Гибридные системы-носители

Иллюстрации

Показать все

Изобретение относится к водным, основанным на оксиде металла, полимерным гибридным системам-носителям. Гибридную пленкообразующую композицию получают путем образования водной смеси, содержащей органофункциональный силан, хлорид металла, кислоту, и кипячения смеси, добавления к указанной смеси основания для нейтрализации смеси и образования гидроксида металла, получения коллоидной суспензии, включающей гидроксид металла и силокси-соединение, добавления основанного на пероксиде раствора для образования суспензии, содержащей пероксид металла, обеспечения уравновешивания суспензии при комнатной температуре и кипячения суспензии при давлении выше атмосферного давления с образованием композиции для покрытия, содержащей продукт конденсации силокси-соединения и пероксида металла. Изобретение обеспечивает получение гидрофобных или гидрофильных покрытий. 10 н. и 24 з.п. ф-лы, 2 пр., 8 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СВЯЗАННЫЕ ЗАЯВКИ

Данная заявка представляет собой частичное продолжение заявки на патент США №12/202076, зарегистрированной 29 августа 2008 года, которая представляет собой частичное продолжение заявки на патент США №12/167863, зарегистрированной 3 июля 2008 года, которая представляет собой частичное продолжение заявки на патент США №11/963380, зарегистрированной 21 декабря 2007 года, причем все они в полном объеме включены в настоящий документ в качестве ссылки.

ОБЛАСТЬ ТЕХНИКИ

Данное изобретение относится к водным, основанным на оксиде металла, полимерным гибридным системам-носителям.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Фотокаталитически активные, самоочищающиеся водные композиции для покрытия и связанные с ними способы известны в данной области. Композиции, содержащие пероксид металла, применяли для образования прозрачных бесцветных покрытий на субстратах, включая субстраты из микрочастиц. Композиции для покрытия с наночастицами применяли для связывания наночастиц с субстратом.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном из аспектов композиция включает водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла. В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла, по меньшей мере, некоторые из наночастиц составляют менее чем приблизительно 10 нм в диаметре. В некоторых вариантах осуществления переходный металл в пероксиде переходного металла совпадает с переходным металлом в оксиде переходного металла. Переходный металл может быть выбран из группы, состоящей из титана, цинка и их сочетаний.

В некоторых вариантах осуществления композиция включает добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла и их сочетаний. В некоторых случаях композиция включает наполнитель. Наполнитель может быть, по существу, инертным. Наполнитель может включать, например, углеродные нанотрубки. Масса наполнителя может превышать в композиции массу переходного металла.

В другом аспекте способ получения композиции включает получение первой смеси и кипячение первой смеси при давлении, превышающем атмосферное, с образованием композиции. Первая смесь включает органофункциональный силан, пероксид переходного металла и водный носитель. Композиция, которая образуется, включает водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла.

В некоторых вариантах осуществления композиция, образованная кипячением первой смеси при давлении, превышающем атмосферное давление, кроме того, включает кристаллические наночастицы. Наночастицы включают оксид переходного металла, по меньшей мере, некоторые из наночастиц составляют менее чем приблизительно 10 нм в диаметре. В некоторых случаях первая смесь включает, по меньшей мере, одну добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла, соли металла, наполнителя и их сочетаний. Первая смесь может находиться в виде коллоидной суспензии. Органофункциональный силан может представлять собой, например, бис(триэтоксисилил)метан, 1,1,3,3-тетраметил-1,3-диэтоксидисилоксан, октохлортрисилоксан, тетраэтоксисилан или любое их сочетание.

В некоторых вариантах осуществления способ далее включает объединение водного раствора, содержащего пероксид, с коллоидной суспензией, содержащей аморфный гидроксид металла в водном носителе, с образованием коллоидной суспензии. Коллоидная суспензия включает пероксид переходного металла. Способ также может включать объединение соли переходного металла и кислоты с водным носителем для образования второй смеси, по существу, нейтрализацию второй смеси, фильтрацию второй смеси с образованием аморфного гидроксида металла, и суспендирование аморфного гидроксида металла в водном носителе для образования коллоидной суспензии.

Другие варианты осуществления включают композиции, полученные по описанным выше способам.

В другом аспекте способ получения изделия включает получение композиции, включающей водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла, нанесение композиции на поверхность субстрата и удаление водного носителя для получения изделия с покрытием на поверхности субстрата. В некоторых вариантах осуществления покрытие удаляют с субстрата с образованием наночастиц в виде порошка.

В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла. Толщина покрытия может составлять менее чем приблизительно 10 нм. Покрытие ковалентно связано с поверхностью субстрата. В некоторых вариантах осуществления субстрат пористый. В определенных вариантах осуществления субстрат состоит из частиц.

В одном из аспектов композиция включает водный носитель и продукт конденсации пероксида кремния и пероксида переходного металла. В другом аспекте получение композиции включает предоставление первой смеси и кипячение первой смеси при давлении, превышающем атмосферное давление, с образованием композиции. Первая смесь включает пероксид кремния, пероксид переходного металла и водный носитель. Композиция, которая образуется, включает водный носитель и продукт конденсации пероксида кремния и пероксида переходного металла. В другом аспекте получение изделия включает предоставление композиции, содержащей водный носитель и продукт конденсации пероксида кремния и пероксид переходного металла, нанесение композиции на поверхность субстрата и удаление водного носителя с получением изделия, содержащего гибридное покрытие оксида металла на поверхности субстрата.

В некоторых вариантах осуществления композиция включает кристаллические частицы, составляющие менее чем приблизительно 10 нм в диаметре. Частицы могут включать гибридный оксид металла, оксид переходного металла или их сочетание. Композиция может включать оксид кремния и оксид переходного металла. Массовая доля оксида кремния, рассчитанная на основе общего содержания оксида металла, может составлять, по меньшей мере, приблизительно 50% масс., по меньшей мере, приблизительно 95% масс., или, по меньшей мере, приблизительно 99% масс. Массовая доля оксида переходного металла, рассчитанная на основе общего содержания оксида металла, может составлять, по меньшей мере, приблизительно 95% масс. В некоторых случаях продукт конденсации включает кремний, титан, цирконий или любое их сочетание.

В некоторых вариантах осуществления композиция, полученная кипячением первой смеси при давлении, превышающем атмосферное давление, включает кристаллические частицы, составляющие менее чем приблизительно 10 нм в диаметре. Кристаллические частицы могут включать гибридный оксид металла, оксид переходного металла или любое их сочетание. Первая смесь может находиться в виде коллоидной суспензии. В некоторых случаях водный раствор, содержащий пероксид, объединяют с коллоидной суспензией, содержащей аморфный гидроксид металла и гидроксид кремния в водном носителе для образования коллоидной суспензии, включающей пероксид переходного металла и пероксид кремния. В некоторых вариантах осуществления хлорид кремния, хлорид переходного металла и кислоту объединяют с водным носителем с образованием смеси. Смесь может нейтрализоваться и фильтроваться с образованием аморфного гидроксида металла и гидроксида кремния. Аморфный гидроксид металла и гидроксид кремния может суспендироваться в водном носителе с образованием коллоидной суспензии, включающей аморфный гидроксид металла и гидроксид кремния.

В некоторых вариантах осуществления получение композиции включает получение смеси, содержащей пероксид кремния, пероксид переходного металла и водный носитель. Смесь может подвергаться кипячению при давлении, превышающем атмосферное давление, с образованием композиции, включающей водный носитель и продукт конденсации пероксида кремния и пероксида переходного металла. В некоторых вариантах осуществления композиция включает кристаллические наночастицы, содержащие оксид переходного металла.

В одном из аспектов композиция включает водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла. В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла, по меньшей мере, некоторые из наночастиц составляют менее чем приблизительно 10 нм в диаметре. В некоторых вариантах осуществления переходный металл в пероксиде переходного металла совпадает с переходным металлом в оксиде переходного металла. Переходный металл может быть выбран из группы, состоящей из титана, цинка и их сочетаний.

В некоторых вариантах осуществления композиция включает добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла и их сочетаний. В некоторых случаях композиция включает наполнитель. Наполнитель может быть, по существу, инертным. Наполнитель может включать, например, углеродные нанотрубки. Масса наполнителя может превышать массу переходного металла в композиции.

В другом аспекте способ получения композиции включает получение первой смеси и кипячение первой смеси при давлении, превышающем атмосферное давление с образованием композиции. Первая смесь включает органофункциональный силан, пероксид переходного металла и водный носитель. Композиция, которая образуется, включает водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла.

В некоторых вариантах осуществления композиция, полученная кипячением первой смеси при давлении, превышающем атмосферное давление, кроме того, включает кристаллические наночастицы. Наночастицы включают оксид переходного металла, по меньшей мере, некоторые из наночастиц составляют менее чем приблизительно 10 нм в диаметре. В некоторых случаях первая смесь включает, по меньшей мере, одну добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла, соли металла, наполнителя и их сочетаний. Первая смесь может находиться в виде коллоидной суспензии.

В некоторых вариантах осуществления способ далее включает объединение водного раствора, содержащего пероксид с коллоидной суспензией, содержащей аморфный гидроксид металла в водном носителе с образованием коллоидной суспензии. Коллоидная суспензия включает пероксид переходного металла. Способ также может включать объединение соли переходного металла и кислоты с водным носителем для образования второй смеси, по существу, нейтрализацию второй смеси, фильтрацию второй смеси с образованием аморфного гидроксида металла и суспендирование аморфного гидроксида металла в водном носителе для образования коллоидной суспензии.

В другом аспекте способ получение изделия включает получение композиции, включающей водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла, нанесение композиции на поверхность субстрата и удаление водного носителя для образования изделия с покрытием на поверхности субстрата. В некоторых вариантах осуществления покрытие удаляют с субстрата с образованием наночастиц в виде порошка.

В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла. Толщина покрытия может составлять менее чем приблизительно 10 нм. Покрытие ковалентно связано с поверхностью субстрата. В некоторых вариантах осуществления субстрат является пористым. В определенных вариантах осуществления субстрат состоит из частиц. В одном из аспектов гибридную пленкообразующую композицию получают образованием водной смеси, содержащей органофункциональный силан, хлорид металла и кислоту. К водной смеси добавляют основание для существенной нейтрализации смеси и для образования гидроксида металла. Образуется коллоидная суспензия, включающая гидроксид металла и силокси-соединение. Основанный на пероксиде раствор добавляют в суспензию с образованием суспензии, включающей пероксид металла. Суспензии позволяют уравновешиваться при комнатной температуре. Суспензию кипятят при давлении, превышающем атмосферное давление, для образования гибридной пленкообразующей композиции, содержащей продукт конденсации силокси-соединения и пероксида металла. В некоторых вариантах осуществления водную смесь нагревают или кипятят до добавления в смесь основания.

В некоторых вариантах осуществления pH водной среды до нейтрализации может составлять менее чем 1. Хлорид металла может включать хлорид кремния, титана, циркония, олова, ванадия, галлия, германия, теллура, гафния, рения, иридия, платины или любое сочетание двух или более хлоридов кремния, титана, циркония, олова, ванадия, галлия, германия, теллура, гафния, рения, иридия или платины. Хлорид металла может представлять собой тетрахлорид. Органофункциональный силан может представлять собой, например, бис(триэтоксисилил)метан, 1,1,3,3-тетраметил-1,3-диэтоксидисилоксан, октохлортрисилоксан, тетраэтоксисилан или любое их сочетание.

В другом аспекте получение изделия включает получение композиции, содержащей водный носитель и продукт конденсации силокси-соединения и пероксида металла. Композицию наносят на поверхность субстрата, и водный носитель удаляют для получения изделия с гибридным, основанным на силокси-пероксигруппах металла покрытием на поверхности субстрата.

В некоторых вариантах осуществления композиция включает кристаллические частицы, составляющие менее чем приблизительно 10 нм в диаметре. Частицы могут включать гидридный оксид металла, оксид переходного металла или их сочетание. Композиция может включать оксид кремния и оксид переходного металла. Массовая доля оксида кремния, рассчитанная на основе общего содержания оксида металла, может составлять, по меньшей мере, приблизительно 50% масс., по меньшей мере, приблизительно 95% масс., или, по меньшей мере, приблизительно 99% масс. Массовая доля оксида переходного металла, рассчитанная на основе общего содержания оксида металла, может составлять, по меньшей мере, приблизительно 95% масс. В некоторых случаях продукт конденсации включает кремний, титан, цирконий или любое их сочетание.

В некоторых вариантах осуществления композиция, образованная кипячением первой смеси при давлении, превышающем атмосферное давление, включает кристаллические частицы, составляющие менее чем приблизительно 10 нм в диаметре. Кристаллические частицы могут включать гибридный оксид металла, оксид переходного металла или любое их сочетание. Первая смесь может находиться в виде коллоидной суспензии. В некоторых случаях водный раствор, содержащий пероксид, объединяют с коллоидной суспензией, содержащей аморфный гидроксид металла и гидроксид кремния в водном носителе, для образования коллоидной суспензии, содержащей пероксид переходного металла и пероксид кремния. В некоторых вариантах осуществления хлорид кремния, хлорид переходного металла и кислоту объединяют с водным носителем для получения смеси. Смесь можно нейтрализовать и отфильтровать с образованием аморфного гидроксида металла и гидроксида кремния. Аморфный гидроксид металла и гидроксид кремния могут суспендироваться в водном носителе с образованием коллоидной суспензии, включающей аморфный гидроксид металла и гидроксид кремния.

В некоторых вариантах осуществления получение композиции включает получение смеси, содержащей пероксид кремния, пероксид переходного металла и водный носитель. Смесь можно подвергнуть кипячению при давлении, превышающем атмосферное давление, с образованием композиции, содержащей водный носитель и продукт конденсации пероксида кремния и пероксида переходного металла. В некоторых вариантах осуществления композиция включает кристаллические наночастицы, содержащие оксид переходного металла.

В одном из аспектов композиция включает водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла. В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла. По меньшей мере, некоторые из наночастиц в диаметре составляют менее чем приблизительно 10 нм. В некоторых вариантах осуществления переходный металл в пероксиде переходного металла совпадает с переходным металлом в оксиде переходного металла. Переходный металл может быть выбран из группы, состоящей из титана, цинка и их сочетаний.

В некоторых вариантах осуществления композиция включает добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла и их сочетаний. В некоторых случаях композиция включает наполнитель. Наполнитель может быть, по существу, инертным. Наполнитель может включать, например, углеродные нанотрубки. Масса наполнителя может быть больше массы переходного металла в композиции.

В другом аспекте способ получения композиции включает получение первой смеси и кипячение первой смеси при давлении, превышающем атмосферное давление, с образованием композиции. Первая смесь включает органофункциональный силан, пероксид переходного металла и водный носитель. Композиция, которая образуется, включает водный носитель и продукт конденсации органофункционального силана и пероксид переходного металла.

В некоторых вариантах осуществления композиция, образованная кипячением первой смеси при давлении, превышающем атмосферное давление, кроме того, включает кристаллические наночастицы. Наночастицы включают оксид переходного металла. По меньшей мере, некоторые из наночастиц составляют менее чем приблизительно 10 нм в диаметре. В некоторых случаях первая смесь включает, по меньшей мере, одну добавку, выбранную из группы, состоящей из металлорганического соединения, увлажнителя, органического соединения, металла, соли металла, наполнителя и их сочетаний. Первая смесь может находиться в виде коллоидной суспензии.

В некоторых вариантах осуществления способ дополнительно включает объединение водного раствора, содержащего пероксид с коллоидной суспензией, содержащей аморфный гидроксид металла в водном носителе, с образованием коллоидной суспензии. Коллоидная суспензия включает пероксид переходного металла. Способ также может включать объединение соли переходного металла и кислоты с водным носителем для получения второй смеси, по существу, нейтрализацию второй смеси, фильтрацию второй смеси с образованием аморфного гидроксида металла и суспендирование аморфного гидроксида металла в водном носителе с образованием коллоидной суспензии.

В другом аспекте способ получения изделия включает получение композиции, включающей водный носитель и продукт конденсации органофункционального силана и пероксида переходного металла, нанесение композиции на поверхность субстрата и удаление водного носителя для образования изделия с покрытием на поверхности субстрата. В некоторых вариантах осуществления покрытие удаляют с субстрата с образованием наночастиц в виде порошка.

В некоторых вариантах осуществления композиция включает кристаллические наночастицы. Наночастицы включают оксид переходного металла. Толщина покрытия может составлять менее чем приблизительно 10 нм. Покрытие может быть гидрофильным или гидрофобным. Угол смачивания водой гидрофильного покрытия может быть менее чем приблизительно 20°, менее чем приблизительно 10° или менее чем приблизительно 5°. Покрытие ковалентно связано с поверхностью субстрата. В некоторых вариантах осуществления субстрат пористый. В определенных вариантах осуществления субстрат состоит из частиц.

Варианты осуществления могут включать композиции и изделия, полученные описанными выше способами, а также любые комбинации указанных выше характеристик.

Другие характеристики будут понятны из описания, чертежей и формулы изобретения.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет собой блок-схему процедуры образования водных полимерных молекулярных гибридных нанокристаллов.

На фиг.2 показана реакция гидролиза алкоксида металла.

На фиг.3 показана конденсация пероксида металла и гидроксисиланов с образованием перекрестносвязанного олигомера.

На фиг.4 показано первое покрытие и второе покрытие субстрата.

На фиг.5 показано первое покрытие и второе покрытие частицы.

На фиг.6 показана модель пероксида кремния в растворе.

На фиг.7 показана модель взаимодействия пероксида металла с субмезопорами в растворе.

Фиг.8 представляет собой график, на котором показано восстановление окраски гибридным покрытием из оксида металла.

Сходные условные знаки на различных чертежах указывают на сходные элементы.

ПОДРОБНОЕ ОПИСАНИЕ

Раствор или водную дисперсию полимерных молекулярных гибридных нанокристаллов можно получить согласно последовательности стадий, в которых объединяются выбранные реагенты и добавки в определенных условиях взаимодействия. Композиции, включающие раствор или водную дисперсию полимерных молекулярных гибридных нанокристаллов, могут наноситься на макро- или микроповерхностях (таких как порошки из микрочастиц) с образованием защитного и/или функционального покрытия оксидами металлов, металлами и другими необязательными компонентами. Покрытия могут включать нанопленки и композитные пленки, образованные из систем-носителей, содержащих гибридные нанокристаллы, которые также можно использовать в качестве неорганических систем-носителей для диспергирования наночастиц. Композиции можно использовать для получения нанопорошков и нанокомпозитных порошков, а также испаренных наночастиц, в дополнение к покрытиям.

Как применяют в настоящем документе, «субстрат», как правило, относится к твердому объекту любого размера. Например, субстрат может представлять собой окно, микрочип или множество частиц, таких как наночастицы или частицы микрометрового размера. В некоторых случаях композиции, описываемые в настоящем документе, смешивают с субстратом, вместо нанесения композиции на поверхность субстрата или в дополнение к этому, для изменения объемных свойств субстрата. Смешивание композиции с субстратом включает диспергирование композиции в субстрате, так что композиция, по существу, однородно распределяется по всему субстрату. Например, если субстрат представляет собой цемент, композиция или компоненты композиции могут смешиваться с образованием сухого цемента или с получением готового (влажного) цемента. В качестве другого примера, композиция может смешиваться с расплавленным материалом, который образует стекло перед охлаждением, так что компоненты композиции распределятся внутри стекла.

Композиции полимерных молекулярных гибридных нанокристаллов (PMHNC) могут включать добавки, такие как соли переходных металлов, органофункциональные силаны, металлорганические соединения, увлажнители (включая нереакционноспособные силаны), другие реакционноспособные и/или нереакционноспособные (или по существу инертные) органические и/или неорганические соединения и любое их сочетание. Данные водные композиции включают, по меньшей мере, приблизительно 90%, по меньшей мере, приблизительно 95%, или, по меньшей мере, приблизительно 98% воды. Температура, давление и pH водной реакционной смеси селективно контролируются на всем протяжении получения композиции PMHNC.

Компоненты водных неорганических PMHNC, описываемых в настоящем документе, могут быть выбраны для образования покрытий, которые имеют каталитические, фотокаталитические, противомикробные, противовирусные, противогрибковые, антикоррозийные, противообрастающие, полупроводниковые, проводящие, изоляторные, электромагнитные, прозрачные, оптические, излучающие, огнеупорные, пьезоэлектрические и другие выбранные свойства. Покрытия, образованные из композиций, описываемых в настоящем документе, могут использоваться для ремедиации воздуха/воды, для биомедицинских применений, для укрепления термоотверждаемых материалов - термопластов, для распределения красителей, для хранения водорода, для сенсибилизированных красителем солнечных батарей и сверхконденсаторных тонких пленок, с вариантами применения в электротехнике, исследованиях поверхностей, оптике, покрытиях с повышенным коэффициентом преломления, электрооптике, акустооптике, лазерной оптике и т.д.

Как указано на фиг.1, процедура 100 означает получение водной композиции PMHNC. Вначале получают смесь аморфного гидроксида металла. На стадии 102 образуют кислую водную смесь одной или нескольких солей металлов (включая, например, металл M1). Соли металлов могут представлять собой хлорид переходного металла или галогеновые соли одного или нескольких металлов, таких как кремний, титан, ванадий, галлий, германий, цирконий, олово, теллур, гафний, рений, иридий и платина. В некоторых вариантах осуществления соли металла представляют собой тетрахлориды металлов.

pH смеси составляет менее чем приблизительно 1. Кислоты, добавляемые для подкисления смеси, могут представлять собой сильные кислоты, такие как, например, соляная кислота, плавиковая кислота, азотная кислота и серная кислота, или любое их сочетание. Другие кислоты, которые можно использовать, включают в качестве неограничивающих примеров уксусную кислоту, аргинин, азелаиновую кислоту, бегеновую кислоту, бензолсульфоновую кислоту, борную кислоту, масляную кислоту, каприновую кислоту, кислоту касторового масла, хромовую кислоту, докозановую кислоту, додецилбензосульфоновую кислоту, плавиковую кислоту, фторсиликат, муравьиную кислоту, фумаровую кислоту, глутамин, глицин, синильную кислоту, гидроксипролин, гидроксистеариновую кислоту, изофталевую кислоту, лауриновую кислоту, линолевую кислоту, лизин, малоновую кислоту, мета-фталевую кислоту, метионин, миристиновую кислоту, олеиновую кислоту, орто-фталевую кислоту, ортофосфорную кислоту, щавелевую кислоту, пальмитиновую кислоту, пара-фталевую кислоту, пара-толуолсульфоновую кислоту, фениланалин, фосфорную кислоту, фосфор-кислоту, фталевую кислоту, пимелиновую кислоту, полифосфорную кислоту, пропионовую кислоту, рицинолеиновую кислоту, формиат натрия, стеариновую кислоту, янтарную кислоту, сульфанилиновую кислоту, сульфамовую кислоту, винную кислоту, терефталевую кислоту, толуолсульфоновую кислоту и другие аминокислоты, карбоновые кислоты, карбоксилхлориды, кислоты хлора, дикарбоновые кислоты, жирные кислоты, кислоты галогенов, органические кислоты, органические двухосновные кислоты, поликарбоновые кислоты и любое их сочетание.

Стадия 104 включает необязательное добавление одной или нескольких дополнительных солей металлов (включая, например, металл M2, который может быть переходным металлом), металлорганических соединений (включая, например, M3, который может быть переходным металлом), органофункционального силана или их сочетаний, к смеси, образованной на стадии 102. Любое из M1, M2 и M3 может быть одинаковым или различным.

Соли металлов выбирают для придания требуемых свойств композиции PMHNC. Например, цинковую соль, такую как ZnCl2, можно добавлять для придания антикоррозионных свойств. В некоторых случаях металлы выбирают для требуемой растворимости при данном pH по способу, показанному на фиг.1. Альтернативно, pH композиции по способу может доводиться для достижения растворимости выбранной соли металла.

В некоторых вариантах осуществления вторя соль металла представляет собой хлорид металла. Хлорид металла может представлять собой соль-тетрахлорид, такую как, например, SiCl4, TiCl4, GeCl4, VCl4, GaCl4, ZrCl4, SnCl4, TeCl4, HfCl4, ReCl4, IrCl4, PtCl4 или другие соли-хлориды, такие как, например, Na2PtCl6, CCl3CO2Na, Na2PdCl4, NaAuCl4, NaAlCl4, ClNaO3, MgCl2, AlCl3, POCl3, PCl5, PCl3, KCl, MgKCl3, LiCl-KCl, CaCl2, FeCl2, MnCl2, Co(ClO4)2, NiCl2, Cl2Cu, ZnCl2, GaCl3, SrCl2, YCl3, MoCl3, MoCl5, RuCl3, RhCl3, PdCl2, AsCl3, AgClO4, CdCl2, SbCl5, SbCl3, BaCl2, CsCl, LaCl3, CeCl3, PrCl3, SmCl3, GdCl3, TbCl3, HoCl3, ErCl3, TmCl3, YbCl3, LuCl3, WCl6, ReCl5, ReCl3, OsCl3, IrCl3, PtCl2, AuCl, AuCl3, Hg2Cl2, HgCl2, HgClO4, Hg(ClO4)2, TlCl3, PbCl2, BiCl3, GeCl3, HfCl2O, Al2Cl6, BiOCl, [Cr(H2O)4Cl2]Cl2·2H2O, CoCl2, DyCl3·6H2O, EuCl2, EuCl3·6H2O, NH4AuCl4·xH2O, HAuCl4·xH2O, KAuCl4, NaAuCl4·xH2O, InCl3, (NH4)3IrCl6, K2IrCl6, MgCl2·6H2O, NdCl3, (NH4)2OsCl6, (NH4)2PdCl6, Pd(NH3)2Cl2, [Pd(NH3)]2Cl2·H2O, (NH4)2PtCl6, Pt(NH3)2Cl2, Pt(NH3)2Cl2, [Pt(NH3)4]Cl2·xH2O, [Pt(NH3)4][PtCl4], K2PtCl4, KClO4, K2ReCl6, (NH4)3RhCl6, [RhCl(CO)((C6H5)3P)2], [RhCl(C6H5)3P)3], [Rh(NH3)5Cl]Cl2, K3RhCl6, RbCl, RbClO4, (NH4)2RuCl6, [RuCl2 ((C6H5)3P)3], {Ru(NH3)6}Cl2, K2RuCl6, ScCl3·xH2O, AgCl, NaCl, TlCl, SnCl2 и их дополнительные гидраты.

В некоторых случаях композиции PMHNC применяют для химического связывания других металлорганических соединений (например, в мономерную/олигомерную/полимерную сеть или матрикс) с предоставлением неорганических систем-носителей, которые обеспечивают включение металлорганических соединений. Требуемые свойства пленок или покрытий усиливаются добавлением выбранных металлорганических соединений для придания или усиления свойств, таких как механическая прочность, электрическая проводимость, коррозионная устойчивость, противообрастающие характеристики и т.д.

Металлорганические соединения, добавленные на необязательной стадии 104, могут быть выбраны так, что один или несколько органических заместителей претерпевают гидролитическое расщепление в кислой смеси на стадии 102, как показано на фиг.2. Металлорганические соединения, добавленные на необязательной стадии 104, могут включать, например, алкоксиды металлов, такие как метоксиды, этоксиды, метоксиэтоксиды, бутоксиды, изопропоксиды, пентоксиды и т.д., а также пентадионаты, пропионаты, ацетаты, гидроксиды, гидраты, стеараты, оксалаты, сульфаты, карбонаты и/или ацетилацетонаты и т.д., металлов таких как цинк, вольфрам, титан, тантал, олово, молибден, магний, литий, лантан, индий, гафний, галлий, железо, медь, бор, висмут, сурьма, барий, цирконий, цинк, иттрий, ванадий, олово, серебро, платина, палладий, самарий, празеодим, никель, неодим, марганец, магний, литий, лантан, индий, гольмий, гафний, галлий, гадолиний, железо, европий, эрбий, диспрозий, медь, кобальт, хром, цезий, церий, алюминий, барий, бериллий, кадмий, кальций, иридий, мышьяк, германий, золото, лютеций, ниобий, калий, рений, родий, рубидий, рутений, скандий, селен, кремний, стронций, теллур, тербий, тулий, торий, иттербий и иттрий.

Органофункциональные силаны, добавленные на стадии 104, способствуют адгезии между органическими полимерами и неорганическими субстратами и действуют в качестве кросс-линкеров и отвердителей для связывающих систем. Сила связывания и твердость (или износостойкость) пленки или покрытия, образованного на субстрате, повышаются за счет добавления органофункциональных силанов на стадии 104 во время получения композиции с образованием мономеров пероксид металла - гидроксисилан (PMHS), которые полимеризуются с образованием неорганических полимерных композиций PMHNC. Как применяют в настоящем документе, термин «мономеры PMHS», как правило, относится к мономерам, содержащим молекулы пероксида металла, ковалентно связанные с молекулами силанола металла с образованием структуры, такой как силикатный матрикс (-Si(OH)y-O-M1(OOH)x-O-Si(OH)y-). Как применяют в настоящем документе, термин «органофункциональный силан», как правило, относится к содержащему кремний соединению с одним или несколькими гидролизуемыми заместителями. Органофункциональные силаны обычно являются бифункциональными молекулами, в некоторых случаях обозначенными как Y-Si(OR)3, с гидролизуемыми алкоксигруппами R. В присутствии воды алкоксигруппы R гидролизуются с образованием реакционноспособных силанольных (Si-OH) групп, как показано на фиг.2, с уходом спирта (R-OH). Выбор алкоксигрупп влияет на скорость и степень реакции гидролиза.

Взаимодействие силанольных групп и природа Y определяют, как силан функционирует в композиции. Y может быть органическим или неорганическим, гидрофобным или гидрофильным, ионным, катионным, цвиттерионным или неионным. В некоторых случаях Y галогенирован (например, хлорирован или фторирован). Y может взаимодействовать как модификатор поверхности при покрытии субстрата, такого как частица (например, пигмент), коллоид (например, латекс) и т.д.

Если Y является нереакционноспособной группой, такой как алкильная группа, органофункциональный силан, как правило, означают как нереакционноспособный силан. Если Y представляет собой реакционноспособную органическую группу, такую как алкоксигруппу, органофункциональный силан, как правило, означают как реакционноспособный силан. В некоторых случаях Y представляет собой реакционноспособную органическую группу, которая связывается с реакционноспособными группами полимера, и органофункциональный силан ведет себя как сомономер в реакции полимеризации.

Органофункциональные силаны, подходящие для композиций PMHNC, приводящие к образованию неорганических полимерных систем-носителей, включают в качестве неограничивающих примеров алкоксисиланы, такие как тетраметоксисилан и тетраэтоксисилан, диподальные силаны, такие как бис(триметоксисилилпропил)амин, бис(триэтоксисилил)метан, силсесквиоксаны, силоксан, дисилоксан, полидиметилсилоксаны, дисилилметилен, дисилилэтилен, силфенилен, силанолаты металлов, силазаны, (RO)3Si-CH2CH2CH2X, в котором X представляет собой -Cl, C≡N, -NH2, -SH, гибридный ацетат-алкен, эпоксид или любое их сочетание. Другие подходящие силаны могут иметь конкретную функциональность, включая заместители, такие как аллильная, алкинильная, фенильная, гидроксильная, феноксильная и ацетокси-группы, циклические триммеры, тетрамеры и пентамеры, галогены, кетоны, азиды и изоцианаты. Некоторые органофункциональные силаны, такие как аминофункциональные силаны, являются самокатализируемыми, в то время как другие органофункциональные силаны требуют малого количества кислоты для инициации гидролиза. Органофункциональные силаны могут быть выбраны на основе свойств, таких как требуемая кинетика взаимодействия. Например, метоксисиланы, как известно, гидролизуются быстрее, чем этоксисиланы.

Бис(триметоксисилилпропил)амин, показанный выше, представляет собой пример органофункционального силана (бифункциональный диподальный силан на основе амина) с неполярными алкильными сегментами. Конденсация бис(триметоксисилилпропил)амина с коллоидной суспензией полярного гидроксида металла на стадии 110 приводит к образованию пленкообразующей молекулярной гибридной неорганической системы-носителя с неполярными сегментами, способной улучшать распределение добавок, таких как пигменты, в водной композиции.

1,2-Бис(триметоксисилил)декан, показанный ниже, представляет собой другой пример реакционноспособного органофункционального силана с неполярным сегментом. Конденсация 1,2-бис(триметоксисилил)декана с коллоидной суспензией полярного гидроксида металла в компоненте со стадии 110 также приводит к образованию пленкообразующей молекулярной гибридной неорганической с