Композиции протекторов острых и хронических печеночных энцелопатий и способ лечения острых и хронических печеночных энцелопатий

Иллюстрации

Показать все

Группа изобретений относится к медицине и предназначена для лечения и профилактики печеночных энцефалопатий. Предлагаются комплексные составы, содержащие в разных комбинациях L-карнитин, ацетил- L-карнитин, сукцинат, L-глутамат, L-аргинин, бетаин и креатинфосфат, N-ацетилцистеин, кофермент Q10 и дигидрокверцитин; S-аденозилметионин; кофермент Q10 и дигидрокверцитин, дигидрокверцитин и липоамид. Группа изобретений позволяет уменьшить поведенческие, неврологические и психические нарушения путем активации осмопротекторных и энергетических систем, систем реакций детоксикации иона аммония и др. токсинов, а также антиоксидантных систем клеток мозга и печени. 4 н. и 1 з.п. ф-лы, 3 пр., 3 табл., 3 ил.

Реферат

Изобретение относится к медицине и может быть использовано, как в пищевой промышленности в виде биологически активной добавки к пище, так и в фармакологической промышленности для решения задач лечения печеночных энцефалопатий: обеспечения обратного развития поведенческих, неврологических и психических нарушений, предупреждения развития коматозного состояния пациентов и летального исхода. Для лечения острых и хронических печеночных энцефалопатий предлагаются комплексные составы, компоненты которых обладают синергичным действием на различные метаболические и сигнальные системы, включая активацию: осмопротекторных и энергетических систем, систем реакций детоксикации иона аммония и др. токсинов, а также антиоксидантных систем клеток мозга, печени и др. тканей и органов.

ПЭ - обратимые метаболические нарушения функций мозга (спектр нейропсихических нарушений), вызванные недостаточностью функций печени. В основе острых ПЭ лежит острая недостаточность функций печени - неспособность печени обеспечивать детоксикацию иона аммония (NH4+) и других токсинов, поступающих в мозг, минуя печень. Обязательным признаком острых ПЭ является гипераммонемия (1, 2).

Хронические ПЭ чаще всего возникают при циррозе печени, вызванном алкогольным или неалкогольным стеатогепатитом, вирусным гепатитом и др. факторами. Признаком хронических форм ПЭ также является гипераммонемия, зачастую наблюдающаяся в комбинации с повышением концентраций провоспалительных цитокинов в крови (1-4).

Тяжелые формы хронических ПЭ (III и IV) и острые ПЭ зачастую могут приводить к развитию комы и гибели организма (1-6).

Принято различать три типа ПЭ (1-5), обусловленных:

А - острой (acute) недостаточностью печени;

В - наличием порто-системного шунта (by pass) без заболеваний печени;

С - циррозом (chirrhosis).

В соответствии с критериями Вест Хэвена, классифицируют (1-4) следующие стадии ПЭ:

МНЕ - минимальная (латентная) ПЭ, без видимых признаков ПЭ;

1 (I) - с инверсией сна, астериксом и др.;

2 (II) - с летаргией (апатией), дезориентацией во времени, сбивчивой речью и др.;

3 (III) - с сонливостью (ступором), полной дезориентацией, эксцентричным поведением, гиперрефлексией;

4 (IV) - кома.

Предклинические стадии МНЕ, I и II диагностируют, используя специальные психологические и нейропсихологические тесты, а стадии III и IV - клинически (2). 60-80% пациентов с циррозом имеют ПЭ, половина из них имеет выраженные ПЭ (I-IV), а ежегодный риск развития ПЭ у пациентов с циррозом достигает 20% (3, 4).

Коматозное состояние, возникающее при острых ПЭ, обычно связывают с развитием токсической или вазогенной эдемы в мозге, с дисфункцией и набуханием астроцитов и (или) с дисфункцией эндотелия и нарушением проницаемости гематоэнцефалического барьера (4, 7, 8).

В предыдущем десятилетии преобладала точка зрения (7, 9-12, 130), что избыточная активность ионотропного глутаматного рецептора (NMDA), возникающая в присутствии избытка NH4+ вызывает: - накопление Ca2+ и активацию нейрональной NOS (nNOS), с последующим накоплением NO, cGMP и активацией PKG; - активацию Na-K АТФазы и истощение АТФ; снижению концентрации глутамата и накоплению глутамина, набухание астроцитов и, тем самым, развитие токсической эдемы (отека).

В качестве основного токсического осмолита рассматривается глутамин (13, 14), который образуется в астроцитах в глутаминсинтазной реакции:

Выход из астроцитов основных буферных органических осмолитов - миоинозитола, таурина и бетаина в таких условиях не компенсирует накопление глутамина («Троянского коня»), что приводит к увеличению объема клеток за счет входа воды, к окислительному и нитрозативному стрессу и образованию митохондриальной проницаемой поры за счет гидролиза глутамина и накопления NH4+ в митохондриях (14).

В проследнее время наиболее популярным является представление о том, что набухание астроцитов и отек мозга связаны также с развитием окислительного и нитрозативного стресса, с активацией NADPH-оксидазы (15), NFкβ (16), активацией метаболизма арахидоновой кислоты (17) и истощением восстановленного глутатиона - GSH (18, 19). Считается, что нитрозативный стресс приводит к снижению активности глутаминсинтазы в мозге (А), одного из ключевых ферментов уборки NH4+ в организме (20, 21). Известно также, что при ПЭ, при наличие воспалительных процессов, имеет место также активация индуцибельной iNOS (2, 4, 7, 8, 12, 23, 116).

Окисление NAD-зависимых субстратов в митохондриях клеток мозга при ПЭ подавлено (12, 28). Имеет место существенное снижение АТФ (12, 29, 30, 124) и накопление лактата и глутамина в мозге (12, 29, 30, 48). Старая гипотеза о том, что NH4+ может замещать K+ в ряде транспортных процессов (24, 25) и вызывать деполяризацию клеток мозга, получила экспериментальное подтверждение только в последнее время (26, 27). Метаболические и сигнальные пути, вовлекаемые в механизм токсического действия NH4+ изучены недостаточно.

При острой недостаточности печени, например, когда имеет место портальная гипертензия и шунтирование печеночного кровотока, избыток NH4+ и других токсинов, продуцируемых микрофлорой желудочно-кишечного тракта (при желудочно-кишечных кровотечениях),- приводят к нарушению функций мозга и развитию острой ПЭ. К числу таких вторичных токсинов могут относиться жирные кислоты, меркаптаны, марганец, ложные трансмиттеры типа тирамина и октапамина (1, 33), лиганды периферических бензодиазепиновых (BDZ) рецепторов - нейростероиды и др. (2-4, 7, 8, 33).

В случае развития тяжелых форм хронических ПЭ (III и IV), набухание и дисфункция астроцитов не всегда наблюдаются, или наоборот, имеет место гипертрофия и гиперфункция астроцитов. Однако в любом случае окислительный и нитрозативный стресс рассматривают, как основную причину дисфункции мозга при ПЭ (1-4, 7, 8, 15).

При этом могут иметь место нарушения различных нейронных сетей в мозге, связанные: с гиперактивацией (при острых ПЭ) и с последующим подавлением (при хронических ПЭ) сигнализации в цепочке глутамат ⇒NMDA⇒Ca2+⇒cGMP⇒PKG (9-11); с нарушением в системе обмена моноаминов (34); с нарушениями в системе передачи сигналов с участием ацетилхолина (Ach) (35, 36); с доминированием сигнализации с участием тормозного трансмиттера гамма-аминомасляной кислоты (ГАМК) за счет избыточной активации периферических BDZ рецепторов (4, 7, 33) и избыточного производства митохондриями нейростероидов (7) и др.

При острой печеночной недостаточности, вызванной лекарственными отравлениями, первичными токсинами становятся активированные производные этих соединений (в частности в форме производных кофермента А), которые вызывают быстрое ожирение, снижение GSH, окислительный стресс и некроз клеток печени, а также ингибирование энергетики клеток разных типов в результате ингибирования Цикла Кребса, β-окисления жирных кислот (ЖК) и Цикла Мочевины (в печени). Рост ЖК в этих условиях приводит к развитию микровезикулярного стеатоза в печени (37, 38). Накапливающиеся КоА производные длинноцепочечных ЖК в этих условиях сами становятся токсинами, вызывающими дальнейший коллапс различных систем энергетики и гибель организма (39, 130). Такой сценарий имеет место при отравлении ацетилсалициловой кислотой (синдром Рейе и Рейеподобные заболевания (37-39)). Блокирование реакций Цикла Мочевины в печени в этих условиях приводит к развитию острой вторичной гипераммонемии.

Сходные механизмы могут реализовываться при ряде врожденных заболеваний, связанных с нарушением в системах окисления разветвленных аминокислот и с накоплением токсических КоА производных разветвленных кетокислот (пропионовая, метилмалоновая и изовалериановая ацидемии и др.) (40,41, 130). Следует отметить, что короткоцепочечные ЖК с нечетным числом атомов углерода (пропионовая и валериановая), образуемые кишечными бактериями, также могут быть важными вторичными токсинами, усиливающими токсичное действие избытка NH4+ (2,33). Роль таких вторичных токсинов не принимается во внимание.

К числу недооцениваемых вторичных токсинов, при классических формах ПЭ, относятся также длинноцепочечные ЖК (миристиновая, пальмитиновая, олеиновая, линоленовая и арахидоновая), которые могут образовываться в условиях избытка NH4+ из триглицеридов или при гидролизе фосфолипидов мембран, как это имеет место при инфаркте или инсульте (ишемия/реперфузия), когда локальное увеличение концентраций таких токсичных ЖК может достигать десятков микромолей (42, 43). Показано (44, 45), что пальмитоилкарнитин в концентрации 10-20 µМ, может вызывать гибель клеток разных типов, за счет нарушения Са2+ гомеостаза, активации липо-ксигеназных путей окисления арахидоной кислоты и гибели клеток, вследствие возникновения неспецифической катионной проводимости плазмалеммы. В присутствии NH4+ токсическое действие длинноцепочечных ЖК усиливается (46).

Следует учитывать, что значительная часть больных с ПЭ в анамнезе имеет стеатогепатит, вызванный алкогольным или неалкогольным жировым перерождением печени.

При таких условиях становится понятным, что отсутствие строгой корреляции уровня NH4+ в крови и степени тяжести развития ПЭ, может быть связано, как с неоднородной выборкой пациентов, так и с наличием вторичных токсинов в печени и мозге (жирные кислоты, нейростероиды и др.). Так, только в одном уникальном исследовании, проведенном в Индии, при однородной выборке пациентов с острыми ПЭ (при отсутствии их медикаментозного сопровождения в первые три дня после госпитализации!), показано наличие корреляции уровня NH4+ в крови, степени тяжести ПЭ и риска гибели пациентов, вследствие развития острых ПЭ (47).

Таким образом, в настоящее время признается, что ион аммония, воспаление и инфекция лежат в основе патогенеза ПЭ при циррозе печени, и их действие синергично (4, 7, 8).

Существующие подходы в лечении пациентов с ПЭ хорошо известны (1-6). Эффективных средств лечения острых ПЭ и тяжелых форм хронических ПЭ нет. Последним способом лечения острых и тяжелых форм ПЭ считается трансплантация печени (1-4).

При острых ПЭ, вызванных острым отравлением печени ацетаминофеном (часто используется самоубийцами), наиболее эффективным средством считается введение N-ацетилцистеина (NAC), способствующего снятию окислительного стресса, восстановлению пула GSH и подавлению синтеза некоторых воспалительных цитокинов (49).

В практике лечения острых и хронических ПЭ, связанных с избытком иона аммония, в течение последних 60 лет используют два сочетающихся подхода (1-6, 33, 50-55):

1) уменьшение продукции NH4+ кишечными бактериями с использованием лактулозы и пробиотиков;

2) активация систем уборки NH4+ в организме, в первую очередь за счет активации Цикла Мочевины в печени и глутаминсинтазы в различных тканях и органах.

Реже используются: применение антагонистов ГАМК рецепторов, трансфузионная терапия или радикальный метод - трансплантация печени (1-4).

Существует два патентованных препарата, имеющих в первую очередь целью активацию уборки NH4+ в организме и заявленных как: гепатопротекторы, средства борьбы с гипераммонемией и протекторы печеночных энцефалопатии:

1. Препарат компании «Мерц» (Германия) - «ГепаМерц» (52).

«ГепаМерц», более 15 лет используемый в мировой клинической практике. В составе «ГепаМерц» - L-орнитин и L-аспартат, вследствие чего его название в исследовательских кругах LOLA. Суточный прием при острых ПЭ: до 20-40 г иногда - до 80 г.

2. «Глутаргин» (53) - украинский препарат, разработанный ГНЦ лекарственных средств Украины в 2001 г. «Глутаргин» с 2005 используется, как лекарственное средство. В составе «Глутаргина»: L-глутамат и L-аргинин. Рекомендуемый суточный прием до 6-10 г.

Действие обоих препаратов сходно и в первую очередь направлено на активацию основной системы уборки NH4+ в печени - Цикла Мочевины, а также глутаминсинтазы.

Обе композиции, LOLA и «Глутаргин», содержат взаимопревращающиеся соединения.

L-аргинин и L-орнитин непосредственно являются субстратами (интермедиатами) Цикла Мочевины, а L-аспартат, АТФ и карбомоилфосфат - косубстратами. Общее уравнение баланса в Цикле Мочевины имеет вид:

L-глутамат в квазиравновесной трансаминазной реакции быстро переаминируется в L-аспартат:

и является источником L-орнитина в другой трансаминазной реакции:

L-глутамат в глутаминсинтазной реакции в мозге, мышцах, почках и в перивенозных гепатоцитах участвует в уборке NH4+ с образованием глута-мина (реакция А). L-аргинин, кроме того является субстратом NO-синтазы (NOS) и источником NO в организме.

Комбинированное использование пробиотиков, L-глутамата и L-аргинина при лечении ПЭ, исследовалось еще в 50-60-х годах (55). В 60-х годах в ряде патентов, для ускорения уборки NH4, вместо пары L-глутамат и L-аргинин, предлагалось использовать L-орнитин и L-аспартат (51).

Препарат «Глутаргин» не получил широкого применения в мировой медицинской практике, хотя активно рекламируется в Украине как гепатопротектор, антиоксидант и противоалкогольный препарат (53).

Препарат «ГепаМерц» (LOLA) активно исследуется в разных медицинских центрах, включая РФ(1-6, 56-62), однако, данные о его эффективности весьма противоречивы. Иногда наблюдается снижение уровня NH4+ и улучшение состояния пациентов (5, 56-58), иногда реверсия только легких форм ПЭ (5, 59). В других исследованиях эффективность LOLA не подтверждается (60-62). В России зарегистрирован патент на метод лечения больных с ПЭ с применением лактулозы, пробиотиков и LOLA (63). В отечественной практике синоним LOLA - орницетин.

В последнее время делаются попытки использовать в качестве протектора ПЭ комбинацию L-орнитина и фенилацетата и др (64). В ряде клинических исследований используются L-карнитин или ацетил-L-карнитин (в дозах 2-4 г), которые также обладают протекторными свойствами при легких формах ПЭ (минимальные ПЭ; I, II). Иногда отмечается снижение уровня NH4+ в крови и улучшение состояния пациентов (65-67).

Отдельной группой идут препараты с гепатопротекторными свойствами, противоэнцефалопатическое действие которых чаще всего не заявляется. Действие этих препаратов направлено на восстановление функций печени при циррозе и гепатитах разной этиологии.

Представленный в последнее время на отечественном рынке «Фосфоглив», включает фосфолипид фосфатидилхолин и глицерризиновую кислоту (флаволигнан из расторопши пятнистой) (6, 68). В мировой медицинской практике и в физиологии спорта давно используются препараты (БАД) сходного состава (например «Liver-Pro» компании «Santegra», USA). Считается что, эссенцинальные фосфолипиды и флавоглинаны существенно усиливают антиоксидантные и репаративные защитные механизмы клеток печени.

В последнее время запатентованы средства, в которые кроме указанных соединений входят желчные кислоты и другие соединения (69). Однако вопрос о методах реверсии фиброза и цирроза печени все еще остается открытым (Нобелевская премия). В настоящее время перспективным в лечении таких заболеваний считается подход, направленный на активацию метаболизма стеллатных и купферовских клеток печени с участием каннабиноидных рецепторов.

Таким образом, в мировой медицинской практике наиболее популярным протектором ПЭ является препарат LOLA, который взят нами за прототип.

Основным недостатком существующих подходов в поиске методов коррекции ПЭ, являются попытки найти минимальный набор средств, способный обеспечить эффективную защиту организма от избытка NH4, как при острых, так и при хронических ПЭ.

Это относится к попыткам применения LOLA (1-6, 51-63), «Глутаргина» (53), L-карнитина (65-67, 70, 71), ингибиторов NMDA (10) или ГАМК рецепторов (33, 50), сочетания ингибиторов NMDA рецептора и L-карнитина (128), ингибиторов NOS (129), ингибиторов глутаминсинтазы (13, 14), введения инкапсулированной глутаминазы (125, 126), креатина (127) и др.

Не существует одного-двух соединений, способных быть панацеей в условиях ПЭ.

По определению ПЭ являются метаболическими ПЭ. ПЭ - это обратимые метаболические нарушения функций мозга, вызванные первичными нарушениями функций печени (1-4).

Острые и хронические ПЭ представляют собой «метаболический» Синдром, включающий комплекс химических (метаболических) и психических (сигнальных) нарушений, коррекция которых требует комплексной защиты.

Оставляя в стороне существующие эффективные способы уменьшения продукции NH4+ бактериями желудочно-кишечного тракта (по п.1), по-нашему мнению эффективные протекторы метаболических нарушений при острых и хронических ПЭ должны быть комплексными и обладать следующими свойствами:

1) активировать осмопротекторные системы клеток мозга и печени, участвующие в регуляции объема клеток и способствующие выведению «токсических» осмолитов: глутамина, лактата и станина, т.е. препятствующие развитию отека мозга;

2) активировать энергетику митохондрий разных клеток, поскольку активное функционирование: глутаминсинтазы (А), Цикла Мочевины (В), а также ряда транспортных АТФаз (участвующих в регуляции Ca2+ и Na+/K+/Cl- гомеостаза в мозге, почках, печени и мышцах) - является энергозатратными процессами;

3) активировать уборку NH4+ в мозге, почках, мышцах и печени (перивенозные гепатоциты) с участием глутаминсинтазы, а также, в печени с участием Цикла Мочевины (перипортальные гепатоциты);

4) снижать активность функционирования различных нейронных сетей в мозге с участием сигнализации возбуждающего нейротрансмиттера глутамата (NMDA, AMP А) и активировать сигнализацию с участием тормозного трансмиттера ГАМК и глицина (в случаях острых ПЭ). Восстанавливать активность сигнализации аргинин ⇒NO⇒cGMP⇒PKG и сигнализации с участием ацетилхолина (в условиях хронических ПЭ);

5) активировать антиоксидантные и противовоспалительные системы клеток мозга и печени;

6) уменьшать накопление токсических КоА производных и др. веществ;

7) индуцировать метаболические и сигнальные системы, направленные на активацию транскрипции и синтеза ферментов de novo ряда метаболических путей, включая: реакции окислительного фосфорилирования митохондрий, Цикла Кребса, Цикла Мочевины, обмена глутамата, обмена GSH, пентозного шунта и др. (при хронических ПЭ).

Многолетний поиск протекторов ПЭ с использованием тысяч животных позволил нам обнаружить неожиданный результат, заключающийся в том, что комбинации некоторых метаболитов обладают синергичными эффектами при их действии на различные метаболические и сигнальные системы. Сочетание сравнительно небольших концентраций этих соединений усиливает эффект действия каждого из них.

Это касается сочетанного действия:

- сукцината, глутамата и ацетил-Е-карнитина на энергетику клеток;

- бигуанидинов (L-аргинина и креатинфосфата) и триметиламинов (L-карнитина, ацетил-L-карнитина и бетаина) на разные сигнальные и транспортные системы с участием центральных α2 и m2 рецепторов;

- сукцината, кофермента Q10 и липоамида, а также L-аргинина и L-глутамата на активацию факторов транскрипции различных метаболических и сигнальных путей.

- L-глутамата, N-ацетилцистеина (или S-аденозил-метионина) и бетаина на активацию антиоксидантных систем клеток;

- L-глутамата и ацетил-L-карнитина на активацию синтеза N-ацетилглутамата (ключевого активатора Цикла Мочевины) и на активацию синтеза N-ацетиласпартилглутамата (NAAG) - тормозного дипептида, лиганда mGluRII (2) - метаботропных глутаматных рецепторов и др.

Характеристика компонентов предлагаемых составов протекторов ПЭ

Все составляющие компоненты, являются природными соединениями, хорошо изучены и являются стандартными компонентами пищевой и фармацевтической продукции.

L-карнитин, ацетил-L-карнитин и бетаин

L-карнитин - обязательный кофермент переноса ацильных групп в клетках животных и растений с длиной углеродной цепи от C2 (ацетат) и C3 (пропионат) до C24-26. L-карнитин является важнейшим буфером ацильных групп. Вследствие этого экзогенный L-карнитин способен снижать концентрации токсических АцилКоА или КоА - производных лекарственных средств и желчных кислот и увеличивать концентрацию свободного кофермента А.

L-карнитину посвящено огромное количество публикаций. Он показан к применению при сердечно-сосудистых заболеваниях, при ожирении и диабете, при ПЭ и болевых синдромах, при лечении нейрологических заболеваний у детей, при инфаркте/инсульте. Широко применяется в спорте и рекламируется, как сжигатель веса.

Механизмы и сигнальные пути, участвующие в регуляции объема клеток, слабо изучены. L-карнитин был одним из первых соединений, действие которого увеличивало выживание животных при модельной острой интоксикации NH4+ (70), хотя не всегда это подтверждалось (71). Показано, что все четвертичные амины, включая L-карнитин, ацетил-L-карнитин и бетаин являются осмопротекторами (71, 72) и холиномиметиками (71-75).

Однако сам по себе L-карнитин даже при больших концентрациях (15-30 г) не является эффективным протектором ПЭ.

По нашему мнению, важны 3 ключевых свойства L-карнитина:

- холиномиметика (центральные m2-холинорецепторы) и осмопротектора (совместно с действием α2-адреномиметиков - L-аргинина и креатинфосфата);

- буфера ацильных групп субстратов, окисляемых в Цикле Кребса в виде ацетил или сукцинилКоА, т.е. участника энергетического обмена;

- акцептора ацильных и др. групп, токсических производных длинноцепочечных ЖК и др. соединений, метаболизируемых в виде КоА-производных (включая желчные кислоты).

В заявленных композициях по настоящему изобретению количество L-карнитина на 1 дозу составляет 4-6 г или 2,5-3 г (острые ПЭ) или 1,5-2 г (хронические ПЭ).

Ацетил-L-карнитин

Также, как и L-карнитин, широко используется в медицине и спорте. Известно, что в условиях острых ПЭ (модельных ПЭ) имеет место сильное снижение скоростей окисления NAD-зависимых субстратов в Цикле Кребса, включая пируват, малат, пальмитоилкарнитин и др. в митохондриях, в сравнении с окислением сукцината и глутамата (12, 28).

В условиях снижения скоростей окисления пирувата кетоновых тел и ЖК при ПЭ, образование ацетилКоА из ацетил-L-карнитина,- имеет большое значение для обеспечения высокой скорости работы Цикла Кребса и наработки АТФ в митохондриях (при наличии сукцината и глутамата).

Использование в составе композиции ацетил-L-карнитина преследует несколько целей:

- действие как холиномиметика (центральные m2-холинорецепторы) и осмопротектора (совместно с действием α2-адреномиметиков - L-аргинина и креатинфосфата);

- донора ацетильных групп при синтезе Ach в пресинаптических терми-налях;

- донора ацетильных групп в Цикле Кребса (образование ацетилКоА и активация Цикла Кребса, совместно с сукцинатом и глутаматом);

- донора ацетильных групп при синтезе N-ацетиласпартата {совместно с глутаматом), предшественника тормозного дипептида NAAG;

- донора ацетильных групп при синтезе N-ацетилглутамата (совместно с глутаматом) - ключевого активатора Цикла Мочевины.

В заявляемых композициях по настоящему изобретению количество ацетил-L-карнитина на 1 дозу составляет 4-5 г или 1-2 г (при острых ПЭ) и 0,5-1,5 г (при хронических ПЭ).

Бетаин (Триметилглицин) широко используется: в пищевой индустрии в количестве 0,3-3 г. (как гейнер); как гепатопротектор; при травмах; заболеваниях кишечника и др. Бетаин является продуктом распада холина, предшественником глицина и серина. Биполярная молекула, способная удерживать воду. Наряду с мио-инозитолом и таурином является эндогенным осмолитом, поскольку в условиях накопления токсических осмолитов глутамина, лактата и аланина - выход бетаина и других осмолитов препятствует увеличению объема клетки.

Бетаин,- хороший донор метальных групп, что имеет большое значение в различных реакциях метилирования, в том числе при индукции синтеза ферментов различных метаболических путей de novo. Наряду с L-карнитином и ацетил-L-карнитином является холиномиметиком (75, 78).

Таким образом бетаин введен в состав как:

- осмопротектор и холиномиметик;

- донор метальных групп.

В заявленных композициях по настоящему изобретению количество бетаина (триметилглицина) на 1 дозу составляет 0,5-2 г (при острых и хронических ПЭ).

L-аргинин, L-глутамат

L-аргинин - один из интермедиатов Цикла Мочевины, субстрат в реакциях синтеза NO и полиаминов. Предшественник креатина. Аргинин - «многоликий Янус», о котором написано не меньше чем о карнитине. Широко используется в медицине и в спорте (как гейнер).

Известен «аргининовый парадокс» (89), который вызван тем, что увеличение концентрации аргинина больше 1 мМ вызывает активацию NOS и рост NO, несмотря на высокое сродство (n, e и i) NOS к аргинину (1-5 мкМ). Объясняют такое свойство наличием конкурентного ингибитора NOS - асимметричного диметиларгинина (АДМА) в клетках (89). Установлено, что концентрация АДМА в условиях разных типов патологий может достигать 100-300 мкМ (90, 91). Однако возможны и другие механизмы действия аргинина. Известно, что аргинин обладает сродством к α2-адренорецептору, поскольку введение аргинина в кровь вызывает гипотензивный эффект (92). Показано также (31, 32), что L-аргинин, действуя через α2 адренорецепторы, вызывает активацию eNOS в миокардиоцитах, усиливая сигнализацию: Gβγ⇒PIP3K⇒АКТ⇒eNOS. Аналогичным образом добавка L-аргинина проявляется и в его антагонизме с норэпинефрином (NE) на адипоцитах (78).

Таким образом, введение L-аргинина в состав обеспечивает:

- активацию (субстрат и активатор N-ацетилглутамин-синтазы) Цикла

Мочевины в печени;

- активацию центральных α2 адренорецепторов, которые (совместно с m2 холинорецепторами) могут иметь важное значение:

- в осморегуляции астроцитов и нейронов;

- в пресинаптическом торможении в разных нейронных сетях;

- в подавлении сигнализации с участием сАМР и Ca2+;

- активацию и восстановление сигнализации в цепочке NO⇒cGMP⇒PKG в условиях хронических ПЭ;

- восстановление пула креатина;

- активацию сигнализации с участием PIP3K, АКТ, mTOR, при синтезе различных белков, при репаративных процессах и ангиогенезе.

В заявленных композициях по настоящему изобретению количество L-аргинина на 1 дозу составляет 1,5-2,5 г (для острых и хронических ПЭ).

L-глутамат - ключевая аминокислота, учавствующая в переаминировании различных аминокислот (т.е. источник аспартата и орнитина в Цикле Мочевины), возбуждающий нейротрансмиттер в мозге, предшественник тормозного трансмиттера ГАМК и тормозного пептида NAAG. Хорошо окисляется в Цикле Кребса в паре с сукцинатом (в состоянии 3 по Чансу - имеет место максимальная скорость дыхания). Источник α-кетоглутарата для Цикла Кребса в глутаматдегидрогеназной и трансаминазных реакциях (В, С) и субстрат при синтезе глутамина в глутаминсинтазной реакции (А). В условиях острых и хронических ПЭ имеет место уменьшение концентрации глутамата, накопление глутамина и развитие эдемы (4, 7, 12, 93-95).

Таким образом, наличие L-глутамата в составе обеспечивает:

- активацию глутаминсинтазы (реакция А);

- активацию Цикла Мочевины за счет образования важного регулятора Цикла - N-ацетил-глутамата (совместно с ацетил-L-карнитином);

- активацию Цикла Мочевины за счет образования косубстрата Цикла L-аспартата (реакция В);

- активацию Цикла Кребса за счет реутилизации оксалацетата (реакция В) - субстрата Цикла Кребса и ингибитора сукцинатдегидрогеназы, чем достигается максимальная скорость окисления сукцината в Цикле Кребса (совместно с сукцинатом и ацетил-L-карнитином);

- активацию Цикла Кребса за счет предотвращения истощения α-кетоглутарата (реакции В, С);

- синтез тормозного трансмиттера ГАМК и тормозного дипептида NAAG (совместно с ацетил-L-карнитином), участвующего в пресинаптическом торможении через метаботропные глутаматные рецепторы II типа - mGluR II (2) (87, 88);

- активацию сигнализации с участием mTOR и синтеза белков;

- участие в синтезе GSH (совместно с N-ацетилцистеином и бетаином).

В заявленных композициях (для острых и хронических ПЭ) по настоящему изобретению количество L-глутамата (глутаминовой кислоты) на 1 дозу составляет 0,75-1,5 г.

Янтарная кислота (сукцинат) - один из интермедиатов Цикла Кребса, субстрат сукцинатдегидрогеназной реакции (СДГ). СДГ является одной из самых быстрых реакций Цикла Кребса и, в отличие от ключевых регуляторных реакций Цикла - α-кетоглутаратдегидрогеназной и цитратсинтазной реакций, - скорость СДГ слабо зависит от отношений NAD/NADH и ATP/ADP в митохондриях. Ингибирование СДГ различными АцилКоА также выражено слабо. Поэтому, в условиях гипоксии и при др. патологических условиях, окисление сукцината приобретает особое значение. В паре с глутаматом (обеспечивающим уборку ингибитора СДГ - оксалацетата и образование α-кетоглутарата) достигается максимальная скорость дыхания митохондрий в состоянии 3 (по Чансу) (12). В условиях острых ПЭ, угнетение дыхания митохондрий для этой пары субстратов выражено намного слабее, чем для всех NAD-зависимых субстратов (пируват, малат, кетоновые тела, пальмитоилкарнитин) (12, 28).

Исследованию роли янтарной кислоты в различных условиях, благо-даря в первую очередь усилиям проф. М.Н. Кондрашовой, посвящено большое количество работ, симпозиумов и конференций (96,97).

Янтарная кислота широко используется в медицине и в спорте. Даже низкие фармакологические количества янтарной кислоты и ее производных (например Мексидол или сукцинат аммония) оказывают важное регуляторное действие на метаболизм человека и животных (97). Это может быть связано с ее действием через клеточные рецепторы GPR91 с участием Gi/Go и Gq белков (98). Акивация экспрессии GPR91 сукцинатом имеет место при ишемии. Важную роль янтарная кислота имеет также в стабилизации образования гипоксического белкового фактора HIF-1 (гипоксия-индуцируемый фактор), т.е. в регуляции de novo активности метаболических путей, обеспечивающих эффективное производство энергии митохондриями в условиях гипоксии и при различных стрессовых условиях, включая окислительный стресс (99, 100).

Таким образом, в составе протекторов ПЭ, янтарная кислота обеспечивает:

- высокую скорость работы Цикла Кребса и наработку АТФ в мито-хондриях (в комбинации с глутаматом и ацетил-L-карнитином);

- энергопродукцию в условиях окислительного и нитрозативного стресса;

- индукцию метаболических путей de novo (через HIF и рецептор GPR91), обеспечивающих наработку FADH и NADH.

Однако, сама по себе янтарная кислота, даже при больших концентрациях (до 5-10 мг/кг), не является эффективным протектором острой аммонийной интоксикации (101).

В заявленных композициях по настоящему изобретению количество сукцината (янтарной кислоты) на 1 дозу составляет 0,75-1,5 г.

Креатинфосфат - важный кофактор переноса макроэргических фосфатных групп, буфер АТФ в клетке:

КрФ имеет важное значение при выполнении предельных анаэробных нагрузок спортсменами, поскольку пул креатина в клетках мышц и мозга в 4-5 раз превышает суммарное содержание аденилатов. Широко используется в спортивной биохимии. В условиях ПЭ имеет место распад креатина до креатинина, уровень креатинина в крови увеличивается (4, 93).

В составе протектора ПЭ креаинфосфат используется для:

- восстановления пула креатин+креатинфосфат в клетках;

- как бигуанидин, который через α2 адренорецепторы может участвовать в осморегуляции клеток и в пресинаптическом торможении (совместно с L-аргинином и m2 холиномиметиками).

При введении больших доз, креатинфосфат может, как осмопротектор, в сочетании с L-карнитином и этанолом, заменять L-аргинин (см. ниже).

В заявленных композициях по настоящему изобретению количество креатинфосфата на 1 дозу составляет 4-6 г (острые ПЭ) или 0,5-1,5 г (хронические ПЭ)

Этанол, одно из самых популярных соединений, которое при хроническом приеме вызывает привыкание и ожирение печени (алкогольный стеатогепатит), за счет восстановления NADH и устойчивого подавления окисления NAD-зависимых субстратов, в том числе и с участием транскрипционных факторов. При остром введении больших доз этанола возникает отравление ацетальдегидом. Однако, в ряде случаев при острых ПЭ, вызванных ацетаминофеном, показан положительный эффект введения этанола наряду с N-ацетилцистеином (102).

В составе протектора острых ПЭ, этанол может быть использован, как регулятор рецепторов NMDA, ГАМК и глицина, благодаря тому, что даже малые дозы этанола активируют тормозные ГАМКА-рецепторы, а большие дозы (50 мМ и выше) приводят к ингибированию активности NMDA-рецепторов (80, 123) и активации глициновых рецепторов (123).

В заявленных композициях по настоящему изобретению количество этанола на 1 дозу составляет 20-50 мл.

N-ацетилцистеин (NAC) - ацетилированная аминокислота цистеин. Играет важную роль в реакциях синтеза глутатиона GSH de novo наряду с глутаматом и глицином, а также в различных реакциях трансацетилирования.

В условиях острых ПЭ, вызванных избытком иона аммония, при наличии окислительного и нитрозативного стресса (2, 4, 8, 12, 15), активность антиоксидантных систем клеток печени и мозга падает. При этом уменьшается активность глутатионпероксидазы и глутатионредуктазы (12). На экспериментальных моделях ПЭ с введением ацетаминофена и других токсинов, показано, что имеет место падение восстановленного GSH, вследствие развития окислительного стресса (103, 104). В экспериментах, выполненных на культурах нейронов и астроцитов также показано, что гибель клеток вследствие окислительного стресса, связана с истощением GSH (18, 19).

Уровень GSH может снижаться, как за счет его превращения в GSSG в антиоксидантных реакциях, так и за счет образования коньюгатов с различными токсинами или в реакциях синтеза лейкотриенов, при активации липоксигеназных путей с участием арахидоновой кислоты.

NAC используется в качестве антидота при отравлениях ацетаминофеном, обеспечивая активное восстановление пула глутатиона и уровня восстановленности GSH (103, 104). Комбинации NAC, глутамата и глицина также способны обеспечивать эффективный ресинтез GSH de novo. Использование трипептида GSH нецелесообразно, т.к. сначала он распадается в почках, а затем исходные соединения используются организмом для ресинтеза GSH (105).

Поэтому в составе гепатопротекторов ПЭ NAC:

- обеспечивает, в сочетании с L-глутаматом, ресинтез GSH;

- участвует в реакциях трансацетилирования;

- регулирует противовоспалительные процессы.

Однако сам по себе NAC, даже в больших концентрациях (15-20 г) не является эффективным протектором острых ПЭ, вызванных первичной гипераммонемией.

В заявленных композициях по настоящему изобретению количество Q10 на 1 дозу составляет 20-30 мг (хронические ПЭ).

ДГК - флаваноид, экстрагируемый из лиственницы; - хорошо извест-ный и широко используемый антиоксидант (108) - применяется в составе протекторов по своему непосредственному назначению,- как антиоксидант. ДГК может быть заменен флаваноидами, полученными из винограда (Ресвератрол (109)) или из зеленого чая.

В заявленных композициях по настоящему изобретению количество ДГК на 1 дозу составляет 15-20 мг (хронические ПЭ).

Составы и дозы заявленных композиций протекторов ПЭ

Приводимые ниже примеры служат для иллюстрации заявленного изобретения, а не для ограничения объема притязаний. Все составляющие компоненты хорошо изучены, являются природными соединениями и широко применяются в пищевой и фармацевтической продукции.

Предлагаемые составы протекторов ПЭ могут использоваться в качестве БАД и выполняются в виде порошков или гранул, пригодных для перорального применения. Составы протекторов ПЭ получают прямым смешиванием, делят на порции или гранулируют и делят на порции и упаковывают в фольгированные пакетики с использованием традиционных вспомогательных компонентов и методик по стандартной для этой области технологии.

Составы используютс