 )

R R a = C 2 ( V м к max − V м к min ) .                                               ( 4 )

Технический результат заключается в выполнении контроля микрогеометрии (шероховатости) детали непосредственно в цикле обработки детали без участия оператора станка с помощью измерения косвенного параметра - скорости съема припуска в момент окончания обработки.

Поставленная задача решается тем, что в предлагаемом способе управления шлифовальным станком, включающем переключение подачи шлифовального суппорта в функции текущего припуска, контролируемого основным контуром системы управления, и определение припуска на выхаживание детали на этапе послеоперационного контроля, осуществляемого на основе статистических оценок среднего значения и размаха малой выборки деталей, контролируемых дополнительным контуром системы управления, в момент окончания обработки определяют конечную скорость снятия припуска. На основе конечной скорости снятия припуска определяют шероховатость поверхности детали в динамике в момент окончания обработки. По малой выборке определяют среднее значение и размах шероховатости в момент окончания обработки, по отклонению которых определяют момент разладки процесса шлифования и момент начала статистической оценки - среднего значения и размаха погрешности изготовления и шероховатости детали, определяемых в статических условиях послеоперационного контроля. На основе оценки шероховатости в статических условиях осуществляют параметрическую идентификацию шероховатости в момент окончания обработки. На основе оценки погрешности изготовления выполняют корректирующее воздействие путем изменения припуска на выхаживание в основном контуре системы управления.

Способ управления рабочим циклом поясняется графиками фиг.1, фиг.3 и блок-схемой фиг.2.

На фиг.1 представлен наиболее распространенный в производственной практике трехинтервальный цикл управления поперечной подачей VC(S) реализуемый основным контуром. На фиг.2 представлена блок-схема двухконтурной системы управления. На фиг.3 (а, б, в) представлены диаграммы шероховатости Ra, определяемые различным образом: (а) - в соответствии с (2) в момент окончания обработки детали; (б) - через среднее значение R ¯ a по малой выборке; (в) - методом скользящей средней. На фиг.3, г представлена карта средних значений для погрешности размеров Δ L ¯ ( n ) , определяемых в статических условиях послеоперационного контроля до и после обнаружения особой причины. Момент появления особой причины обозначен на диаграмме линией А-А.

Обработка детали на станке осуществляется, как это показано на фиг.1, по трехинтервальному циклу управления 1 поперечной подачей вида VC(S). Фазовая траектория Vм(S) отражает основные характеристики процесса шлифования.

Примем на начальном этапе, например, после правки круга, что действие возмущающего фактора (затупление круга) отсутствует или незначительно, а обработка детали ведется по траектории 2 (Sн-Vм1-Vм2-Vм оpt). Значение конечной скорости Vмк=Vмк opt будем считать оптимальным для разрешенного диапазона конечных скоростей, обозначенных, как Vмк min и Vмк max, которые в свою очередь однозначно определяют диапазон вариаций шероховатости ΔRa от номинального значения.

На последующих этапах работы действие возмущающего фактора будет нарастать и для его компенсации необходимо будет изменить припуск на выхаживание с S2 на S 2 ' . При этом фазовая траектория 3 пройдет через точки Sн-Vм3-Vм4-Vмк оpt и положение конечной точки фазовой траектории сохранит свое значение Vмк=Vмк оpt.

Значение припуска на выхаживание определяется в соответствии с выражением (1) в дополнительном контуре 4 системы активного контроля с помощью прибора послеоперационного контроля 5. Указанный прибор с помощью датчиков 6 и 7, контролирующих погрешность размера детали и шероховатость соответственно, осуществляет статистическую обработку информации, как это представлено на графиках фиг.3.

Самым важным моментом при статистическом управлении качеством продукции является как можно более раннее обнаружение возникновения особой причины, приводящей к разладке технологического процесса.

Рассмотрим последовательно процесс обнаружения системой контроля момента разладки и принятие мер для формирования управляющего воздействия с помощью графиков фиг.3.

При обработке детали 8 на станке 9 основной контур 10 системы активного контроля определяет в соответствии с (3) значение шероховатости Ra в момент окончания обработки. Получающиеся значения шероховатости Ra выводятся на дисплей 11 основного контура в виде точечной диаграммы 12 Ra(n). Среднее значение R ¯ a соответствует значению конечной скорости съема припуска Vмк=Vмк оpt.

Расслоение информации с целью определения особой причины осуществляется путем статистической обработки последовательности Ra(n), например, с помощью выборок определенного размера (график 13) или методом скользящей средней (график 14). В момент, обозначенный на фиг.3 прямой А-А, обнаруживается действие особой причины, выражающееся в данном случае в приближении технологического процесса к верхней границе регулирования UСLRa.

С этого момента автоматически или с помощью оператора осуществляется послеоперационный контроль размеров обработанных деталей 8 с помощью датчика 6 и прибора послеоперационного контроля 5.

На фиг.3 кривая 15 на контрольной карте средних значений отражает течение наблюдаемого технологического процесса. До появления особой причины, обозначенной прямой А-А, моменты изъятия выборок в силу отсутствия необходимости обнаружения особой причины, достаточно редки и определяются причинами долговременного порядка: анализом стабильности технологического процесса во времени, контролем точности оборудования, совершенствованием технологического процесса и т.д. После появления особой причины частота изъятия выборок увеличивается и определяется мерами регулирующего воздействия и характером компенсируемого возмущающего фактора.

По достижении результата регулирования частота изъятия выборок возвращается к первоначальному значению, действовавшему до появления особой причины. Такой способ статистического контроля значительно снижает его трудоемкость.

Для параметрической идентификации коэффициента С2, необходимого для модели (3), периодически осуществляется контроль шероховатости с помощью датчика 7 и прибора послеоперационного контроля 5.

В реальной практике для экономии затрат процедуру идентификации при стабильном характере 12 достаточно проводить периодически в метрозале или ОТК производства.

Практическая реализация заявленной системы выполнена на основе приборов, разработанных в совместной научно-производственной лаборатории «Автоматические системы контроля» Тольяттинского государственного университета и ОАО «АВТОВАЗ».

Основной контур 10 системы выполнен на основе прибора модели АСК2974, имеющего в своем составе бортовой компьютер и устройство визуализации для наблюдения технологического процесса и построения контрольных карт (фиг.3).

Дополнительный контур 4 содержит прибор контроля размеров и шероховатости детали модели АСК1147. Краткие технические сведения по указанным приборам прилагаются.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА АКТИВНОГО КОНТРОЛЯ МОДЕЛИ АСК2974
1. Количество входных каналов 2;
2. Тип датчиков индуктивный контактный;
3. Тип системы индикации TFT-LCD; 5,7”
4. Визуальная информация, представленная устройством индикации - текущий припуск обрабатываемой детали в линейно-дискретной форме в диапазоне - 100-0-500 мкм;
- текущий припуск обрабатываемой детали в цифровой форме с дискретностью отсчета 1,0 мкм;
- точечные диаграммы погрешности размера детали ΔL и шероховатости Ra, определяемые в момент окончания обработки;
- фазовые характеристики процесса обработки в координатах Vм-S;
- настроечная и служебная информация.
5. Предел размаха срабатывания команд в рабочем диапазоне, мкм 0,5;
6. Число команд управления до 8;
7. Вид контролируемой поверхности гладкая, прерывистая;
8. Интерфейс, используемый для приема-передачи сообщений RS232;
9. Питание прибора 100…240 В, 50 Гц;
10. Потребляемая мощность, ВА 30;
11. Габаритные размеры, мм 340×285×135.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА КОНТРОЛЯ РАЗМЕРОВ И ШЕРОХОВАТОСТИ ДЕТАЛИ МОДЕЛИ АСК1147
1. Метод получения измерительной информации контактный в измерительном приспособлении;
2. Тип используемых датчиков индуктивный, дифференциальный;
3. Количество входных информационных каналов до 8
4. Используемый интерфейс для приема-передачи информационных сигналов RS232;
5. Контролируемые параметры: ΔL, Ra отклонение размера детали от номинального значения;
6. Рассчитываемые статистические параметры среднее значение выборки Δ L ¯ среднее значениешероховатости R ¯ a , размах RΔL, стандартное отклонение S;
7. Визуальное представление статистической информации карта Шухарта;
8. Габаритные размеры, мм 310×265×120;
9. Питание 100…240 В: 50 Гц.

Способ управления рабочим циклом поперечной подачи при шлифовании, включающий переключение подачи шлифовального суппорта в функции текущего припуска, контролируемого основным контуром системы управления, и определение припуска на выхаживание детали на этапе послеоперационного контроля, осуществляемого на основе статистических оценок среднего значения размеров деталей и размаха малой выборки деталей, контролируемых дополнительным контуром системы управления, отличающийся тем, что в момент окончания обработки определяют конечную скорость снятия припуска, на основе которой определяют шероховатость поверхности детали в момент окончания обработки, а по малой выборке - среднее значение размеров и размах шероховатости в момент окончания обработки, по отклонению которых определяют момент разладки процесса шлифования и момент начала статистической оценки среднего значения размеров и размаха погрешности изготовления и шероховатости детали, определяемых в статических условиях послеоперационного контроля, причем на основе оценки шероховатости в статических условиях осуществляют параметрическую идентификацию шероховатости детали в момент окончания обработки, а на основе оценки погрешности изготовления выполняют корректирующее воздействие путем изменения припуска на выхаживание в основном контуре системы управления.