Функционализированные полимеры
Настоящее изобретение относится к способу получения функционализированного полимера, который применяется при изготовлении каучуковых изделий, таких как протекторы шин. Способ включает следующие стадии: (а) использование каталитической системы на основе лантанидов для полимеризации одного или большего количества полиенов с получением активного по терминальным группам полимера, (b) реагирование указанного активного по терминальным группам полимера с полиизо(тио)цианатом с образованием полимера с терминальной изо(тио)цианатной функциональной группой, и (с) реагирование указанного полимера с терминальной изо(тио)цианатной функциональной группой с нуклеофилом, имеющим одну из следующих общих формул: H2NR''Si(OR3)3 или HSR''Si(OR3)3, где R'' представляет собой замещенную или незамещенную двухвалентную алифатическую группу, замещенную или незамещенную ароматическую группу или группу, содержащую гетероатом, и R3 представляет собой атом водорода или замещенную или незамещенную алкильную, алкенильную, циклоалкильную, циклоалкенильную, арильную, аллильную, аралкильную, алкарильную или алкинильную группу, так, чтобы получить функционализированный полимер. Технический результат - получение функционализированного полимера, при использовании которого наполненные составы для протекторов шин демонстрируют улучшенную влажную тягу наряду со снижением гистерезиса, а также повышенную прочность на разрыв и значительное снижение эффекта Пейна. 1 з.п. ф-лы, 3 табл., 12 пр.
Реферат
Область техники
Описаны функционализированные полимеры, которые применяются при изготовлении каучуковых изделий, таких как протекторы шин.
Уровень техники
Каучуковые изделия, такие, как протекторы шин, часто делаются из эластомерных композиций, которые содержат один или более усиливающий материал, такой, как, например, частицы газовой сажи и оксида кремния; см., например. The Vanderbilt Rubber Handbook, 13th ed. (1990), pp.603-04.
Хорошая тяга и сопротивление истиранию являются важнейшими соображениями для протекторов шин; однако интересы топливной эффективности автомашин дают аргументы в пользу минимизации их сопротивления качению, которое коррелирует со снижением гистерезиса и ростом температуры при эксплуатации шины. Эти соображения являются в значительной степени конкурирующими и несколько противоречащими:
протекторы, сделанные из композиций, направленных на обеспечение хорошей дорожной тяги, обычно демонстрируют повышенное сопротивление качению, и наоборот.
Наполнитель(и), полимер(ы) и добавки обычно выбирают так, чтобы обеспечить приемлемый компромисс или баланс этих свойств. Создание условий для того, чтобы усиливающий(е) наполнитель(и) был(и) хорошо диспергированы по всем(у) эластомерным(ому) материалам(у) как увеличивает технологичность, так и влияет на улучшение физических свойств. Диспергирование наполнителей может быть улучшено усилением их взаимодействия с эластомером(ами). Примеры усилий этого типа включают высокотемпературное перемешивание в присутствии селективно реакционноспособных промоторов, поверхностное окисление материалов состава, привитую сополимеризацию на поверхности и химическую модификацию полимера, обычно при его окончании.
Различные эластомерные материалы часто применяются при изготовлении вулканизатов, таких как, например, компоненты шин. В дополнение к природному каучуку, некоторые из наиболее часто используемых включают полностью-цис-полибутадиен, часто полученный способами, использующими катализаторы, и в основном статистические стирол-бутадиеновые сополимеры, часто полученные способами, использующими анионные инициаторы. Функциональные группы, которые могут входить в состав полностыо-цис-полибутадиена, часто не могут входить в состав анионно инициированных стирол-бутадиеновых сополимеров, и наоборот.
Краткое изложение
С одной стороны, предлагается функционализированный полимер, имеющий общую формулу π-Q-Jm, где π представляет собой полимерную цепь (которая обычно включает диеномер), J является функциональной группой, которая включает по меньшей мере один гетероатом, m представляет собой целое число от 1 до 3 включительно, a Q представляет собой соединительную группу общей формулы -C(Z)NH-R-[NHC(Z)]m, в которой каждый Z независимо представляет собой атом кислорода или серы, a R является замещенной или незамещенной ароматической или С1-С40-алифатической гидрокарбиленовой группой (например, алкиленовой, ариленовой и т.д.).
С другой стороны, предлагается функционализированный полимер, который включает полимерную цепь и терминальную функциональную группу, имеющий общую формулу -C(Z)NH-R-[NHC(Z)R']m, где Z, m и R определены, как описано выше, и где R' является радикалом нуклеофила, включающим, по меньшей мере, один гетероатом, выбранный из О, S, N и Si. Этот полимер может быть продуктом реакции живущего или псевдоживущего полимера, который включает терминальную изо(тио)пианатную функциональную группу, с нуклеофилом, который включает один или, преимущественно, два или более гетероатома, выбранных из О, S, N и Si.
С других сторон, предлагаются предшествующие функционализированные полимеры в композициях, которые включают, кроме того, одну или более органическую жидкость, в которой данный(е) полимер(ы) является(ются) по меньшей мере частично растворимым(и), (растворители) и/или частицы наполнителя(ей), вулканизаты, полученные из композиций, которые включают такие полимеры и частицы наполнителя(ей), способы получения полимеров и способы получения вулканизатов, которые включают такие полимеры и частицы наполнителя(ей).
Данные полимеры предпочтительно включают фрагменты полиеномера. В некоторых вариантах воплощения полиены могут быть сопряженными диенами, и получающийся сопряженный диеномер может быть включен в полимерную цепь в значительной степени беспорядочно.
Независимо от специфических особенностей, функционализированные полимеры могут взаимодействовать с частицами наполнителя, такого, как, например, газовая сажа и оксид кремния.
Другие аспекты настоящего изобретение будут очевидны обычным специалистам из следующего подробного описания. Чтобы помочь в понимании описания различных вариантов воплощения, непосредственно ниже представлены некоторые определения (которые предназначены, чтобы применяться везде, если окружающий текст явно не указывает на противоположное намерение):
«полимер» обозначает продукт полимеризации одного или более мономеров и включает гомо-, со-, тер-, тетраполимеры и т.д.;
«мер» или «мерный фрагмент» обозначает часть полимера, производную от молекул единственного реагента (например, этиленомер имеет общую формулу -CH2CH2-);
«сополимер» («copolymer») обозначает полимер, который включает мерные фрагменты, производные от двух реагентов, обычно мономеров, и включает статистические, блок-, сегментированные, привитые и т.п. сополимеры;
«интерполимер» («interpolimer») обозначает полимер, который включает мерные фрагменты, производные, по меньшей мере, от двух реагентов, обычно мономеров, и включают сополимеры, терполимеры, тетраполимеры и подобные;
«замещенный» обозначает тот, который содержит гетероатом или функциональную группу (например, гидрокарбильная группа), которые не мешают намеченной цели рассматриваемой группы;
«непосредственно связанный» обозначает ковалентно присоединенный к немешающим атомам или группам;
«полиен» обозначает молекулу, по меньшей мере, с двумя двойными связями, расположенными в его наиболее длинной части или цепи и, в частности, включает диены, триены и т.п.;
«высокостирольный стирол-бутадиеновый каучук» («high styrene SBR») обозначает стирол-бутадиеновый интерполимер, в котором массовое содержание связанного стирола составляет, по меньшей мере, 20%; по меньшей мере, 25%; по меньшей мере, 30% или даже, по меньшей мере, 37% и может повышаться до, примерно, 45%;
«лантанидное соединение» обозначает соединение, которое включает, по меньшей мере, один атом из La, Nd, Се, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Но, Er, Tm, Yb, Lu и дидимия (смеси редкоземельных элементов, которая может быть получена из монацитового песка);
«алюминийорганическое соединение» обозначает соединение, содержащее, по меньшей мере, одну связь Al-С;
«магнийорганическое соединение» обозначает соединение, содержащее, по меньшей мере, одну связь Mg-C;
«радикал» обозначает часть молекулы, которая остается после реагирования с другой молекулой, независимо от того, получены ли или потеряны какие-либо атомы в результате реакции;
«температура каплепадения» представляет собой установленную верхнюю температуру, при которой наполненную каучуковая композиция (вулканизат) эвакуируют из смешивающего оборудования (например, смесителя Бенбери (Banbury mixer)) в мельницу для того, чтобы переработать в листы;
«изо(тио)цианат» обозначает группу общей формулы -N=С=O или -N=C=S или соединение, которое включает такую группу;
«полиизо(тио)цианат» обозначает соединение с двумя или более изо(тио)цианатными группами и, в частности, включает ди-, три- и тетраизо(тио)цианаты;
«уретан» обозначает группу, имеющую общую формулу -C(Z)NH-, где Z представляет собой атом кислорода или серы;
«окончание» обозначает конец полимерной цепи; и
«терминальный фрагмент» обозначает группу или функциональную группу, расположенную в окончании.
Подробное описание поясняющих вариантов воплощения
Как очевидно из раздела «Краткое изложение», функционализированные полимеры включают функциональную группу, обычно в окончании, связанную с полимерной цепью через уретановый мостик.
Один из множества полимеров композиции может быть эластомерным и может включать мерные фрагменты, которые включают ненасыщенность, такую, как та, что получается из полиенов, в частности, диенов и триенов (например, мирцена). Иллюстративные полиены включают С4-С12-диены, в частности, сопряженные диены, такие, как 1,3-бутадиен, изопрен, 1,3-пентадиен, 2,3-диметил-1,3-бутадиен и 1,3-гексадиен, но не ограничены ими.
В зависимости от намеченного конечного применения, одна или более из полимерных цепей может включать боковые ароматические группы, которые могут быть обеспечены, например, посредством включения мерных фрагментов, производных от винилароматических соединений, особенно С8-С20-винилароматических соединений, таких, как, например, стирол, α-метилстирол, p-метилстирол, винилтолуолы и винилнафталины. Мерные фрагменты с боковой ароматичностью, когда применяются в сочетании с одним или более полиенами, могут составлять от ~1 до ~60%, от ~10 до ~55%, или от ~20 до ~50% полимерной цепи. Микроструктура таких интерполимеров может быть статистической, т.е. мерные фрагменты, производные от каждого типа составляющего мономера, не образуют блоки, а, вместо этого, включены неповторяющимся, по существу, одновременным способом. Статистическая микроструктура может обеспечить специфические преимущества в некоторых конечных применениях заявки, таких, как, например, резиновые композиции, применяемые при изготовлении протекторов шин.
Образцы эластомеров, которые включают интерполимеры одного или более полиенов и стирола, такие, как, например, поли(стирол-со-бутадиен), также известны, как БСК (бутадиен-стирольный каучук) (styrene-butadiene resin, SBR).
Полиены могут соединяться в полимерные цепи более, чем одним способом. Управление этим способом соединения может быть особенно желательным для применений в качестве протектора шин. Для некоторых конечных применений заявки может быть желательной полимерная цепь с количеством 1,2-микроструктуры, в целом, приведенной как числовой процент по отношению к общему количеству моль полиеномера, от ~10 до ~80%, не обязательно от ~25 до ~65%. Полагают, что полимер, который имеет 1,2-микроструктуры, в целом, не более, чем ~ 50%, предпочтительно - не более, чем ~45%, более предпочтительно - не более, чем ~40%, еще более предпочтительно - не более, чем ~ 35%, и наиболее предпочтительно - не более, чем ~30% по отношению к общему количеству полиеномера, является «по существу, линейным». Для некоторых конечных применений заявок, однако, может быть желательным соблюдение еще более низкого содержания 1,2-связывания - например, менее чем, примерно ~7%, менее, чем ~5%, менее, чем ~2% или менее, чем ~1%.
Величина среднего значения молекулярной массы (Mn) полимера обычно является такой, что погашенный образец демонстрирует вязкость Муни (Mooney) смолы (ML4/100°C) от ~2 до ~150, более обычно - от ~2,5 до ~125, еще более обычно - от ~5 до ~100, и наиболее обычно - от ~10 до ~75. Величины Mn образцов лежат в диапазоне от ~5000 до ~200000, обычно - от ~25000 до ~150000, и типично - от ~50000 до ~125000.
Такие полимеры могут быть получены эмульсионной полимеризацией или полимеризацией в растворе, причем последняя предоставляет больший контроль в отношении таких свойств, как упорядоченность, микроструктура и т.д. Полимеризацию в растворах осуществляют примерно с середины 20-го столетия, так, что ее общие аспекты известны обычным специалистам; однако, некоторые аспекты представлены здесь для удобства рекомендаций.
В зависимости от природы желаемого полимера специфические условия полимеризации в растворе могут значительно изменяться. В обсуждении, которое последует, сначала описана «живая» полимеризация, сопровождаемая описанием «псевдоживой» полимеризации. После этих описаний обсуждаются функционализация и переработка полимеров, полученных таким образом.
Полимеризация в растворе обычно включает инициатор. Примеры инициаторов включают литийорганические соединения, в частности алкиллитиевые соединения. Примеры литийорганических инициаторов включают N-литиогексаметиленимин; н-бутиллитий; литийтрибутилолово (трибутилстаннат лития); соединения диалкиламинолития, такие, как диметиламинолитий, диэтиламинолитий, дипропиламинолитий, дибутиламинолитий и подобные; соединения диалкиламиноалкиллития, такие, как диэтиламинопропиллитий; и те соединения триалкилстанниллития, которые включают алкильные группы C1-C12, предпочтительно C1-C4.
Также могут применяться мультифункциональные инициаторы, т.е. инициаторы, способные к образованию полимеров с более чем одним «живым» концом. Примеры мультифункциональных инициаторов включают, но не ограничены, 1,4-дилитиобутан, 1,10-дилитиодекан, 1,20-дилитиоэйкозан, 1,4-дилитиобензол, 1,4-дилитионафталин, 1,10-дилитиоантрацен, 1,2-дилитио-1,2-дифенилэтан, 1,3,5 -трилитиопентан, 1,5,15-трилитиоэйкозан, 1,3,5-трилитиоциклогексан, 1,3,5,8-тетралитиодекан, 1,5,10,20-тетралитиоэйкозан, 1,2,4,6-тетралитиоциклогексан и 4,4'-дилитиобифенил.
В дополнение к литийорганическим инициаторам могут быть также полезны так называемые функционализированные инициаторы. Они включаются в полимерную цепь, предоставляя, таким образом, функциональную группу в инициированный конец цепи. Примеры таких веществ включают литиированные арилтиоацетали (см., например, U.S. Pat. №7153919) и продукты реакций литийорганических соединений и, например, N-содержащих органических соединений, таких, как замещенные альдимины, кетимины, вторичные амины и т.д., в качестве варианта, предварительно прореагировавшие с соединением, таким, как диизопропенилбензол (см., например, U.S. Pat. №№5153159 и 5567815).
Полезные для анионной полимеризации растворители включают различные C5-C12 циклические и ациклические алканы, а также их алкилированные производные, некоторые жидкие ароматические соединения и их смеси. Обычные специалисты знают о других полезных вариантах и комбинациях растворителей.
При полимеризациях в растворе могут быть повышены как рандомизация, так и содержание винильных групп (т.е. 1,2-микроструктуры) при помощи включения координатора, обычно полярного соединения, в состав ингредиентов полимеризации. Может применяться до 90 или более эквивалентов координатора на эквивалент инициатора, с данным количеством, зависящем, например, от желательного содержания количества винильных групп, уровня использованного неполиенового мономера, температуры реакции и природы использованного специфического координатора. Соединения, полезные в качестве координаторов, включают органические соединения, которые включают гетероатом, имеющий несвязанную пару электронов (например, О или N). Примеры включают простые диалкиловые эфиры моно- и олиго-алкиленгликолей; краунэфиры; третичные амины, такие, как тетраметилэтилендиамин; ТГФ; олигомеры ТГФ; линейные и циклические олигомерные оксоланилалканы (см., например, U.S. Pat. №4429091), такие, как 2,2'-ди(тетрагидрофурил)пропан, дипиперидиноэтан, гексаметилфосфорамид, N,N'-диметилпиперазин, диазабициклооктан, диэтиловый эфир, трибутиламин и т.п.
Хотя обычные специалисты понимают условия, обычно используемые при полимеризации в растворе, для удобства предлагается описание, которое основано на периодическом процессе, хотя возможно расширение данного описания, например, на полупромышленные или непрерывные процессы.
Полимеризация в растворе обычно начинается с загрузки смеси мономера(ов) и растворителя в подходящий реакционный сосуд, за которой следует добавление координатора (если он применяется) и инициатора, которые часто добавляются в качестве части раствора или смеси; альтернативно, мономер(ы) и координатор могут быть добавлены к инициатору. Процедуру обычно проводят в безводных, анаэробных условиях. Реагенты могут быть нагреты до температуры примерно 150°С и перемешаны. После того, как достигнута желаемая степень превращения, источник нагревания (если он используется) может быть удален и, если реакционный сосуд должен быть предназначен исключительно для проведения полимеризаций, реакционную смесь удаляют в постполимеризационный сосуд для функционализации и/или гашения.
Некоторые конечные применения заявки требуют полимеров, которые имеют свойства, которые могут быть с трудом или неэффективно достигнуты посредством анионных или «живая» полимеризаций. Например, в некоторых приложениях могут быть желательными полимеры сопряженных диенов, имеющие высокое содержание цис-1,4-мостиков. Такие полидиены могут быть приготовлены с помощью процессов, использующих катализаторы на основе лантанидов, и могут показывать «псевдоживые» характеристики.
«Псевдоживая» каталитическая композиция может включать лантанидное соединение, алкилирующий агент и соединение, включающее лабильный атом галогена. Когда лантанидное соединение и/или алкилирующий агент включают лабильный атом галогена, катализатор не нуждается в том, чтобы включать отдельный источник галогена, т.е. катализатор может просто включать галогенированное лантанидное соединение и алкилирующий агент. В некоторых вариантах воплощения алкилирующий агент может включать как алюминоксан, так и соединение алкилалюминия. В других вариантах воплощения вместо источника галогена могут использоваться некоординирующий анион или предшественник некоординирующего аниона. Когда алкилирующий агент включает гидридное соединение, источник галогена может включать галогенид олова, как раскрыто в U.S. Pat. №7008899. В этих или других вариантах воплощения также могут использоваться другие металлоорганические соединения (например, никельсодержащее соединение, как раскрыто в U.S. Pat. №6699813), или основания Льюиса.
Могут использоваться различные лантанидные соединения или их смеси. Эти соединения могут быть растворимыми в углеводородных растворителях, таких, как те, что обсуждались ранее в отношении «живущей» полимеризации или могут быть суспендированы в полимеризационной среде, чтобы образовать каталитически активные частицы.
Атом лантанида в лантанидном соединении может находиться в различных степенях окисления, например, 0, +2, +3 и +4. Примеры лантанидных соединений включают карбоксилаты, органофосфаты, органофосфонаты, органофосфинаты, карбаматы, дитиокарбаматы, ксантаты, β-дикетонаты, алкоксиды или арилоксиды, галогениды, псевдогалогениды и оксигалогениды лантанидов, а также лантанидорганические соединения. Примеры лантанидных соединений включают, но не ограничиваются карбоксилатами неодима, такими, как формиат неодима, ацетат неодима, ацетат неодима, (мет)акрилат неодима, валерат неодима и т.д.; органофосфаты неодима, такие, как различные диалкилфосфаты неодима, диолеилфосфат неодима, дифенилфосфат неодима и т.д.; органофосфонаты неодима, такие, как различные алкилфосфонаты неодима, олеилфосфонат неодима, фенилфосфонат неодима и т.д.; органофосфонаты неодима, такие как различные (ди)алкилфосфонаты неодима, (ди)фенилфосфонаты неодима, (n-нонилфенил)фосфонат неодима, бис(n-нонилфенил)фосфонат неодима и т.д.; карбаматы неодима, такие как различные диалкилкарбаматы неодима, дибензилкарбамат неодима и т.д.; дитиокарбаматы неодима, такие, как различные диалкилдитиокарбаматы неодима и дибензилдитиокарбамат неодима; ксантаты неодима, такие как различные алкилксантаты неодима, бензилксантат неодима и т.д.; β-дикетонаты неодима, такие как ацетилацетонат неодима, трифторацетилацетонат неодима, гексафторацетилацетонат неодима, бензоилацетонат неодима, 2,2,6,6-тетраметил-3,5-гептандионат неодима и т.д.; алкоксиды или арилоксиды неодима, такие, как различные алкоксиды неодима, феноксид неодима, нонилфеноксид неодима, нафтоксид неодима и т.д.; галогениды неодима, такие, как NdF3, NdCl3, NdBr3 и NdI3; псевдогалогениды неодима, такие, как Nd(CN)3, Nd(OCN)3, тиоцианат неодима, азид неодима, ферроцианид неодима и т.д.; и оксигалогениды неодима, такие, как NdOF, NdOCI, NdOBr и т.д. (Предшествующий список ограничен соединениями Nd в интересах простоты, но этот обширный список легко может использоваться обычными специалистами, чтобы идентифицировать и выбрать подобные соединения, использующие другие лантанидные металлы.)
Могут быть использованы различные алкилирующие агенты и их смеси. Алкилирующие агенты включают металлорганические соединения, которые могут переносить гидрокарбильные группы к другому металлу. Обычно эти агенты включают металлорганические соединения электроположительных металлов, таких, как металлы 1, 2 и 3 Групп (Групп IA, IIA и IIIA). Обычные алкилирующие агенты включают алюминийорганические и магнийорганические соединения, некоторые из которых растворимы в типах углеводородных растворителей, описанных выше. Когда алкилирующий агент включает лабильный атом галогена, данный алкилирующий агент может служить также в качестве галогенсодержащего соединения.
Алюминийорганические соединения включают те, что представлены формулой AIRnX3-n, где каждый R независимо представляет собой одновалентную органическую группу, присоединенную к атому Al через атом С; каждый Х независимо представляет собой атом Н, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу; а п представляет собой целое число от 1 до 3. Каждый R может быть гидрокарбильной группой (которая может содержать гетероатомы, такие, как N, О, В, Si, S и Р), такой, как, но не ограничиваясь, (цикло)алкильная, замещенная (цикло)алкильная, (цикло)алкенильная, замещенная (цикло)алкенильная, арильная, замещенная арильная, аралкильная, алкарильная, аллильная и алкинильная группы.
Алюминийорганические соединения включают соединения тригидрокарбилалюминия, такие, как различные триалкилалюминии, трис(1-метилциклопентил)алюминий, трифенилалюминий, три-n-толилалюминий, трис(2,6-диметилфенил)алюминий, трибензилалюминий, различные диалкилфенилалюминии, различные диалкилбензилалюминии, различные алкилдибензилалюминии и т.д.; гидриды дигидрокарбилалюминия, такие, как различные гидриды диалкилалюминия, гидрид дифенилалюминия, гидрид ди-n-толилалюминия, гидрид дибензилалюминия, различные гидриды фенилалкилалюминия, различные гидриды фенил-н-алкилалюминия, различные гидриды фенилизоалкилалюминия, различные гидриды n-толилалкилалюминия, различные гидриды бензилалкилалюминия и т.д.; дигидриды гидрокарбилалюминия, такие, как различные дигидриды алкилалюминия; соединения хлорида дигидрокарбилалюминия, такие, как различные хлориды диалкилалюминия, хлорид дифенилалюминия, хлорид ди-n-толилалюминия, хлорид дибензилалюминия, различные хлориды фенилалкилалюминия, различные хлориды n-толилалкилалюминия, различные хлориды бензилалкилалюминия и т.д.; и дихлориды гидрокарбилалюминия, такие, как различные дихлориды алкилалюминия. Другие алюминийорганические соединения включают различные алканоаты диалкилалюминия, различные бисалканоаты алкилалюминия, различные алкоксиды и феноксиды диалкилалюминия, различные диалкоксиды и дифеноксиды алкилалюминия и т.д.
Полезными также являются алюминоксаны, включая олигомерные линейные алюминоксаны и олигомерные циклические алюминоксаны, представленные, соответственно, общими формулами
где х может быть целым числом от 1 до ~ 100 или от ~ 10 до ~ 50; у может быть целым числом от 2 до ~ 100 или от ~ 3 до ~ 20; и каждый R1 независимо может быть одновалентной органической группой, присоединенной к атому Al через атом С. Каждый R1 может быть гидрокарбильной группой, такой, как, но не ограничиваясь, алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, замещенная арильная, аралкильная, алкарильная, аллильная и алкинильная группы; эти гидрокарбильные группы могут содержать гетероатомы, такие, как те, что упомянуты выше. (Число моль алюминоксана, как оно используется здесь, относится к числу моль атомов алюминия, а не к числу моль молекул олигомерных алюминоксанов.)
Алюминоксаны могут быть приготовлены реакцией тригидрокарбилалюминиевых соединений с водой. Эта реакция может быть проведена, например, (1) способом, в котором данное тригидрокарбилалюминиевое соединение растворяют в органическом растворителе и затем приводят в контакт с водой, (2) способом, в котором данное тригидрокарбилалюминиевое соединение реагирует с кристаллизационной водой, содержащейся, например, в солях металлов, или водой, адсорбированной неорганическими или органическими соединениями, и (3) способом, в котором данное тригидрокарбилалюминиевое соединение реагирует с водой в присутствии мономера или раствора мономера, который должен быть подвергнут полимеризации.
Потенциально полезные алюминоксановые соединения включают один или более метилалюминоксан (МАО), модифицированный метилалюминоксан (ММАО, который может быть образован замещением ~ 20-80% метальных групп МАО С2-С12-гидрокарбильными группами, предпочтительно, изобутильными группами), любой из множества алкилалюминоксанов (особенно изобутилалюминоксан), любой из множества циклоалкилалюминоксанов, фенилалюминоксан, различные алкилзамещенные фенилалюминоксаны и т.д.
Один класс полезных магнийорганических соединений может быть представлен формулой R2 zMgX2-z, где каждый R2 независимо представляет собой одновалентную органическую группу, присоединенную к атому Mg через атом С, z является целым числом от 1 до 2 включительно, а Х представляет собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу. Каждый R может быть гидрокарбильной группой, такой, как, но, не ограничиваясь, алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, аллильная, замещенная арильная, аралкильная, алкарильная и алкинильная группы; эти гидрокарбильные группы могут содержать гетероатомы, такие, как те, что сформулированы ранее. Предшествующие примеры включают дигидрокарбилмагниевые соединения, такие, как различные диалкилмагнии (особенно дибутилмагний), дифенилмагний, дибензилмагний и их смеси; различные гидриды, галогениды, карбоксилаты, алкоксиды, арилоксиды алкилмагния и их смеси; и различные гидриды, галогениды, карбоксилаты, алкоксиды, арилоксиды арилмагния и их смеси.
В качестве источников галогена могут применяться различные соединения, которые содержат один или более лабильных атомов галогена, или их смеси. Эти соединения могут относиться просто к галогенсодержащим соединениям. Также может использоваться комбинация двух или более атомов галогена. Некоторые галогенсодержащие соединения могут быть растворимы в углеводородном растворителе, тогда как другие могут быть суспендированы в среде олигомеризации, чтобы образовать каталитически активные частицы. (Когда используются галогениды, оксигалогениды неодима или другие соединения, содержащие лабильные атомы галогена, данное Nd-содержащее соединение может служить и в качестве лантанидного соединения, и, также, в качестве галогенсодержащего соединения; для солюбилизации этого класса соединений неодима в инертных органических растворителях может использоваться основание Льюиса, такое, как ТГФ.)
Типы гадогенсодержащих соединений включают, но не ограничены, элементарные галогены, смешанные галогены (например, ICl, IBr, ICl5 и IF5), галогениды водорода (например, HF, HCl, HBr и т.д.), органические галогениды, такие, как различные алкилгалогениды, различные аллилгалогениды, различные бензилгалогениды, различные галогендифенилалканы, различные трифенилалкилгалогениды, различные бензилиденгалогениды, различные алкилтрихлорсиланы, фенилтрихлорсилан, различные диалкилдихлорсиланы, дифенилдихлорсилан, различные триалкилхлорсиланы, бензоилгалогениды, пропионилгалогениды и метилгалогенформиаты; неорганические галогениды, такие, как PCl3, PBr3, PCl5, POCl3, POBr3, BF3, BCl3, BBr3, SiF4, SiCl4, SiBr4, SiI4, AsCl3, AsBr3, AsI3, SeCl4, SeBr4, TeCl4 и TeI4; галогениды металлов, такие, как SnCl4, SnBr4, AlCl3, AlBr3, SbCl5, SbCl3, SbBr3, AlI3, AlF3, GaCl3, GaBr3, Gal3, GaF3, InCl3, InBr3, InI3, InF3, TiCl4, TiBr4, Til4, ZnCl2, ZnBr2, ZnI2 и ZnF2; металлорганические галогениды, такие, как различные галогениды диалкилалюминия, различные дигалогениды алкилалюминия, различные сесквигалогениды алкилалюминия, различные алкилмагнийгалогениды, различные фенилмагнийгалогениды, различные бензилмагнийгалогениды, различные галогениды триалкилолова, различные дигалогениды диалкилолова и различные галогениды триалкилолова (см. Прим. перев., 10); и их смеси.
Некоородинирующиеся анионы включают объемные анионы, которые не образуют координационные связи с, например, активным центром каталитической системы благодаря стерическим затруднениям. Некоородинирующиеся анионы включают тетраарилборатные анионы (которые не обязательно могут быть фторированными). Ионные соединения, содержащие некоординирующиеся анионы, известны в технике и включают также противокатион, такой, как карбониевый (например, триарилкарбониевый), аммониевый или фосфониевый катион. Примером материала является тетракис(пентафторфенил)борат.
Предшественники некоординирующихся анионов включают вещества, которые могут образовывать некоординирующиеся анионы при реакционных условиях. Предшественники некоординирующихся анионов включают соединения тригалогеналкилбора.
Предшествующие каталитические композиции могут иметь высокую каталитическую активность для полимеризации сопряженных диенов в стереоспецифические полидиены при широком диапазоне концентраций катализатора и соотношений ингредиентов катализатора. Ингредиенты катализатора могут взаимодействовать, чтобы образовать активные каталитические частицы, и оптимальная концентрация для каждого ингредиента может зависеть от концентраций других ингредиентов.
Молярное отношение алкилирующего агента к лантанидному соединению (алкилирующий агент/Ln) может лежать в диапазоне от ~ 1:1 до ~ 1000:1, от ~ 2:1 до ~ 500:1 или от ~ 5:1 до ~ 200:1. Когда в качестве алкилирующих агентов используются как соединение алкилалюминия, так и алюминоксан, молярное отношение алкилалюминия к лантанидному соединению (Al/Ln) может располагаться в диапазоне от ~ 1:1 до ~ 200:1, от ~ 2:1 до - 150:1 или от ~ 5:1 до ~ 100:1, а молярное отношение алюминоксана к лантанидному соединению (алюминоксан/Ln) может располагаться в диапазоне от ~ 5:1 до ~ 1000:1, от ~ 10:1 до ~ 700:1 или от ~ 20:1 до ~ 500:1. Молярное отношение галогенсодержащего соединения к лантанидному соединению (атомы галогена/Ln) может располагаться в диапазоне от ~ 1:2 до ~20:1, от ~ 1:1 до ~ 10:1 или от ~2:1 до ~ 6:1.
Молярное отношение некоординирующегося аниона или предшественника некоординирующегося аниона к лантанидному соединению (An/Ln) может располагаться в диапазоне от ~ 1:2 до ~20;1, от ~3:4 до ~ 10:1 или от ~1:1 до ~6:1.
Степень взаимодействия или реакции между различными ингредиентами или компонентами определить не легко; соответственно, термин «каталитическая композиция» предназначен, чтобы охватить простую смесь ингредиентов, комплекс различных ингредиентов, который вызван физическими или химическими силами притяжения, продукт химической реакции ингредиентов или их комбинацию. Каталитическая композиция может быть образована различными способами.
Каталитическая композиция может быть образована in situ добавлением ингредиентов катализатора к раствору, содержащему мономер и растворитель, или просто к объему мономера, или поочередно, или одновременно; например, сначала может быть добавлен алкилирующий агент, вслед за ним лантанидное соединение и затем галогенсодержащее соединение, если оно используется, или некоординирующийся анион или предшественник некоординирующегося аниона.
В качестве альтернативы, ингредиенты катализатора могут быть смешаны вне полимеризационной системы при температуре примерно от -20°С до ~ 80°С, а получающаяся каталитическая композиция добавлена в полимеризационный сосуд, необязательно после созревания в течение нескольких дней.
Каталитическая композиция может быть образована также в присутствии, по меньшей мере, одного мономера, относящегося к типу сопряженных диенов. Таким образом, ингредиенты катализатора могут быть предварительно смешаны в присутствии небольшого количества мономера, относящегося к типу сопряженных диенов, при температуре примерно от -20°С до ~ 80°С. Количество мономера, относящегося к типу сопряженных диенов, который может быть использован, может располагаться в диапазоне от ~ 1 до ~ 500 молей, от ~ 5 до ~ 250 молей или от ~ 10 до ~ 100 молей на моль лантанидного соединения. Полученная каталитическая композиция может быть выдержана от нескольких минут до нескольких дней до того, как быть добавленной к остатку мономера, относящегося к типу сопряженных диенов.
Альтернативно, каталитическая композиция может быть образована, используя многостадийную процедуру. Первая стадия может включать объединение алкилирующего агента с лантанидным соединением в отсутствии мономера, относящегося к типу сопряженных диенов, или в присутствии небольшого количества мономера, относящегося к типу сопряженных диенов при температуре примерно от -20°С до ~ 80°С. Реакционная смесь по предшествующей стадии и галогенсодержащее соединение, некоординирующийся анион или предшественник некоординирующегося аниона могут быть загружены или поочередно, или одновременно к остатку мономера, относящегося к типу сопряженных диенов.
Когда раствор каталитической композиции или одного или более из ингредиентов катализатора готовят вне полимеризационной системы, может применяться органический растворитель или переносчик. Органический растворитель может служить, чтобы растворить каталитическую композицию или ингредиенты, или растворитель может служить просто в качестве переносчика, в котором могут быть суспендированы каталитическая композиция или ингредиенты. Органический растворитель может быть инертным по отношению к каталитической композиции. Полезные растворители включают те, что описаны ранее.
Получение полимера может проводиться с помощью полимеризации сопряженного(ых) диена(ов) в присутствии каталитически эффективного количества предшествующей каталитической композиции. Полная концентрация катализатора, которая должна быть использована в полимеризационной массе, может зависеть от взаимодействия различных факторов, таких, как чистота ингредиентов, температура полимеризации, скорость полимеризации и желаемая конверсия, желательный молекулярный вес и т.п. Соответственно, характерная (specific) полная концентрация катализатора не может быть установлена определенно за исключением того, чтобы сказать, что могут использоваться каталитически эффективные количества относительно ингредиентов катализатора. Количество использованного лантанидного соединения может изменяться от ~ 0,01 до ~ 2 ммоль, от ~ 0,02 до ~ 1 ммоль или от ~ 0,05 до ~ 0,5 ммоль на 100 г сопряженного диена.
Полимеризация может быть проведена в органическом растворителе в качестве разбавителя. Как мономер, который должен быть подвергнут полимеризации, так и образовавшийся полимер являются растворимыми в полимеризационной среде. Альтернативно, может использоваться система полимеризации с осаждением с помощью выбора растворителя, в котором образованный полимер нерастворим. В обоих случаях мономер, который должен быть подвергнут полимеризации, может находиться в конденсированной фазе. Кроме того, ингредиенты катализатора могут быть растворены или суспендированы в органическом растворителе; здесь и в других вариантах воплощения компоненты или ингредиенты катализатора не являются нанесенными или импрегнированными на носитель катализатора. В других вариантах воплощения компоненты или ингредиенты катализатора могут быть нанесены.
При проведении данных полимеризаций к полимеризационной системе может быть добавлено некоторое количество органического р