Способ получения диарилкарбонатов или алкиларилкарбонатов из диалкилкарбонатов

Иллюстрации

Показать все

Изобретение относится к усовершенствованному способу получения по меньшей мере одного диарилкарбоната формулы (I) и/или алкиларилкарбоната формулы (IV) из по меньшей мере одного диалкилкарбоната и по меньшей мере одного ароматического гидроксисоединения формулы III, где R, R' и R'' независимо друг от друга означают атом водорода, линейный или разветвленный алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода, арил с 6-34 атомами углерода или галогенный остаток, причем R может означать также группу -COO-R''', в которой R''' может означать атом водорода, линейный или разветвленный алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода или арил с 6-34 атомами углерода, а R1 является линейным или разветвленным алкилом с 1-34 атомами углерода, в котором (a) диалкилкарбонат или диалкилкарбонаты в присутствии по меньшей мере одного катализатора переэтерификации подвергают взаимодействию с ароматическим гидроксисоединением или ароматическими гидроксисоединениями в первой реакционной колонне, содержащей по меньшей мере одну укрепляющую часть в головной части колонны и по меньшей мере одну реакционную зону под укрепляющей частью, которая содержит по меньшей мере две секции, (b) пар, отходящий в головной части первой реакционной колонны, полностью или частично конденсируют по меньшей мере в одном конденсаторе, (c) кубовый продукт первой реакционной колонны подают по меньшей мере в еще одну реакционную колонну, содержащую по меньшей мере одну укрепляющую часть в головной части колонны и по меньшей мере одну реакционную зону под укрепляющей частью, и подвергают его в этой колонне (в этих колоннах) последующему превращению, (d) не прошедший превращение в реакционных колоннах или образовавшийся во время реакции диалкилкарбонат полностью или частично отделяют от алкилового спирта, образовавшегося во время реакции, по меньшей мере еще на одном этапе способа, включающем в себя по меньшей мере одну дистилляционную колонну, и (e) отделенный на этапе (d) диалкилкарбонат, при необходимости, после последующей очистки, снова подают в первую реакционную колонну, где дополнительная реакционная колонна (дополнительные реакционные колонны) оснащена (оснащены) одним или несколькими конденсаторами, и теплоту конденсации, образующуюся при конденсации в этих конденсаторах, прямо или косвенно возвращают в процесс. 11 з.п. ф-лы, 4 ил., 2 пр.

Реферат

Изобретение относится к способу получения диарилкарбонатов и/или алкиларилкарбонатов из диалкилкарбонатов и ароматических гидроксисоединений с применением по меньшей мере двух реакционных колонн, причем теплоту конденсации одной или нескольких из этих колонн используют на других этапах этого способа.

Получение ароматических и алифатически-ароматических эфиров угольной кислоты (карбонатов) путем переэтерификации, начиная от алифатических эфиров угольной кислоты и ароматических гидроксисоединений, в принципе известно. При этом речь идет о равновесной реакции, причем положение равновесия почти целиком сдвинуто в направлении алифатически замещенных карбонатов. Поэтому получать алифатические карбонаты из ароматических карбонатов и спиртов относительно легко. Для проведения обратной реакции, в направлении ароматических карбонатов, необходимо, однако, эффективно сдвинуть крайне неблагоприятно расположенное равновесие в сторону ароматических карбонатов, причем необходимо применять не только очень активные катализаторы, но также и подходящие способы проведения процесса.

Известно проведение таких равновесных реакций в колоннах и благоприятный сдвиг равновесия таким образом в направлении образования желаемого продукта (например, U.Block, Chem.-Ing. Techn. 49, 151 (1977); германская заявка DE-OS 3809417; B. Schleper, В.Gutsche, J.Wnuck und L.Jeromin, Chem.-Ing.-Techn. 62, 226 (1990); Ullman's Encyclopädie der techn. Chemie, 4. Aufl., Bd. 3; S375 ff. 1973).

Поэтому в известных способах переэтерификацию также осуществляют непрерывно в рамках переэтерификации в противотоке в одной или нескольких реакционных колоннах.

В европейской заявке на патент ЕР-А 0461274 описан непрерывный процесс переэтерификации для получения ароматических карбонатов в одной или нескольких последовательно подключенных друг за другом многоступенчатых колоннах, причем диалкилкарбонаты или алкиларилкарбонаты подвергают взаимодействию с фенолами, и из головной части колонн извлекают высоколетучие продукты, а именно реакционные спирты и диалкилкарбонаты, а из кубовой части колонн - тяжелокипящие продукты, как, например, диарилкарбонаты. Однако, не дано указаний на то, в какой мере в случае этого способа можно воспользоваться получаемым отходящим теплом.

Немецкая заявка на патент DE-A 4226756 приводится описание двухступенчатого способа получения диарилкарбонатов путем реакции диалкилкарбоната с ароматическим гидроксисоединением, при котором на первом этапе из исходных компонентов сначала образуется соответствующий алкиларилкарбонат, а на втором этапе - диарилкарбонат. При этом данные в описании способа ограничены условиями реакции, используемым катализатором и строением реакционных колонн. Данных об использовании получаемого отходящего тепла, однако, нет.

Немецкая заявка на патент DE-A 4226755 описывает способ получения диарилкарбонатов в двух реакционных колоннах, соединенных между собой энергетически и материально, при котором на первом этапе проводят реакцию ароматического гидроксисоединения и диалкилкарбоната, а образовавшийся при этом алкиларилкарбонат преобразуют на втором этапе в диарилкарбонат либо путем переэтерификации с ароматическим гидроксисоединением, либо посредством диспропорционирования. При этом, однако, имеется та проблема, что ввиду материальной и энергетической интеграции способа невозможно подобрать оптимальные условия реакции для образования алкиларилкарбоната либо же диарилкарбоната, поскольку эти условия обусловлены давлением, заданным на обоих этапах и практически идентичным.

В европейской заявке на патент EP-A 781760 описан непрерывный способ получения ароматических карбонатов посредством реакции диалкилкарбоната с ароматическим гидроксисоединением в присутствии катализатора, непрерывным удалением образующегося в этой реакции ароматического карбоната, спиртовых побочных продуктов, диалкилкарбоната и ароматического гидроксисоединения, причем диалкилкарбонат и ароматическое гидроксисоединение снова возвращают в реакцию. Следует отметить, что описанные этапы способа эффективны с точки зрения проведения реакции в рамках высокого пространственно-временного выхода и дальнейшей обработки в рамках наиболее эффективной последовательности разделения, но в способе, однако, не видны какие-либо возможности для энергетической интеграции реакции и этапов дальнейшей обработки.

В международной заявке WO-A 2006/001256 описан способ, при котором ароматическое гидроксисоединение подвергают взаимодействию с диалкилкарбонатом в присутствии катализатора, а также пригодное для этого техническое устройство. Здесь также нет никаких указаний на энергетическую интеграцию.

Без соответствующей эффективной энергетической интеграции, как известно, энергопотребление вышеописанного способа остается высоким, что в свою очередь ставит под сомнение целесообразность получение арилкарбонатов без применения фосгена с экологической и экономической точки зрения.

Международная заявка WO-A 2004/016577 описывает способ получения ароматических карбонатов из диалкилкарбоната и ароматического гидроксисоединения в присутствии катализатора в нескольких отдельных, подключенных последовательно реакционных зонах реакторного устройства, причем выделяющуюся теплоту конденсации потока пара последней реакционной зоны используют для нагрева потока жидкости, направляемого в первую реакционную зону. Недостаток этого способа состоит, однако, в сложном строении реакторного устройства. Кроме того, энергетическая интеграция этого способа нуждается в усовершенствовании.

Японская заявка на патент JP-A 2002-020351 описывает периодический способ получения диарилкарбоната, тепло которого можно применять для парообразования. Недостаток этого способа состоит, однако, в периодическом способе реализации, а также в строении реактора, в котором смонтирована дистилляционная колонна, используемого для проведения реакции. Особо значительным недостатком этого способа является периодичность проведения процесса.

Следовательно, по-прежнему существует потребность в разработке способа для получения ароматических карбонатов, т.е., диарил- и/или алкиларилкарбонатов, предпочтительно диарилкарбонатов, которому не присущи вышеупомянутые недостатки и в котором, в отличие от приведенных выше известных способов, возможна эффективная энергетическая интеграция, либо возможно улучшение энергетической интеграции.

Соответственно, задача изобретения состояла в том, чтобы разработать способ получения ароматических карбонатов, т.е., диарил- и/или алкиларилкарбонатов, предпочтительно диарилкарбонатов, в котором, в отличие от приведенных выше известных способов, возможна эффективная энергетическая интеграция, либо же возможно улучшение энергетической интеграции.

Согласно изобретению эту задачу решают так, чтобы посредством подходящей тепловой интеграции в способе получения ароматических карбонатов, т.е., диарил- и/или алкиларилкарбонатов, из диалкилкарбонатов и ароматических гидроксисоединений по меньшей мере двух реакционных колоннах можно было существенно снизить энергопотребление.

Способ получения по меньшей мере одного диарилкарбоната и/или алкиларилкарбоната из по меньшей мере одного диалкилкарбоната и по меньшей мере одного ароматического гидрокси соединения, в котором

(a) диалкилкарбонат или диалкилкарбонаты в присутствии по меньшей мере одного катализатора переэтерификации проводят реакцию с ароматическим гидроксисоединением или ароматическими гидроксисоединениями в первой реакционной колонне, содержащую по меньшей мере одну укрепляющую часть в головной части колонны и по меньшей мере одну реакционную зону под укрепляющей частью, которая содержит по меньшей мере две секции,

(b) пар, отходящий в головной части первой реакционной колонны, полностью или частично конденсируют по меньшей мере в одном конденсаторе,

(c) кубовый продукт первой реакционной колонны подают по меньшей мере в еще одну реакционную колонну, содержащую по меньшей мере одну укрепляющую часть в головной части колонны и по меньшей мере одну реакционную зону под укрепляющей частью и подвергают его в этой колонне (в этих колоннах) дальнейшему превращению,

(d) не прошедший превращение в реакционных колоннах или образовавшийся во время реакции диалкилкарбонат полностью или частично отделяют от алкилового спирта, образовавшегося во время реакции, по меньшей мере еще на одном этапе способа, включающем в себя по меньшей мере одну дистилляционную колонну, и

(e) отделенный на этапе (d) диалкилкарбонат, при необходимости, после дальнейшей очистки, снова подают в первую реакционную колонну,

отличающийся тем, что дополнительная реакционная колонна (дополнительные реакционные колонны) оснащена (оснащены) одним или несколькими конденсаторами, и что теплоту конденсации, полученную при конденсации в этих конденсаторах, прямо или косвенно возвращают в процесс.

Получаемыми в рамках изобретения диарилкарбонатами являются предпочтительно диарилкарбонаты общей формулы (I)

причем R, R' и R'' независимо друг от друга представляют собой водород, линейный или разветвленный, при необходимости замещенный, алкил с 1-34 атомами углерода, предпочтительно алкил с 1-6 атомами углерода, особо предпочтительно, алкил с 1-4 атомами углерода, алкоксисоединение с 1-34 атомами углерода, предпочтительно алкоксисоединение с 1-6 атомами углерода, особо предпочтительно, алкоксисоединение с 1-4 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода, арил с 6-34 атомами углерода или галогеновый остаток, предпочтительно, остаток хлора, и R, R' и R'' с обеих сторон формулы (I) могут быть одинаковы или различны. R также может означать -COO-R''', причем R''' может представлять собой водород, при необходимости разветвленный алкил с 1-34 атомами углерода, предпочтительно алкил с 1-6 атомами углерода, особо предпочтительно, алкил с 1-4 атомами углерода, алкоксисоединение с 1-34 атомами углерода, предпочтительно алкоксисоединение с 1-6 атомами углерода, особо предпочтительно, алкоксисоединение с 1-4 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода, арил с 6-34 атомами углерода. Предпочтительно, чтобы R, R' и R'' с обеих сторон формулы (I) были одинаковыми. Крайне предпочтительно, чтобы R, R' и R'' означали водород.

Примерами диарилкарбонатов общей формулы (I) является дифенилкарбонат, метилфенил-фенил-карбонаты и ди-(метилфенил)-карбонаты, также в виде смеси, причем положение метильной группы на фенильных кольцах может быть произвольным, а также диметилфенил-фенил-карбонаты и ди-(диметилфенил)-карбонаты, также в виде смеси, причем положение метильной группы на фенильных кольцах может быть произвольным, хлорфенил-фенил-карбонаты и ди-(хлорфенил)-карбонаты, причем положение метильной группы на фенильных кольцах может быть произвольным, 4-этилфенил-фенил-карбонат, ди-(4-этилфенил)-карбонат, 4-н-пропилфенил-фенил-карбонат, ди-(4-н-пропилфенил)-карбонат, 4-изо-пропилфенил-фенил-карбонат, ди-(4-изо-пропилфенил)-карбонат, 4-н-бутилфенил-фенил-карбонат, ди-(4-н-бутилфенил)-карбонат, 4-изо-бутилфенил-фенил-карбонат, ди-(4-изо-бутилфенил)-карбонат, 4-трет-бутилфенил-фенил-карбонат, ди-(4-трет-бутилфенил)-карбонат, 4-н-пентилфенил-фенил-карбонат, ди-(4-н-пентилфенил)-карбонат, 4-н-гексилфенил-фенил-карбонат, ди-(4-н-гексилфенил)-карбонат, 4-изо-октилфенил-фенил-карбонат, ди-(4-изо-октилфенил)-карбонат, 4-н-нонилфенил-фенил-карбонат, ди-(4-н-нонилфенил)-карбонат, 4-циклогексилфенил-фенил-карбонат, ди-(4-циклогексилфенил)-карбонат, 4-(1-метил-1-фенилэтил)-фенил-фенил-карбонат, ди-[4-(1-метил-1-фенилэтил)-фенил]-карбонат, бифенил-4-ил-фенил-карбонат, ди-(бифенил-4-ил)-карбонат, (1-нафтил)-фенил-карбонат, (2-нафтил)-фенил-карбонат, ди-(1-нафтил)-карбонат, ди-(2-нафтил)-карбонат, 4-(1-нафтил)-фенил-фенил-карбонат, 4-(2-нафтил)-фенил-фенил-карбонат, ди-[4-(1-нафтил)фенил]-карбонат, ди-[4-(2-нафтил)фенил]-карбонат, 4-феноксифенил-фенил-карбонат, ди-(4-феноксифенил)-карбонат, 3-пентадецилфенил-фенил-карбонат, ди-(3-пентадецилфенил)-карбонат, 4-тритилфенил-фенил-карбонат, ди-(4-тритилфенил)-карбонат, метилсалицилат-фенил-карбонат, ди-(метилсалицилат)-карбонат, этилсалицилат-фенил-карбонат, ди-(этилсалицилат)-карбонат, н-пропилсалицилат-фенил-карбонат, ди-(н-пропилсалицилат)-карбонат, изо-пропилсалицилат-фенил-карбонат, ди-(изо-пропилсалицилат)-карбонат, н-бутилсалицилат-фенил-карбонат, ди-(н-бутилсалицилат)-карбонат, изо-бутилсалицилат-фенил-карбонат, ди-(изо-бутилсалицилат)-карбонат, трет-бутилсалицилат-фенил-карбонат, ди-(трет-бутилсалицилат)-карбонат, ди-(фенилсалицилат)-карбонат и ди-(бензилсалицилат)-карбонат.

Предпочтительные диарилкарбонаты представляют собой дифенилкарбонат, 4-трет-бутилфенил-фенил-карбонат, ди-(4-трет-бутилфенил)-карбонат, бифенил-4-ил-фенил-карбонат, ди-(бифенил-4-ил)-карбонат, 4-(1-метил-1-фенилэтил)-фенил-фенил-карбонат и ди-[4-(1-метил-1-фенилэтил)-фенил]-карбонат.

Особо предпочтителен дифенилкарбонат.

Предпочтительно применяемые в рамках изобретения диалкилкарбонаты представляют диалкилкарбонаты формулы (II)

причем R1 и R2 независимо друг от друга означают линейный или разветвленный, при необходимости замещенный, алкил с 1-34 атомами углерода, предпочтительно алкил с 1-6 атомами углерода, особо предпочтительно, алкил с 1-4 атомами углерода. При этом R1 и R2 могут быть одинаковыми или различными. Предпочтительно R1 и R2 одинаковы.

Предпочтительными диалкилкарбонатами являются диметилкарбонат, диэтилкарбонат, ди(н-пропил)карбонат, ди(изо-пропил)карбонат, ди(н-бутил)карбонат, ди(втор-бутил)карбонат, ди(трет-бутил)карбонат или дигексилкарбонат. Особо предпочтительны диметилкарбонат или диэтилкарбонат. Крайне предпочтителен диметилкарбонат.

Подходящими ароматическими гидроксисоединениями в рамках изобретения являются предпочтительно гидроксисоединения общей формулы (III)

в которой R, R' и R'' независимо друг от друга могут иметь значения, указанные для общей формулы (I).

Такие ароматические гидроксисоединения представляют, например, фенол, орто-, мета- или пара-крезол, также в виде смеси крезолов, диметилфенол, также и как смесь, причем положение метильной группы на фенильных кольцах может быть произвольным, например, 2,4-, 2,6-, или 3,4-диметилфенол, орто-, мета- или пара-хлорфенол, орто-, мета- или пара-этилфенол, орто-, мета- или пара-н-пропилфенол, 4-изо-пропилфенол, 4-н-бутилфенол, 4-изо-бутилфенол, 4-трет-бутил фенол, 4-н-пентилфенол, 4-н-гексилфенол, 4-изо-октилфенол, 4-н-нонилфенол, орто-, мета- или пара-метоксифенол, 4-цикпогексилфенол, 4-(1-метил-1-фенилэтил)-фенол, би-фенил-4-ол, 1-нафтол, 2-1-нафтол, 4-(1-нафтил)фенол, 4-(2-нафтил)-фенол, 4-феноксифенол, 3-пентадецилфенол, 4-тритилфенол, метилсалициловая кислота, этилсалициловая кислота, н-пропилсалициловая кислота, изо-пропилсалициловая кислота, н-бутилсалициловая кислота, изо-бутилсалициловая кислота, трет-бутилсалициловая кислота, фенилсалициловая кислота и бензилсалициловая кислота.

Предпочтительными ароматическими гидроксисоединениями являются фенол, 4-трет-бутил фенол, бифенил-4-ол и 4-(1-метил-1-фенилэтил)-фенол.

Особо предпочтителен фенол.

Получаемые в рамках изобретения алкиларилкарбонаты представляют собой предпочтительно алкиларилкарбонаты общей формулы (IV)

в которой R, R' и R'' могут иметь значения, указанные для общей формулы (1), а R1 - значения, указанные для общей формулы (II).

Предпочтительными алкиларилкарбонатами являются метил-фенил-карбонат, этил-фенил-карбонат, пропил-фенил-карбонат, бутилфенил-карбонат и гексил-фенил-карбонат, метил-(орто-крезил)-карбонат, метил-(пара-крезил)-карбонат, этил-(орто-крезил)-карбонат, этил-(пара-крезил)-карбонат, метил- или этил-(пара-хлорфенил)-карбонат. Особо предпочтительными алкиларилкарбонатами являются метил-фенил-карбонат и этил-фенил-карбонат. Крайне предпочтителен метил-фенил-карбонат.

Как пригодные для способа согласно изобретению диалкилкарбонаты, так и ароматические гидроксисоединения известны специалисту и представлены в торговле, либо могут быть получены способами, которые также известны специалисту.

Алкил с 1-4 атомами углерода в рамках изобретения означает, например, метил, этил, н-пропил, изо-пропил, н-бутил, втор-бутил, трет-бутил, алкил с 1-6 атомами углерода, кроме того, например, н-пентил, 1-метилбутил, 2-метилбутил, 3-метилбутил, неопентил, 1-этилпропил, циклогексил, циклопентил, н-гексил, 1,1-диметилпропил, 1,2-диметилпропил, 1,2-диметилпропил, 1-метилпентил, 2-метилпентил, 3-метилпентил, 4-метилпентил, 1,1-диметилбутил, 1,2-диметилбутил, 1,3-диметилбутил, 2,2-диметилбутил, 2,3-диметилбутил, 3,3-диметилбутил, 1-этилбутил, 2-этилбутил, 1,1,2-триметилпропил, 1,2,2-триметилпропил, 1-этил-1-метилпропил, 1-этил-2-метилпропил или 1-этил-2-метилпропил, Алкил с 1-34 атомами углерода, помимо этого, означает, например н-гептил и н-октил, пиналкил, адамантил, изомерные ментилы, н-нонил, н-децил, н-додецил, н-тридецил, н-тетрадецил, н-гексадецил или н-октадецил. То же самое касается соответствующего алкильного остатка, например, в аралкильных или алкиларильных остатках. Алкиленовые остатки в соответствующих гидроксиалкильных или аралкильных или же алкиларильных остатках означают, например, соответствующие вышеупомянутым алкильным алкиленовые остатки.

Арил означает карбоциклический ароматический остаток с 6-34 атомами углерода в скелете. То же самое касается ароматической части арилалкильного остатка, также именуемого аралкильным остатком, а также арильных компонентов комплексных групп, как, например, арилкарбонильных остатков.

Арилалкил либо аралкил в каждом случае независимо друг от друга означает прямоцепочечный, циклический, разветвленный или неразветвленный алкильный остаток согласно приведенному выше определению, который однократно, многократно или полностью может быть замещен арильными остатками согласно вышеприведенному определению.

Приведенные выше перечисления являются примерами и не налагают ограничений.

В способе согласно изобретению ароматическое гидроксисоединение или ароматические гидроксисоединения и диалкилкарбонат или диалкилкарбонаты предпочтительно используют в первой реакционной колонне в мо-льном соотношении от 1:0,1 до 1:10, особо предпочтительно, от 1:0,2 до 1:5, крайне предпочтительно, от 1:0,5 до 1:3. При этом в указанном мольном соотношении не учтен возврат ароматического гидроксисоединения или диалкилкарбоната в реакционную колонну через один или несколько конденсатор(ов) в головной части (ср. пункт (b)) или один или несколько, возможно, подходящих испарителей в кубовой части (колонны).

Способ согласно изобретению реализуют по меньшей мере в двух реакционных колоннах.

В качестве первой и второй реакционной колонны или, при необходимости, третьей либо прочих реакционных колонн используют известные специалисту колонны. Это, например дистилляционные либо ректификационные колонны, предпочтительно, реакционно-дистилляционные, либо реакционно-ректификационные колонны.

Первая реакционная колонна имеет в головной части по меньшей мере одну укрепляющую часть и по меньшей мере одну реакционную зону под укрепляющей частью, которая разделена по меньшей мере на две секции. Каждая из двух секций независимо друг от друга имеет от 0 до 20, предпочтительно, от 0,1 до 20 теоретических ступеней (теоретических тарелок). В предпочтительных формах исполнения по меньшей мере одна укрепляющая часть первой реакционной колонны оснащена по меньшей мере одним промежуточным конденсатором. Целесообразно, чтобы промежуточный конденсатор был размещен между двумя секциями укрепляющей части. В этом случае укрепляющая часть разделена на верхнюю и нижнюю укрепляющие части.

Первая реакционная колонна работает предпочтительно в режиме противотока, причем целесообразно, чтобы по меньшей мере в одной реакционной зоне этой колонны ароматическое гидроксисоединение в жидком виде было направлено от головной части к кубовой части, а диалкилкарбонат в газообразной форме был направлен противоположно этому жидкому потоку. При этом эксплуатацию первой реакционной колонны предпочтительно вести так, чтобы подавать по меньшей мере в одну реакционную зону, предпочтительно, в верхнюю треть реакционной зоны, один или несколько потоков, содержащих ароматическое гидроксисоединение и при необходимости растворенный катализатор переэтерификации, предпочтительно с той же температурой, что и в этой точке колонны, в жидкой форме или лишь с небольшой долей газа, причем предпочтительно, чтобы доля газа составляла менее 20%масс. Кроме того, в реакционную зону, предпочтительно, в нижнюю треть этой реакционной зоны, направляют один или несколько потоков, содержащих диалкилкарбонат, причем целесообразно осуществлять подачу компонентов в газообразном состоянии или в перегретом виде. В предпочтительных формах исполнения перегрев потока пара может составлять от 0 до 50°C. Кроме того, температура точки росы определяется предпочтительно давлением, имеющимся в реакционной колонне в точке подачи конкретного потока, содержащего диалкилкарбонат.

После прохождения через реакционную зону (реакционные зоны) образовавшийся в ходе реакции алкиловый спирт, после прохождения им укрепляющей части или укрепляющих частей, извлекают из головной части первой реакционной колонны. Под образовавшимся в ходе реакции алкиловым спиртом, также именуемым реакционным спиртом, в рамках изобретения подразумевают высвобождающийся при переэтерификации спирт, предпочтительно R1-OH либо R2-OH, причем R1 и R2 имеют значения, указанные для общей формулы (II). Вообще, отбираемый в головной части первой реакционной колонны поток содержит в дополнение к алкиловому спирту, образовавшемуся во время реакции, еще и избыточный или не прошедший реакцию диалкилкарбонат и легкокипящие побочные соединения, как, например, диоксид углерода или диалкиловый эфир. Благодаря наличию укрепляющей части (укрепляющих частей) этот поток содержит лишь незначительные количества более высококипящих компонентов, как, например, ароматического гидроксисоединения. Укрепляющая часть предназначена для отделения вовлеченных в испарение в реакционной зоне более высококипящих компонентов, как, например, ароматического гидроксисоединения или алкиларилкарбоната, от легкокипящих реакционных спиртов или диалкилкарбонатов. Это дает то преимущество, что отделение алкиловых спиртов, образовавшихся во время реакции, от диалкилкарбонатов можно проводить при более низком уровне температуры.

В предпочтительных вариантах исполнения первая реакционная колонна работает в условиях противотока. Под условиями противотока следует понимать такой способ эксплуатации, при котором поток пара полностью или частично конденсируют в верхнем конце укрепляющей части (ср. пункт (b)), а получающийся при этом конденсат полностью или частично возвращают в верхний конец укрепляющей части в виде флегмы (возвратной части). При этом флегмовое число предпочтительно составляет от 0,1 до 20, особо предпочтительно, от 0,1 до 10, а крайне предпочтительно, от 0,1 до 3, причем в рамках изобретения флегмовое число соответствует массовому соотношению конденсата, возвращаемого в колонну, к извлеченному в головной части колонны пару без возвращаемого конденсата.

В предпочтительных формах исполнения под реакционной зоной в первой реакционной колонне имеется по меньшей мере один отвод (одна исчерпывающая часть).

Также первую реакционную колонну может быть целесообразно оснастить одним или несколькими испарителями в кубовой части. При исполнении первой реакционной колонны с одним отводом целесообразно применять дополнительно испаритель в кубовой части, который полностью или частично испаряет отводимую по отводу жидкость. Этот полностью или частично испаренный поток жидкости полностью или частично возвращают в первую реакционную колонну. В случае исполнения без отвода в испарителе в кубовой части, который, возможно, применяют, полностью или частично испаряется жидкость, отходящая из реакционной зоны, ее полностью или частично возвращают в первую реакционную колонну.

В предпочтительных формах исполнения, в которых по меньшей мере одна укрепляющая часть первой реакционной колонны оснащена по меньшей мере одним промежуточным конденсатором, эта укрепляющая часть первой реакционной колонны разделена на верхнюю и нижнюю укрепляющую часть (две секции), нижняя из которых находится под промежуточным конденсатором, а верхняя укрепляющая часть - над промежуточным конденсатором.

Укрепляющую часть или укрепляющую часть по меньшей мере с одним промежуточным конденсатором в предпочтительных формах исполнения можно размещать в реакционной колонне вместе с реакционной частью или реакционными частями и, при необходимости, по меньшей мере одним отводом. При этом парообразную смесь, поступающую из реакционной зоны или реакционных зон, направляют снизу в нижнюю секцию либо в, возможно, имеющуюся нижнюю укрепляющую часть, и при этом проводят обеднение ароматического гидроксисоединения. Парообразную смесь, поступающую из нижней секции либо из, возможно, имеющейся нижней укрепляющей части, направляют в промежуточный конденсатор, где проводят частичное выпадение ее в виде конденсата, и получаемый конденсат в верхнем конце подают в нижнюю секцию укрепляющей части либо при необходимости в нижнюю укрепляющую часть.

Еще в одной предпочтительной форме исполнения способа согласно изобретению промежуточный конденсатор выполняют без интеграции его в первую реакционную колонну, а как отдельный промежуточный конденсатор вне первой реакционной колонны.

Еще в одной предпочтительной форме исполнения способа согласно изобретению промежуточный конденсатор и верхнюю секцию укрепляющей части выполняют без интеграции их в первую реакционную колонну, а размещают их отдельно за пределами первой реакционной колонны.

Ниже реакционной зоны и, возможно, имеющегося отвода получают смесь, содержащую алкиларилкарбонат, избыточный или не прошедший реакцию фенол, диарилкарбонат, катализаторы переэтерификации, диалкилкарбонат, реакционный спирт и образующиеся в реакции или же присутствующие в исходных компонентах тяжелокипящие соединения. В случае использования отвода содержание легкокипящих соединений, как, например, диалкилкарбоната и реакционного спирта снижают, причем в присутствии катализатора переэтерификации при определенных обстоятельствах происходит образование дополнительного алкиларилкарбоната и/или диарилкарбоната. Необходимую для этого энергию предпочтительно подают с помощью одного или нескольких испарителей.

На всех участках первой реакционной колонны, т.е., как в укрепляющей части и при необходимости в отводе, так и в реакционной зоне возможно применение наполнителей (насадок) или упорядоченных пакетов. Подлежащие применению наполнители или упорядоченные пакеты являются обычными для дистилляционных процессов, как это описано, например, в Ullmann's Encyclopädie der Technischen Chemie, 4. AufI., Bd. 2, S. 528 ff. В качестве примеров наполнителя следует упомянуть кольца Рашига, кольца Паля и кольца Novalox, седла Берля, седла Intalex или тор-седла, наполнители (насадки) Interpack, а в качестве примеров упорядоченных пакетов следует назвать пакеты металлических листов и ткани (как, например, пакеты ВХ, Montz Pak, Mellapak, Melladur, Kerapak и пакеты CY) из различных материалов, например, стекла, керамики, фарфора, нержавеющей стали, пластмассы. Предпочтительны наполнители и упорядоченные пакеты, обладающие большой поверхностью, хорошей смачиваемостью, а также длительным временем пребывания жидкой фазы. Это, например, кольца Паля и кольца Novalox, седла Берля, пакеты ВХ, Montz Pak, Mellapak, Melladur, Kerapak и пакеты CY.

В качестве альтернативы можно использовать тарелки колонны, как, например, ситовые, колпачковые, клапанные, провальные тарелки. В реакционной зоне или реакционных зонах реакционной колонны особо предпочтительны колонные тарелки с длительным временем пребывания при хороших показателях обмена, например, колпачковые тарелки, клапанные или провальные тарелки с высокими переливными устройствами. Целесообразно, чтобы число теоретических тарелок реакционной зоны составляло от 3 до 50, особо предпочтительно, от 10 до 50, а крайне предпочтительно, от 10 до 40. Целесообразно, чтобы заполнение жидкости составляло от 1 до 80%, особо предпочтительно, от 5 до 70%, а крайне предпочтительно, от 7 до 60% внутреннего объема реакционной зоны. Точное планирование реакционной зоны (реакционных зон), возможно, подлежащего применению отвода и/или укрепляющей части или укрепляющих частей может провести специалист.

Целесообразно, чтобы температура в реакционной зоне (реакционных зонах) находилась в диапазоне от 100 до 300°С, особо предпочтительно, от 120 до 250°С, крайне предпочтительно, от 150 до 240°С. В предпочтительных формах исполнения оптимальную температуру в реакционной зоне задают, с одной стороны, подбирая условия эксплуатации, а с другой - посредством подачи дополнительного тепла в область одной или нескольких реакционных тарелок. Подачу тепла на реакционные тарелки при этом можно проводить либо с помощью теплообменника, либо с помощью реакционных тарелок, обладающих возможностями теплоподачи. Целесообразно проводить переэтерификацию согласно изобретению не только при нормальном давлении, но и при повышенном или пониженном давлении.

Поэтому целесообразно, чтобы давление в реакционной зоне находилось в диапазоне от 0,5 до 20 бар (абсолютная величина), особо предпочтительно, от 0,8 до 15 бар (абс.), крайне предпочтительно, от 0,9 до 10 бар (абс.).

На этапах реакции, проводимых в первой реакционной колонне, можно использовать известные из литературы катализаторы переэтерификации. Это известные из литературы катализаторы переэтерификации для диалкилкарбонатно-фенольной переэтерификации, как, например, гидриды, оксиды, гидроксиды, алкоголяты, амиды и другие соли щелочных и щелочноземельных металлов, например, лития, натрия, калия, рубидия, цезия, магния и кальция, предпочтительно, лития, натрия, калия, магния и кальция, а особо предпочтительно, лития, натрия и калия (ср., например, патенты США US 3642858, US 3803201 или европейскую заявку на патент ЕР-А 1082). Соли щелочных и щелочноземельных металлов представляют также соли щелочных и щелочноземельных металлов органических или неорганических кислот, например, уксусной кислоты, пропионовой кислоты, масляной кислоты, бензойной, стеариновой кислоты, угольной кислоты (карбонаты или гидрокарбонаты), фосфорной кислоты, синильной, роданисто-водородной, борной, оловянной кислоты, С14-станноновых кислот или сурьмяной кислоты. В качестве соединений щелочных и щелочноземельных металлов предпочтительно применяют оксиды, гидроксиды, алкоголяты, ацетаты, пропионаты, бензоаты, карбонаты и гидрокарбонаты, особое предпочтение отдают применению гидроксидов, алкоголятов, ацетатов, бензоатов или карбонатов. Указанные соединения щелочных или щелочноземельных металлов целесообразно применять в количествах от 0,001 до 2%масс., предпочтительно, от 0,005 до 0,9%масс., и особо предпочтительно, от 0,01 до 0,5%масс., от массы подлежащей превращению реакционной смеси.

Прочие применимыми согласно изобретению катализаторами являются такие соединения металлов, как AlX3, TiX3, UX4, TiX4, VOX3, VX5, ZnX2, FeX3, PbX2 и SnX4, где X означает галогеновый остаток, ацетокси-, алкокси- или арил-окси-остаток (немецкая заявка на патент DE-OS 258412). Особо предпочтительно используемыми согласно изобретению катализаторами - являются такие соединения металлов, как AlX3, TiX4, PbX2 и SnX4, например, титантетрахлорид, титантетраметоксид титантетрафеноксид, титантетраэтоксид, титантетраизопропилат, титантетрадодецилат, тетраизооктилат олова и алюминий-триизопропилат. Крайне предпочтительны металлические соединения TiX4. Указанные соединения металлов целесообразно применять в количествах от 0,001 до 5% масс., предпочтительно, от 0,005 до 5% масс., и особо предпочтительно, от 0,01 до 5% масс., от массы подлежащей превращению реакционной смеси.

Галоген в рамках изобретения означает фтор, хлор или бром, предпочтительно фтор или хлор, особо предпочтительно, хлор.

Прочими применимыми согласно изобретению катализаторами являются оловоорганические соединения общей формулы (R11)4-x-Sn(Y)x, в которой Y означает остаток OCOR12, ОН или OR, причем R12 представляет собой алкил с 1-12 атомами углерода, арил с 6-12 атомами углерода или алкиларил с 7-13 атомами углерода R11 независимо от R12 имеет значение R12, а х означает целое число от 1 до 3, диалкильные соединения олова, имеющие от 1 до 12 атомов углерода в алкильном остатке, или соединения типа бис-(триалкилолово), например, триметилацетат олова, триэтилбензоат олова, трибутилацетат олова, трифенилацетат олова, дибутилдиацетат олова, дибутилдилаурат олова, лдиоктилдилаурат олова, дибутиладипинат олова, дибутилдиметоксиолово, диметилгликолят олова, дибутилдиэтоксиолово, триэтилгидроксид олово, гексаэтилстанноксан, гексабутилстанноксан, дибутилоксид олова, диоктилоксид олова, бутилтриизооктилат олова, октилтриизооктилат олова, бутилстанноновая кислота и октилстанноновая кислота в количествах от 0,001 до 20% масс. (ср. европейские патенты ЕР 879, ЕР 880, ЕР 39452, немецкая заявка на патент DE-OS 3445555, японская заявка на патент JP 79/63023), полимерные соединения олова с формулой -[-RR11Sn-O-]-, в которой R и R11 независимо друг от друга имеют значения, приведенные выше для R12, например, поли[окси(дибутилстаннилы)] поли[окси(диоктилстаннилы)], поли[окси(бутилфенилстаннилы)] и поли[окси(дифенилстаннилы)] (немецкая заявка на патент DE-OS 3445552), полимерные гидроксистанноксаны с формулой -[-RSn(OH)-O-]-, например, поли(этилгидроксистанноксан), поли(бутилгидроксистанноксан), поли-(октилгидроксистанноксан), поли(ундецилгидроксистанноксан) и поли(додецилгидроксистанноксаны) в количествах от 0,001 до 20% масс., предпочтительно, от 0,005 до 5% масс., от диалкил-карбоната (немецкая заявка на патент DE-OS 4006520). Прочие применимые согласно изобретению соединения олова представляют собой оксиды олова (II) с общей формулой

X-R2Sn-O-R2Sn-Y,

где X и Y независимо друг от друга означают ОН, SCN, OR13, OCOR13 или галоген, a R - алкил, арил, где R13 имеет значение, приведенное ранее для R12 (европейский патент ЕР 0338760).

Также согласно изобретению в качестве катализаторов можно применять соединения свинца, при необходимости, совместно с триорганофосфанами, хелатным соединением или галогенидом щелочного металла, например, Pb(ОН)2-2PbCO3, Pb(ОСО-СН3)2, Pb(ОСО-СН3)2·2LiCl, Pb(ОСО-СН3)2·2PPh3 в количествах от 0,001 до 1, предпочтительно, от 0,005 до 0,25 моль на моль диалкилкарбоната (японские заявки на патент JP 57/176932, JP 01/093580), а также другие соединения свинца (II) и свинца (IV), например, PbO, PbO2, сурики, плюмбиты и плюмбаты (японская заявка на патент JP 01/093560), ацетат железа (III) (японская заявка на патент JP 61/172852), кроме того, соли меди и/или комплексные соединения металлов, например, щелочных металлов, цинка, титана и железа (японская заявка на патент JP 89/005588).

Кроме того, в способе согласно изобретению можно использовать гетерогенные системы катализаторов. Это, например, смеси оксидов кремния и титана, получаемые совместным гидролизом кремния и галогенидов титана (японская заявка на патент JP 54/125617) или диоксиды титана с высокой удельной площадью поверхности, более 20 м2/г (немецкая заявка на патент DE-OS 4036594)).

Предпочтительные катализаторы для способа согласно изобретению представляют собой указанные выше соединения металлов AlX3, TiX3, UX4, TiX4, VOX3, VX5, ZnX2, FeX3, PbX2 и SnX4. Особо предпочтительны AlX3, TiX4, PbX2 и SnX4, из которых в качестве примеров следует упомянуть титантетрахлорид, титантетраметоксид титантетрафеноксид, титантетраэтоксид, титантетраизопропила