Управление работой абонентского оборудования (ue) в системе связи с несколькими несущими

Иллюстрации

Показать все

Заявленное изобретение относится к техническим приемам управления абонентским оборудованием (UE) в системе с несколькими несущими. Технический результат - достижение хорошей производительности путем поддержки работы на нескольких несущих. Для этого система может поддерживать две или более несущих нисходящей линии связи и одну или более несущих восходящей линии связи. Одна несущая каждой линии связи может обозначаться как основная несущая. В одном аспекте команды нижнего уровня (например, команды совместно используемого канала управления (HS-SCCH) для совместно используемого высокоскоростного канала нисходящей линии связи (HS-DSCH)) могут использоваться для переключения оборудования UE между работой с одной несущей и с несколькими несущими. В другом аспекте оборудование UE может иметь одну и ту же конфигурацию прерывистого приема (DRX) для всех несущих нисходящей линии связи и/или одну и ту же конфигурацию прерывистой передачи (DTX) для всех несущих восходящей линии связи. Еще в одном аспекте работа без канала HS-SCCH может ограничиваться основной несущей. 3 н. и 10 з.п. ф-лы, 12 ил., 1 табл.

Реферат

I. Притязание на приоритет в соответствии с параграфом 119 статьи 35 Свода законов США

Настоящая заявка притязает на приоритет патентной заявки временной заявки США, серийный номер 61/074962, озаглавленной "СПОСОБЫ И УСТРОЙСТВА УПРАВЛЕНИЯ РАБОТОЙ ПРЕРЫВИСТОЙ ПЕРЕДАЧИ И ПРИЕМА (DTX/DRX) В РЕЖИМЕ С ДВУМЯ НЕСУЩИМИ", поданной 23 июня 2008 г., закрепленной за правопреемником настоящей заявки и полностью включенной в настоящий документ посредством ссылки.

Уровень техники

I. Область техники

Настоящее раскрытие в целом имеет отношение к связи и более конкретно к техническим приемам управления работой абонентского оборудования (UE) в системе беспроводной связи.

II. Уровень техники

Системы беспроводной связи широко развертываются для предоставления таких различных услуг связи, как речевая, видео, передача пакетных данных, передача сообщений, широкополосная передача и т.д. Данные системы могут являться системами с множественным доступом, способными поддерживать несколько пользователей посредством совместного использования доступных ресурсов системы. Примеры таких систем с множественным доступом включают в себя системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы ортогонального доступа FDMA (OFDMA) и системы доступа FDMA с передачей на одной несущей (SC-FDMA).

Система беспроводной связи может являться системой с несколькими несущими, поддерживающей передачу информации на нескольких несущих для повышения пропускной способности системы. Каждая несущая может иметь определенную центральную частоту и определенную полосу пропускания и может использоваться для посылки данных потока информационного обмена, управляющей информации, пилотного сообщения и т.д. Для достижения хорошей производительности желательна поддержка работы на нескольких несущих.

Сущность изобретения

В настоящем документе описаны технические приемы управления работой оборудованием UE в системе с несколькими несущими. Система может поддерживать две или более несущих нисходящей линии связи. Одна несущая нисходящей линии связи может быть обозначена как основная несущая нисходящей линии связи, а каждая оставшаяся несущая нисходящей линии связи может упоминаться как вторичная несущая нисходящей линии связи. Система также может поддерживать одну или несколько несущих восходящей линии связи. Одна несущая восходящей линии связи может быть обозначена как основная несущая восходящей линии связи, а каждая оставшаяся несущая восходящей линии связи (при ее наличии) может упоминаться как вторичная несущая восходящей линии связи.

В одном аспекте для переключения оборудования UE между режимами работы с одной несущей и с несколькими несущими могут использоваться команды нижнего уровня. Команды нижнего уровня могут являться сигнальной информацией нижнего уровня, которая может быть послана быстрее и эффективнее сигнальной информации верхнего уровня. Например, команды нижнего уровня могут являться командами канала совместного управления для канала HS-DSCH (канала HS-SCCH) при широкополосном доступе CDMA (WCDMA). В одном исполнении оборудование UE может принимать команды нижнего уровня для активации или деактивации вторичной несущей нисходящей линии связи и/или восходящей линии связи от Узла B (Node B). Оборудование UE может осуществлять связь с Узлом B (i) только по основной несущей, если команды нижнего уровня деактивируют вторичную несущую, или (ii) как по основной, так и по вторичным несущим, если команды нижнего уровня активируют вторичную несущую.

В другом аспекте оборудование UE может иметь одну и ту же конфигурацию прерывистого приема (DRX) для всех несущих нисходящей линии связи и/или одну и ту же конфигурацию прерывистой передачи (DTX) для всех несущих восходящей линии связи. Оборудование UE может принимать данные с Узла B по одной или нескольким несущим нисходящей линии связи в разрешенных подкадрах нисходящей линии связи, которые могут быть определены на основе конфигурации передачи DRX. Оборудование UE может посылать данные на Узел B по одной или нескольким несущим восходящей линии связи в разрешенных подкадрах восходящей линии связи, которые могут быть определены на основе конфигурации передачи DTX.

Еще в одном аспекте работа без канала HS-SCCH может быть ограничена основной несущей нисходящей линии связи. Оборудование UE может быть сконфигурировано для работы без канала HS-SCCH, и может быть назначен один или несколько параметров передачи. Узел B может посылать данные по основной несущей нисходящей линии связи на оборудование UE и не может передавать сигнальную информацию вместе с данными. Оборудование UE может обрабатывать основную несущую нисходящей линии связи, в соответствии с назначенным параметром(ами) передачи, для возврата данных, посланных посредством Узла B.

Ниже более детально описываются различные аспекты и характерные особенности раскрытия.

Краткое описание чертежей

Фиг.1 показывает систему беспроводной связи.

Фиг.2 изображает формат кадра при доступе WCDMA.

Фиг.3A и 3B показывают две конфигурации с несколькими несущими.

Фиг.4 показывает временную диаграмму для некоторых физических каналов при доступе WCDMA.

Фиг.5 показывает команды канала HS-SCCH для разрешения работы с одной несущей или с двумя несущими.

Фиг.6 показывает использование команд канала HS-SCCH для контроля работы приема DRX/передачи DTX.

Фиг.7 показывает использование команд канала HS-SCCH для контроля работы оборудования UE.

Фиг.8 показывает команды канала HS-SCCH для разрешения работы с одной несущей или двумя несущими и для активации или деактивации приема DRX/передачи DTX.

Фиг.9 показывает процесс поддержки работы с несколькими несущими.

Фиг.10 показывает процесс поддержки работы приема DRX/передачи DTX.

Фиг.11 показывает блок-схему оборудования UE, Узла B и контроллера радиосети (RNC).

Подробное описание изобретения

Технические приемы, описанные в настоящем документе, могут быть использованы для различных систем беспроводной связи, таких как доступ CDMA, доступ TDMA, доступ FDMA, доступ OFDMA, доступ SC-FDMA и других системах. Зачастую термины "система" и "сеть" используются попеременно. В системе доступа CDMA может реализовываться такая технология радиосвязи, как универсальный наземный радио-доступ (UTRA), доступ cdma2000 и т.д. Доступ UTRA включает в себя доступ WCDMA и другие варианты доступа CDMA. Доступ cdma2000 распространяется на стандарты IS-2000, IS-95 и IS-856. В системе доступа TDMA может реализовываться такая технология радиосвязи, как Глобальная система мобильной связи (GSM). Сеть доступа OFDMA может осуществлять такую технологию радиосвязи, как развитый доступ UTRA (E-UTRA), сверхмобильная широкополосная сеть (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM® и т.д. Доступ UTRA и доступ E-UTRA являются частью универсальной системы мобильной связи (UMTS). 3GPP, Долгосрочное развитие (LTE) и продвинутое LTE (LTE-A) являются новыми версиями системы UMTS, которые используют доступ E-UTRA. Доступ UTRA, доступ E-UTRA, система UMTS, LTE, LTE-A и система GSM описаны в документах организации, имеющей название "Проект Партнерства Третьего Поколения" (3GPP). Доступ cdma2000 и сеть UMB описаны в документах организации, имеющей название "Проект Партнерства Третьего Поколения 2" (3GPP2). Описанные в настоящем документе технические приемы могут быть использованы как для упомянутых выше беспроводных сетей и технологий радиосвязи, так и для других беспроводных сетей и технологий радиосвязи. Для ясности ниже описываются определенные аспекты технических приемов для доступа WCDMA, а терминология спецификации 3GPP используется в большой части нижеследующего описания.

Фиг.1 показывает систему 100 беспроводной связи, которая может включать в себя несколько Узлов B и других объектов сети. Для простоты на Фиг.1 показывается только один Узел B 120 и один контроллер 130 радиосети (RNC). Узел B может являться станцией, осуществляющей связь с единицами оборудования UE, и также может упоминаться как развитый Узел B (eNB), базовая станция, точка доступа и т.д. Узел B может предоставлять зону обслуживания радиосвязи для конкретной географической зоны. Для улучшения пропускной способности системы, вся зона обслуживания Узла B может быть разделена в несколько (например, три) меньших зон. Каждая меньшая зона может обслуживаться посредством соответствующей подсистемы Узла B. В 3GPP термин "линия связи" может относиться к зоне обслуживания Узла В и/или подсистеме Узла B, обслуживающим зону обслуживания. Контроллер 130 RNC может объединяться с набором Узлов B и предоставлять координацию и контроль для этих Узлов B.

Оборудование 110 UE может являться стационарным или мобильным, а также может упоминаться как мобильная станция, терминал, терминал доступа, абонентская установка, станция и т.д. Оборудование 110 UE может являться сотовым телефоном, карманным персональным компьютером (КПК), беспроводным модемом, устройством беспроводной связи, портативным устройством, ноутбуком, беспроводным телефоном, станцией местной радиосвязи (WLL) и т.д. Оборудование 110 UE может осуществлять связь с Узлом B 120 по нисходящей линии связи и восходящей линии связи. Нисходящая линия связи (или прямая линия связи) относится к линии связи от Узла B к оборудованию UE, а восходящая линия связи (или обратная линия связи) относится к линии связи от оборудования UE к Узлу B.

Фиг.2 показывает формат кадра при доступе WCDMA. Временная шкала передачи для каждой линии связи разделяется на кадры радиосвязи. Каждый кадр радиосвязи имеет длительность в 10 миллисекунд (мс) и разделяется на 15 временных интервалов от 0 до 14. Каждый временной интервал имеет длительность T s l o t =0,667мс и включает в себя 2560 элементарных сигналов по 3,84 миллионов соединений в секунду (Mcps). Также каждый кадр радиосвязи разделен на пять подкадров 0 до 4. Каждый подкадр имеет длительность в 2 мс и включает в себя 3 временных интервала.

В спецификации 3GPP поддерживается высокоскоростной пакетный доступ (HSPA), который включает в себя высокоскоростной пакетный доступ по нисходящей линии связи (HSDPA), определенный в пятой и более поздних редакциях спецификации 3GPP, а также высокоскоростной пакетный доступ по восходящей линии связи (HSUPA), определенный в шестой и более поздних редакциях спецификации 3GPP. Доступ HSDPA и доступ HSUPA являются наборами каналов и процедур, разрешающих высокоскоростную пакетную передачу данных по нисходящей линии связи и восходящей линии связи соответственно. Для доступа HSDPA Узел B может посылать данные по совместно используемому высокоскоростному каналу нисходящей линии связи (HS-DSCH), который является транспортным каналом нисходящей линии связи, то есть совместно используемым единицами оборудования UE как по времени, так и по коду. Канал HS-DSCH может переносить данные для одного или для нескольких единиц оборудования UE в каждом временном интервале передачи (TTI). Совместное использование канала HS-DSCH может являться динамичным и может изменяться от интервала TTI к интервалу TTI.

В спецификации 3GPP также поддерживается доступ HSDPA по двум линиям связи (DC-HSDPA). Для доступа DC-HSDPA до двух линий связи Узла B могут посылать данные на оборудование UE в заданном интервале TTI. Эти две линии связи могут работать на различных несущих. Следовательно, термины "линии связи" и "несущие" могут использоваться попеременно по отношению доступа DC-HSDPA.

Фиг.3A показывает иллюстративную конфигурацию 300 с несколькими несущими, которая может быть использована для доступа DC-HSDPA. В этой конфигурации на нисходящей линии связи доступны две несущие и упоминаются как несущие нисходящей линии связи, а одна несущая доступна на восходящей линии связи и упоминается как несущая восходящей линии связи. Одна несущая нисходящей линии связи может называться основной несущей нисходящей линии связи или первичной несущей нисходящей линии связи. Другая несущая нисходящей линии связи может упоминаться как вторичная несущая нисходящей линии связи, дополнительная несущая нисходящей линии связи, вспомогательная несущая нисходящей линии связи и т.д. Основная несущая нисходящей линии связи может переносить определенные сигнальные сообщения, и могут поддерживать определенные режимы работы, как описано ниже. Вторичная несущая нисходящей линии связи может быть активирована для поддержки более высокой скорости передачи данных и может быть деактивирована, если в ней нет необходимости.

Фиг.3B показывает иллюстративную конфигурацию 310 с несколькими несущими, которая также может быть использована для доступа DC-HSDPA. В этой конфигурации две несущие доступны по нисходящей линии связи и две несущие доступны по восходящей линии связи. Одна несущая нисходящей линии связи может быть обозначена как основная несущая нисходящей линии связи, а другая несущая нисходящей линии связи может упоминаться как вторичная несущая нисходящей линии связи. Подобным образом, одна несущая восходящей линии связи может обозначаться как основная несущая восходящей линии связи, а другая несущая восходящей линии связи может упоминаться как вторичная несущая восходящей линии связи. Основные несущие могут переносить определенную сигнальную информацию и могут поддерживать определенные режимы работы, как описано ниже. Вторичные несущие могут быть активированы для поддержки более высокой скорости передачи данных и могут быть деактивированы, если в них нет необходимости.

Фиг.3A и 3B показывают две иллюстративные конфигурации с несколькими несущими при доступе DC-HSDPA. В целом, может быть доступно любое количество несущих для нисходящей линии связи, и любое количество несущих может быть доступно для восходящей линии связи. Одна несущая нисходящей линии связи может обозначаться как основная несущая нисходящей линии связи, а оставшиеся несущие нисходящей линии связи могут упоминаться как вторичные несущие нисходящей линии связи. Подобным образом, одна несущая восходящей линии связи может обозначаться как основная несущая восходящей линии связи, а оставшиеся несущие восходящей линии связи (при их наличии) могут упоминаться как вторичные несущие восходящей линии связи. Для ясности, значительная часть нижеследующего описания предназначена для конфигураций с несколькими несущими, показанными на Фиг.3A и 3B. В нижеследующем описании основная несущая может являться основной несущей нисходящей линии связи или основной несущей восходящей линии связи. Вторичная несущая может являться вторичной несущей нисходящей линии связи или вторичной несущей восходящей линии связи.

В Таблице 1 перечисляются некоторые физические каналы, используемые для доступа HSDPA, доступа HSUPA и доступа DC-HSDPA.

Таблица 1
Канал Наименование канала Описание
Канал P-CCPCH (нисходящей линии связи) Первичный физический общий канал управления Перенос пилотного сигнала и системного номера кадра (SFN)
Доступ HSDPA Канал HS-SCCH (нисходящей линии связи) Совместно используемый канал управления для канала HS-DSCH Перенос сигнального сообщения для пакетов, посланных по каналу HS-PDSCH
Канал HS-PDSCH (нисходящей линии связи) Высокоскоростной физический совместно используемый канал нисходящей линии связи Перенос пакетов, посланных по нисходящей линии связи для различных единиц оборудования UE
Канал HS-DPCCH (восходящей линии связи) Выделенный физический канал управления для HS-DSCH Перенос подтверждения/отрицательного подтверждения приема (ACK/NAK) пакетов, посланных по каналу HS-PDSCH и CQI
Доступ HSUPA Канал E-DPCCH (восходящей линии связи) Выделенный физический канал управления E-DCH Перенос сигнального сообщения для канала E-DPDCH
Канал E-DPDCH (восходящей линии связи) Выделенный физический канал данных E-DCH Перенос пакетов, посланных оборудованием UE по восходящей линии связи
Канал E-HICH (нисходящей линии связи) Выделенный гибридный индикаторный канал автоматического запроса на повтор (ARQ) E-DCH Перенос подтверждения ACK/NAK для пакетов, посланных по каналуE-DPDCH

Фиг.4 изображает временную диаграмму некоторых физических каналов, используемых для доступа HSDPA и доступа HSUPA. Канал P-CCPCH используется непосредственно в качестве эталона времени для физических каналов нисходящей линии и косвенно используется в качестве эталона времени для физических каналов восходящей линии связи. Для доступа HSDPA подкадры канала HS-SCCH выравниваются по времени с каналом P-CCPCH. Подкадры канала HS-PDSCH задерживаются посредством τ H S − P D S C H = 2 T s l o t относительно подкадров канала HS-SCCH. Подкадры канала HS-DPCCH задерживаются посредством 7,5 временных интервалов относительно подкадров канала HS-PDSCH. Для доступа HSUPA, распределение интервалов времени кадров канала E-HICH смещается посредством τ E − H I C H , n элементарных сигналов относительно распределения интервалов времени кадров канала P-CCPCH, в котором τ E − H I C H , n определяется в технических условиях (TS) 25.211 спецификации 3GPP. Канал E-DPCCH и канал E-DPDCH выравниваются по времени, а распределение интервалов времени их кадров смещается посредством τ D P C H , n +1024 элементарных сигналов относительно распределения интервалов времени канала P-CCPCH, в котором τ D P C H , n =256n, а n может колебаться от 0 до 149. Распределение интервалов времени кадров физических каналов нисходящей линии связи и восходящей линии связи описывается в условиях TS 25.211 спецификации 3GPP. Для простоты другие физические каналы, такие как предоставленные каналы, на Фиг.4 не показаны.

В одном аспекте команды канала HS-SCCH могут использоваться для переключения оборудования UE между работой с одной несущей и с двумя несущими. Команды канала HS-SCCH являются сигнальной информацией нижнего уровня, которая может посылаться быстрее и эффективнее сигнальной информации верхнего уровня. Например, команда канала HS-SCCH может быть послана за 2 мс незначительным числом десятков битов, тогда как сообщение верхнего уровня может длиться значительно дольше, и может включать в себя намного больше битов. Нижний уровень относится к физическому уровню (PHY), уровню управления доступом к среде передачи данных (MAC) и т.д. Нижний уровень может отличаться от верхнего уровня, который может относиться к управлению ресурсами радиосвязи (RRC), и т.д. Нижний уровень и верхний уровень могут ограничиваться различными элементами системы. Например, при доступе WCDMA уровни физический PHY и управления MAC могут ограничиваться Узлом B, тогда как управление RRC может ограничиваться контроллером RNC.

Команды канала HS-SCCH могут использоваться для быстрого переключения оборудования UE между работой с одной несущей и с двумя несущими. При работе с одной несущей оборудование UE может работать только на основной несущей нисходящей линии связи и основной несущей восходящей линии связи. При работе с двумя несущими оборудование UE может работать на всех несущих нисходящей линии связи и всех несущих восходящей линии связи. Например, Узел B может быстро переключать оборудование UE на работу с двумя несущими всякий раз, когда у Узла B имеется большое количество данных для передачи на оборудование UE, и может быстро переключить оборудование UE на работу с одной несущей после посылки данных.

Фиг.5 показывает вариант исполнения команд 500 канала HS-SCCH, которые могут использоваться для быстрого переключения оборудования UE между работой с одной несущей и с двумя несущими. Команды 500 канала HS-SCCH могут быть посланы по каналу HS-SCCH и могут включать в себя 3-битовое поле типа команд, 3-битовое поле команд, 16-битовое поле опознавания оборудования UE, и, возможно, другие поля. Полю типа команд может быть установлено предварительно определенное значение (например, '001') для указания того, что команды канала HS-SCCH предназначены для активации и деактивации вторичной несущей нисходящей линии связи и вторичной несущей восходящей линии связи (при ее наличии). Вторичная несущая(ие) также может упоминаться как вторичная обслуживающая линия связи канала HS-DSCH. Поле команд может включать в себя определяемый бит, которому может быть установлено (i) в качестве первого значения (например '1') для указания того, что вторичная несущая(ие) активирована и разрешена работа с двумя несущими, или (ii) в качестве второго значения (например '0') для указания того, что вторичная несущая(ие) деактивирована и разрешена работа с одной несущей. Команды канала HS-SCCH для активации/деактивации вторичной несущей(их) также могут задаваться и другими способами.

Способность активировать и деактивировать вторичную несущую(ие) в канале DC-HSDPA может являться благоприятной по следующим причинам:

1. возврат к работе с одной несущей при ограниченной мощности оборудования UE,

2. энергосбережение оборудования UE,

3. свободные неиспользуемые ресурсы системы, что может помочь в управлении установлением соединений, и

4. управление нагрузкой.

Значение мощности, требуемое для передачи данных по восходящей линии связи оборудованием UE, может зависеть от скорости передачи данных и условий канала восходящей линии связи. Мощность оборудования UE может быть ограничена, если необходимая мощность передачи превышает максимальную мощность передачи оборудования UE. Это может произойти, если скорость передачи данных достаточно высока, и/или качество канала восходящей линии связи достаточно низкого качества. Мощность оборудования UE может стать ограниченной, даже если оно находится не на границе зоны обслуживания Узла B. В свою очередь, возможно, что мощность оборудования UE может не быть ограниченной, если оно находится на границе зоны обслуживания. Сценарий ограничения мощности может следовать из условий канала, которые могут изменяться быстрее реакции на них контроллера RNC, но могут быть достаточно медленными для управления ими на Узле B. Посредством быстрого возвращения к работе с одной несущей, в случае ограничения мощности оборудования UE, необходимая мощность передачи может быть сокращена ниже максимальной мощности передачи, и сценарий ограничения мощности может быть предотвращен.

UE может обрабатывать больше каналов нисходящей связи на двух несущих нисходящей линии связи при работе с двумя несущими и, следовательно, может потреблять больше энергии аккумулятора при работе с двумя несущими, чем при работе с одной несущей. Оборудование UE может переключаться на работу с одной несущей, если активность данных является медленной, для сохранения энергии аккумулятора. Контроллер RNC может посылать небольшое управляющее сообщение RRC для переключения оборудования UE между работой с одной несущей и с двумя несущими. Однако нагрузка на контроллер RNC может быть большой, вследствие внезапного появления большого количества данных потока информационного обмена и большого количества единиц оборудования UE, обрабатываемого посредством контроллера RNC. С другой стороны, наличие управления переключением между работой оборудования UE с одной несущей на работу с двумя несущими на Узле B может не добавлять существенной нагрузки по обработке на Узел B.

Приведенные выше первые две цели и, возможно, другие цели, могут быть достигнуты, в большей степени, посредством наличия управления работой оборудования UE с одной несущей и с несколькими несущими на Узле B (вместо контроллера RNC). Узел B может посылать команды канала HS-SCCH для быстрого включения и выключения доступа DC-HSDPA и переключения оборудования UE между работой с одной несущей и с двумя несущими. Приведенные выше последние две цели могут быть достигнуты посредством медленных управляющих элементов в контроллере RNC и использования управляющих сообщений RRC. Контроллер RNC может посылать небольшие управляющие сообщения RRC (вместо полных сообщений изменения конфигурации RRC) для включения и выключения доступа DC-HSDPA для оборудования UE. Управление работой оборудования UE посредством Узла B может упоминаться как управление, основанное на управлении MAC. Управление работой оборудования UE посредством контроллера RNC может упоминаться как управление, основанное на RRC.

Седьмая и более поздние редакции спецификации 3GPP поддерживают непрерывную связность пакетов (CPC), которая позволяет оборудованию UE работать с приемом DRX и/или передачей DTX для сохранения энергии аккумулятора. При приеме DRX оборудованию UE могут быть назначены определенные разрешенные подкадры нисходящей линии связи, в которых Узел B может посылать данные на оборудование UE. Разрешенные подкадры нисходящей линии связи также могут упоминаться как возможности приема DRX. При передаче DTX оборудованию UE могут быть назначены определенные разрешенные подкадры восходящей линии связи, в которых оборудование UE может посылать данные в Узел B. Разрешенные подкадры восходящей линии связи также могут упоминаться как пакеты передачи DTX. Оборудование UE может принимать сигнальные сообщения и/или данные в разрешенных подкадрах нисходящей линии связи, и может посылать сигнальные сообщения и/или данные в разрешенных подкадрах восходящей линии связи. Оборудование UE может выключаться во время ожидания между разрешенными подкадрами для сохранения энергии аккумулятора. Связность CPC описана в общедоступных технических требованиях (TR) 25.903 3GPP, озаглавленных "Возможность установления непрерывной связи для пользователей пакетных данных", март 2007 г.

Фиг.4 также показывает иллюстративные конфигурации приема DRX и передачи DTX для оборудования UE при связности CPC. При приеме DRX разрешенные подкадры нисходящей линии связи могут определяться посредством диаграммы направленности приема канала HS-SCCH. При передаче DTX разрешенные подкадры восходящей лини связи могут быть определены посредством диаграммы направленности пакетного сигнала канала DPCCH восходящей лини связи. В примере, показанном на Фиг.4, оборудование UE сконфигурировано следующим образом:

- период 1 передачи DTX оборудования UE = период 1 приема DRX оборудования DRX = 4 подкадров,

- период 2 передачи DTX = 8 подкадров, и

- пакет 1 канала DPCCH оборудования UE = пакет 2 канала DPCCH оборудования UE = 1 подкадр.

Для приведенных выше конфигураций приема DRX и передачи DTX разрешенные подкадры нисходящей линии связи, при доступе HSDPA, располагаются на определенном расстоянии друг от друга посредством четырех подкадров и показаны с серой штриховкой рядом с верхней частью Фиг.4. Разрешенные подкадры восходящей линии связи при доступе HSUPA также располагаются на определенном расстоянии друг от друга посредством четырех подкадров и также изображены с серой штриховкой рядом с центральной частью Фиг.4. Выравнивание разрешенных подкадров нисходящей линии связи и разрешенных подкадров восходящей линии связи зависит от τ D P C H , n . Разрешенные подкадры нисходящей линии связи и восходящей линии связи могут выравниваться по времени для расширения возможного времени сна для оборудования UE. Как показано на Фиг.4, оборудование UE может просыпаться во время разрешенных подкадров и может засыпать во время времени ожидания между разрешенными подкадрами. На Фиг.4 предполагается, что оборудование UE не передает данные по восходящей линии связи и, следовательно, не имеется необходимости в контроле канала E-HICH для подтверждения ACK/NAK.

В другом аспекте работа приема DRX/передачи DTX для оборудования UE может являться одной и той же для обеих несущих на каждой линии связи и может наблюдаться одно и то же распределение интервалов времени. При приеме DRX оборудование UE может иметь конкретную конфигурацию приема DRX (например, конкретную диаграмму направленности приема канала HS-SCCH) для основной несущей нисходящей линии связи. Та же самая конфигурация приема DRX может применяться для вторичной несущей нисходящей линии связи. Тогда оборудование UE будет иметь ту же самую конфигурацию приема DRX для обеих несущих нисходящей линии связи. Оборудование UE может принимать данные только по основной несущей нисходящей линии связи или по обеим несущим нисходящей линии связи в разрешенных подкадрах нисходящей линии связи.

При передаче DTX оборудование UE может иметь конкретную конфигурацию передачи DTX (например, конкретную диаграмму направленности пакетного сигнала канала DPCCH) для основной несущей восходящей линии связи. Та же самая конфигурация передачи DTX может применяться для вторичной несущей восходящей линии связи, при ее наличии. Тогда оборудование UE будет иметь ту же самую конфигурацию передачи DTX для обеих несущих восходящей линии связи. Оборудование UE может посылать данные только по основной несущей восходящей линии связи, или по обеим несущим восходящей линии связи в разрешенных подкадрах восходящей линии связи. Если доступна только одна несущая восходящей линии связи, то конфигурация передачи DTX будет применяться только к этой несущей восходящей линии связи.

Узел B может посылать команду на передачу DTX на оборудование UE для активации или деактивации работы передачи DTX для оборудования UE. В одном исполнении Узел B может посылать команду на передачу DTX как по основной, так и по вторичной несущей нисходящей линии связи. В другом исполнении Узел B может посылать команду на передачу DTX только по основной несущей нисходящей линии связи. Для обоих вариантов исполнения команда на передачу DTX может применяться для работы передачи DTX на всех несущих восходящей линии связи посредством оборудования UE.

Узел B может посылать команду на прием DRX на оборудование UE для активации или деактивации работы приема DRX для оборудования UE. В одном исполнении Узел B может посылать команду на прием DRX как по основной, так и по вторичной несущей нисходящей линии связи. В другом исполнении Узел B может посылать команду на прием DRX только по основной несущей нисходящей линии связи. Для обоих вариантов исполнения команда на прием DRX может применяться для работы приема DRX на всех несущих нисходящей линии связи посредством оборудования UE.

Еще в одном аспекте работа приема DRX/передачи DTX для оборудования UE может различаться для двух несущих каждой линии связи, и для них может наблюдаться различное распределение интервалов времени. При приеме DRX оборудование UE может иметь первую конфигурацию приема DRX для основной несущей нисходящей линии связи и вторую конфигурацию приема DRX для вторичной несущей нисходящей линии связи. Тогда оборудование UE может иметь различные конфигурации приема DRX для двух несущих нисходящей линии связи. Оборудование UE может принимать данные по каждой несущей нисходящей линии связи в разрешенных подкадрах нисходящей линии связи этой несущей нисходящей линии связи. Нарушение работы приема DRX на двух несущих нисходящей линии связи может позволять оборудованию UE сохранять больше энергии аккумулятора. Узел B может посылать команду на прием DRX по заданной несущей нисходящей линии связи для управления работой приема DRX на этой несущей нисходящей линии связи.

При передаче DTX оборудование UE может иметь первую конфигурацию передачи DTX для основной несущей восходящей линии связи и вторую конфигурацию передачи DTX для вторичной несущей восходящей линии связи (при ее наличии). Тогда оборудование UE может иметь различные конфигурации приема DRX для двух несущих восходящей линии связи. Оборудование UE может посылать данные по каждой несущей восходящей линии связи в разрешенных подкадрах восходящей линии связи для этой несущей восходящей линии связи. Узел B может посылать команду на передачу DTX для управления работой передачи DTX на каждой несущей восходящей линии связи.

Фиг.6 показывает использование команд канала HS-SCCH для управления работой приема DRX/передачи DTX в оборудовании UE. Фиг.6 рассматривается в случае, в котором для оборудования UE доступны две несущие нисходящей линии связи и одна несущая восходящей линии связи. При передаче DTX оборудование UE может быть сконфигурировано с диаграммой направленности пакетного сигнала канала DPCCH, показанного на Фиг.4. При приеме DRX оборудование UE может быть сконфигурировано с диаграммой направленности приема канала HS-SCCH, показанного на Фиг.4. Оборудование UE работает с двумя несущими с одной и той же конфигурацией приема DRX для обеих несущих нисходящей линии связи. Основная несущая нисходящей линии связи и вторичная несущая нисходящей линии связи имеют одни и те же разрешенные подкадры нисходящей линии связи.

В примере, изображенном на Фиг.6, Узел B посылает команду канала HS-SCCH для деактивации работы приема DRX/передачи DTX (обозначенной как «S» или «Команда на остановку приема DRX/передачи DTX») на оборудование UE в подкадре 4 кадра 9 радиосвязи. Четыре подкадра после посылки этой команды канала HS-SCCH, все подкадры каждой несущей нисходящей линии связи являются разрешенными и могут быть использованы для посылки данных на оборудование UE. Узел B посылает команду канала HS-SCCH для активации работы приема DRX/передачи DTX (обозначенной как «X» или «команда на прием DRX/передачу DTX») на оборудование UE в подкадре 4 из кадра 12 радиосвязи. Четыре подкадра после посылки этой команды канала HS-SCCH и разрешенные подкадры нисходящей линии связи определяются посредством диаграммы направленности приема канала HS-SCCH, а разрешенные подкадры восходящей линии связи определяются посредством диаграммы направленности пакетного сигнала канала DPCCH.

Фиг.7 показывает использование команд канала HS-SCCH для управления работой оборудования UE. Фиг.7 рассматривается в случае, в котором для оборудования UE доступны две несущие нисходящей линии связи и одна несущая восходящей линии связи. Вторичная несущая нисходящей линии связи может являться активной, только если команды канала HS-SCCH для активации этой несущей посылаются посредством Узла B. При передаче DTX оборудование UE может быть сконфигурировано с диаграммой направленности пакетного сигнала канала DPCCH восходящей линии связи, показанного на Фиг.4. При приеме DRX оборудование UE может быть сконфигурировано с диаграммой направленности приема канала HS-SCCH, показанного на Фиг.4.

В примере, показанном на Фиг.7, Узел B посылает команды канала HS-SCCH для активации вторичной несущей нисходящей линии связи и разрешения работы с двумя несущими (обозначенные как «2» или «команда для двух несущих» на Фиг.7) на оборудование UE в подкадре 4 из кадра 1 радиосвязи и в подкадре 3 из кадра 10 радиосвязи. После посылки этих команд канала HS-SCCH Узел B может посылать данные на оборудование UE по вторичной несущей нисходящей линии связи в последующих разрешенных подкадрах нисходящей линии связи, в то время как оборудованию UE разрешена работа с двумя несущими. Узел B посылает команды канала HS-SCCH для деактивации вторичной несущей нисходящей линии связи и разрешения работы с одной несущей (обозначенные как «1» или «команда для одной несущей» на Фиг.7) на оборудование UE в подкадре 0 кадра 5 радиосвязи и в подкадре 1 кадра 13 радиосвязи. После посылки этих команд канала HS-SCCH Узел B может посылать данные на оборудование UE только по основной несущей нисходящей линии связи в последующих разрешенных подкадрах нисходящей линии связи, в то время как оборудованию UE разрешена работа с одной несущей.

В примере, показанном на Фиг.7, Узел B посылает команду канала HS-SCCH для деактивации работы приема DRX/передачи DTX в подкадре 4 из кадра 9 радиосвязи. Четыре подкадра после посылки этой команды канала HS-SCCH, все подк