Устройство декодирования звукового сигнала и способ регулирования баланса устройства декодирования звукового сигнала
Иллюстрации
Показать всеДля поддержки ощущения стерео подавляется колебание в локализации декодированного сигнала. Блок (220) выбора выбирает параметры баланса, если параметры баланса являются входными данными из блока (210) декодирования коэффициента усиления, или выбирает входные данные параметров баланса из блока (223) вычисления коэффициента усиления, если не имеется входных данных параметра баланса из блока (210) декодирования коэффициента усиления, и выводит выбранные параметры баланса на блок (221) умножения. Блок (221) умножения умножает входные данные коэффициента усиления из блока (220) выбора на декодированные входные данные монофонического сигнала из блока (202) монофонического декодирования для выполнения обработки регулирования баланса. Технический результат - возможность гашения колебаний локализации декодированных сигналов и поддержки стереовоспроизведения. 2 н. и 5 з.п. ф-лы, 12 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству декодирования акустического сигнала и способу регулирования баланса в устройстве декодирования акустического сигнала.
Предшествующий уровень техники
В качестве схемы низкоскоростного кодирования акустических стереосигналов известна как схема интенсивности стерео. Стереосхема интенсивности использует способ формирования сигнала канала L (сигнала левого канала) и сигнала канала R (сигнала правого канала) посредством умножения монофонического сигнала на коэффициент пересчета. Данный способ также называется "панорамированием амплитуды".
Самым общим способом панорамирования амплитуды является нахождение сигнала канала L и сигнала канала R посредством умножения временного монофонического сигнала на коэффициент усиления панорамирования амплитуды (то есть на коэффициент усиления панорамирования) (например, см. непатентную литературу 1: V. Pulkki и M. Karjalainen, «Localization of amplitude-panned virtual sources I: Stereophonic panning», Journal of the Audio Engineering Society, т. 49, №9, сентябрь, 2001, стр.739-752). Кроме того, имеется и другой способ нахождения сигнала канала L и сигнала канала R посредством умножения монофонического сигнала на коэффициент усиления панорамирования каждого компонента частоты (или каждой группы частот) в частотной области (например, см. непатентную литературу 2: B. Cheng, C. Ritz и I. Burnett, «Principles and analysis of the squeezing approach to low bit rate spatial audio coding», протокол IEEE ICASSP2007, стр.I-13-I-16, апрель, 2007 и патентную литературу 3: Международная публикация №2009/038512.
Если коэффициенты усиления панорамирования применяются в качестве параметров кодирования параметрического стерео, то имеется возможность реализации масштабируемого стереосигнала (масштабируемого кодирования монофонического сигнала в стереосигнал) (например, см. патентную литературу 1: Японский перевод опубликованной заявки PCT №2004-535145 и патентную литературу 2: Японский перевод опубликованной заявки PCT №2005-533271). Коэффициенты усиления панорамирования описываются как параметры баланса в патентной литературе 1: Японский перевод опубликованной заявки PCT №2004-535145 и как ILD (перепад уровней) в патентной литературе 2: Японский перевод опубликованной заявки PCT №2005-533271.
Кроме того, предлагается (например, патентная литература 3 Международная публикация №2009/038512) масштабируемое кодирование монофонического сигнала в стереосигнал, использующее панорамирование для предварительной подготовки монофонического сигнала в стереосигнал, и кодирование разницы между стереосигналом и входным стереосигналом, получаемым посредством панорамирования.
Сущность изобретения
Техническая проблема
Однако, в масштабируемом кодировании монофонического сигнала в стереосигнал возможен случай, в котором кодированные стереоданные теряются в канале передачи и не принимаются на декодирующей стороне устройства. Кроме того, возможен случай, в котором возникает ошибка в кодированных стереоданных в канале передачи, и кодированные стереоданные отбрасываются на декодирующей стороне устройства. В этом случае, в устройстве декодирования не могут применяться параметры баланса (коэффициенты усиления панорамирования), включенные в состав кодированных стереоданных, и, следовательно, происходит переключение между стереосигналом и монофоническим сигналом, что изменяет локализацию декодированных акустических сигналов. В результате, ухудшается качество акустических стереосигналов.
Следовательно, задачей настоящего изобретения является предоставление устройства декодирования акустического сигнала, имеющего возможность гашения колебаний локализации декодированных сигналов и поддержки стереовоспроизведения, и способ регулирования баланса (панорамирования амплитуды) в устройстве декодирования акустического сигнала.
Решение проблемы
В устройстве декодирования акустического сигнала настоящего изобретения используется конфигурация, имеющая: блок декодирования, который декодирует первый параметр баланса кодированных стереоданных, блок вычисления, который вычисляет второй параметр баланса с использованием сигнала первого канала и сигнала второго канала стереосигнала, полученного ранее; и блок регулирования баланса, который выполняет обработку регулирования баланса монофонического сигнала с использованием второго параметра баланса в качестве параметра регулирования баланса, если не может быть использован первый параметр баланса.
Способ регулирования баланса настоящего изобретения включает в себя: этап, на котором декодируют первый параметр баланса кодированных стереоданных, этап, на котором вычисляют второй параметр баланса с использованием сигнала первого канала и сигнала второго канала стереосигнала, полученного ранее, и этап, на котором регулируют баланс для выполнения обработки регулирования баланса монофонического сигнала с использованием второго параметра баланса в качестве параметра регулирования баланса, если не может быть использован первый параметр баланса.
Преимущество изобретения
В соответствии с настоящим изобретением, имеется возможность гашения колебаний локализации декодированных сигналов и поддержки стереовоспроизведения.
Краткое описание чертежей
Фиг.1 изображает блок-схему, показывающую конфигурации устройства кодирования акустического сигнала и устройства декодирования акустического сигнала, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.2 изображает блок-схему, показывающую пример конфигурации блока декодирования стерео, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.3 изображает блок-схему, показывающую пример конфигурации блока регулирования баланса, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.4 изображает блок-схему, показывающую пример конфигурации блока вычисления коэффициента усиления, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.5 изображает блок-схему, показывающую пример конфигурации блока декодирования, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.6 изображает блок-схему, показывающую пример конфигурации блока регулирования баланса, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.7 изображает блок-схему, показывающую пример конфигурации блока вычисления коэффициента усиления, в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг.8 изображает блок-схему, показывающую пример конфигурации блока регулирования баланса, в соответствии со вторым вариантом осуществления настоящего изобретения;
Фиг.9 изображает блок-схему, показывающую пример конфигурации блока вычисления коэффициента усиления, в соответствии со вторым вариантом осуществления настоящего изобретения;
Фиг.10 изображает блок-схему, показывающую пример конфигурации блока регулирования баланса, в соответствии со вторым вариантом осуществления настоящего изобретения;
Фиг.11 изображает блок-схему, показывающую пример конфигурации блока вычисления коэффициента усиления, в соответствии со вторым вариантом осуществления настоящего изобретения; и
Фиг.12 изображает блок-схему, показывающую пример конфигурации блока вычисления коэффициента усиления, в соответствии со вторым вариантом осуществления настоящего изобретения.
Описание варианта осуществления изобретения
Теперь будут описаны варианты осуществления настоящего изобретения, со ссылкой на прилагаемые чертежи. Кроме того, обработка регулирования баланса, в настоящем изобретении, относится к обработке преобразования стереосигнала посредством умножения монофонического сигнала на параметры баланса, и равноценна обработке панорамирования амплитуды. Кроме того, в настоящем изобретении параметры баланса определяются как коэффициенты усиления, посредством которых монофонический сигнал умножается после преобразования монофонического сигнала в стереосигнал, и являются равноценными коэффициентам усиления панорамирования в панорамировании амплитуды.
Первый вариант осуществления
Фиг.1 изображает конфигурации устройства 100 кодирования акустического сигнала и устройства 200 декодирования акустического сигнала, в соответствии с первым вариантом осуществления.
Как показано на фиг.1, устройство 100 кодирования акустического сигнала оснащено блоком 101 аналого-цифрового преобразования, блоком 102 монофонического кодирования, блоком 103 стереокодирования и блоком 104 мультиплексирования.
Блок 101 аналого-цифрового преобразования принимает в качестве входных данных аналоговый стереосигнал (сигнал канала L, т.е. L, сигнал канала R, т.е. R), преобразовывает данный аналоговый стереосигнал в цифровой стереосигнал, и выводит данный сигнал на блок 102 монофонического кодирования и блок 103 стереокодирования.
Блок 102 монофонического кодирования выполняет обработку понижающего микширования цифрового стереосигнала для преобразования его в монофонический сигнал, кодирует данный монофонический сигнал и выводит результат кодирования (кодированные монофонические данные) на блок 104 мультиплексирования. Кроме того, блок 102 монофонического кодирования выводит информацию, полученную посредством обработки кодирования (то есть информацию о монофоническом кодировании), на блок 103 стереокодирования.
Блок 103 стереокодирования параметрически кодирует цифровой стереосигнал с использованием информации о монофоническом кодировании, и выводит результат кодирования, включающий в себя параметры (то есть закодированные стереоданные), на блок 104 мультиплексирования.
Блок 104 мультиплексирования мультиплексирует кодированные монофонические данные и кодированные стереоданные, и выводит результат мультиплексирования (мультиплексированные данные) на блок 201 демультиплексирования устройства 200 декодирования акустического сигнала.
В данном примере имеется канал передачи (не показан), такой как телефонная линия, и сеть с коммутацией пакетов между блоком 104 мультиплексирования и блоком 201 демультиплексирования, и мультиплексированные данные, выведенные блоком 104 мультиплексирования, подвергаются обработке, такой как пакетирование, в случае необходимости, а затем выводятся в канал передачи.
В отличие от предыдущего, устройство 200 декодирования акустического сигнала оснащено блоком 201 демультиплексирования, блоком 202 монофонического декодирования, блоком 203 стереодекодирования и блоком 204 цифро-аналогового преобразования.
Блок 201 демультиплексирования принимает и демультиплексирует уплотненные данные, передаваемые из устройства 100 кодирования акустического сигнала в кодированные монофонические данные и кодированные стереоданные, и выводит кодированные монофонические данные на блок 202 монофонического декодирования, а кодированные стереоданные на блок 203 стереодекодирования.
Блок 202 монофонического декодирования декодирует кодированные монофонические данные в монофонический сигнал и выводит данный декодированный монофонический сигнал на блок 203 стереодекодирования. Кроме того, блок 202 монофонического декодирования выводит информацию (то есть информацию о монофоническом декодировании), полученную посредством данной обработки декодирования на блок 203 стереодекодирования.
В данном примере, блок 202 монофонического декодирования может выводить декодированный монофонический сигнал на блок 203 стереодекодирования как стереосигнал, подвергнутый обработке посредством повышающего микширования. Если в блоке 202 монофонического декодирования обработка посредством повышающего микширования не выполняется, то информация, требуемая для обработки посредством повышающего микширования, может выводиться из блока 202 монофонического декодирования на блок 203 стереодекодирования, и в блоке 203 стереодекодирования может выполняться обработка повышающего микширования декодированного монофонического сигнала.
В данном примере, в целом, для обработки посредством понижающего микширования не требуется особой информации. Однако, если по причине соответствия фазы канала L и канала R выполняется обработка посредством понижающего микширования, то информация о разности фаз рассматривается в качестве информации, требуемой для обработки повышающего микширования. Кроме того, в случае обработки понижающего микширования, по причине соответствия уровней амплитуды канала L и канала R, коэффициенты пересчета рассматриваются в качестве информации, требуемой для обработки повышающего микширования.
Блок 203 стереодекодирования декодирует декодированный монофонический сигнал в стереосигнал, с использованием кодированных стереоданных и информации о монофоническом кодировании, и выводит цифровой стереосигнал на блок 204 цифро-аналогового преобразования.
Блок 204 цифро-аналогового преобразования преобразует цифровой стереосигнал в аналоговый стереосигнал и выводит аналоговый стереосигнал как декодированный стереосигнал (декодированный сигнал канала L, т.е. сигнал L^, декодированный сигнал канала R, т.е. сигнал R^).
Затем, фиг.2 изображает пример конфигурации блока 203 стереодекодирования устройства 200 декодирования акустического сигнала. В качестве примера будет описываться конфигурация, в которой стереосигнал выражается параметрически, посредством обработки регулирования баланса.
Как показано на фиг.2, блок 203 стереодекодирования включает в себя блок 210 декодирования коэффициента усиления и блок 211 регулирования баланса.
Блок 210 декодирования коэффициента усиления декодирует параметры баланса из кодированных стереоданных, принятых в качестве входных данных из блока 201 демультиплексирования, и выводит данные параметры баланса на блок 211 регулирования баланса. Фиг.2 изображает пример, в котором как параметр баланса для канала L, так и параметр баланса для канала R выводятся из блока 210 декодирования коэффициента усиления.
Блок 211 регулирования баланса выполняет обработку регулирования баланса монофонического сигнала с использованием этих параметров баланса. Таким образом, блок 211 регулирования баланса умножает декодированный монофонический сигнал, принятый в качестве входных данных из блока 202 монофонического декодирования, на данные параметры баланса для формирования декодированного сигнала канала L и декодированного сигнала канала R. В данном примере, полагая, что декодированный монофонический сигнал относится к сигналам в частотной области (например, коэффициентам FFT (быстрого преобразования Фурье) и коэффициентам MDCT (модифицированного дискретного косинус преобразования)). Следовательно, каждая частота декодированного монофонического сигнала умножается на данные параметры баланса.
Нормальное устройство декодирования акустического сигнала выполняет обработку декодированного монофонического сигнала на основе участка полосы частот, где, обычно, ширина каждого участка полосы частот устанавливается шире на более высоких частотах. Даже в настоящем варианте осуществления, один параметр баланса декодируется на одном участке полосы частот, и тот же самый параметр баланса используется для компонентов частот на каждом участке полосы частот. Кроме того, также имеется возможность использования декодированного монофонического сигнала в качестве сигнала во временной области.
Затем, фиг.3 изображает пример конфигурации блока 211 регулирования баланса.
Как показано в фиг.3, блок 211 регулирования баланса включает в себя блок 220 выбора, блок 221 умножения, блок 222 частотно-временного преобразования и блок 223 вычисления коэффициента усиления.
Параметры баланса, принимаемые в качестве входных данных из блока 210 декодирования коэффициента усиления, принимаются в качестве входных данных блока 221 умножения через блок 220 выбора.
В случае приема параметров баланса в качестве входных данных из блока 210 декодирования коэффициента усиления (то есть в случае, если могут быть использованы параметры баланса, включенные в состав кодированных стереоданных), блок 220 выбора выбирает данные параметры баланса, или, в случае, если параметры баланса не принимаются в качестве входных данных из блока 210 декодирования коэффициента усиления (то есть в случае, если не могут быть использованы параметры баланса, включенные в состав кодированных стереоданных), блок 220 выбора выбирает параметры баланса, принятые в качестве входных данных из блока 223 вычисления коэффициента усиления, и выводит выбранные параметры баланса на блок 221 умножения. Выбор 220 формируется с помощью двух переключающих переключателей, как показано, например, на фиг.3. Один переключающий переключатель предназначен для канала L, а другой переключающий переключатель предназначен для канала R, и вышеупомянутый выбор выполняется посредством совместного переключения данных переключающих переключателей.
В данном примере, в случае, если параметры баланса не принимаются в качестве входных данных из блока 210 декодирования коэффициента усиления на блок 220 выбора, то возможен случай, в котором кодированные стереоданные теряются в канале передачи и не принимаются устройством 200 декодирования акустического сигнала, или в котором обнаруживается ошибка в кодированных стереоданных, принятых в устройстве 200 декодирования акустического сигнала, и эти данные отбрасываются. Таким образом, случай, в котором параметры баланса не принимаются в качестве входных данных из блока 210 декодирования коэффициента усиления, является равноценным случаю, в котором параметры баланса, включенные в состав кодированных стереоданных, не могут быть использованы. Следовательно, сигнал управления, указывающий на то, могут ли быть использованы параметры баланса, включенные в состав кодированных данных, принимается в качестве входных данных в блоке 220 выбора, и состояние соединения переключающих переключателей в блоке 220 выбора изменяется на основе данного сигнала управления.
Кроме того, например, для сокращения скорости передачи битов, если параметры баланса, включенные в состав кодированных стереоданных, не используются, блок 220 выбора может выбирать параметры баланса, принимаемые в качестве входных данных из блока 223 вычисления коэффициента усиления.
Блок 221 умножения умножает декодированный монофонический сигнал (который является монофоническим сигналом в качестве параметра частотной области), принимаемый в качестве входных данных из блока 202 монофонического декодирования посредством параметра баланса канала L и параметра баланса канала R, принимаемых в качестве входных данных из блока 220 выбора, и выводит результаты умножения для данных каналов L и R (являющихся стереосигналом в качестве параметра частотной области) на блок 222 частотно-временного преобразования и на блок 223 вычисления коэффициента усиления. Таким образом, блок 221 умножения выполняет обработку регулирования баланса монофонического сигнала.
Блок 222 частотно-временного преобразования преобразует результаты умножения для каналов L и R в блоке 221 умножения в сигналы временной области и выводит данные сигналы на блок 204 цифро-аналогового преобразования как цифровые стереосигналы для каналов L и R.
Блок 223 вычисления коэффициента усиления вычисляет соответствующие параметры баланса для каналов L и R из результатов умножения для каналов L и R в блоке 221 умножения, и выводит данные параметры баланса на блок 220 выбора.
Пример определенного способа вычисления параметров баланса в блоке 223 вычисления коэффициента усиления будет описан ниже.
Для i-того компонента частоты предполагается, что: параметр баланса для канала L является GL[i], параметр баланса для канала R является GR[i], декодированный стереосигнал для канала L является L[i], а декодированный стереосигнал для канала R является R[i]. Блок 223 вычисления коэффициента усиления вычисляет коэффициент GL[i] и коэффициент GR[i], в соответствии с уравнениями 1 и 2.
GL[i]=|L[i]|/(|L[i]|+|R[i]|) (Уравнение 1)
GR[i]=|R[i]|/(|R[i]|+|R[i]|) (Уравнение 2)
В данном примере, абсолютные значения не могут вычисляться в уравнениях 1 и 2. Кроме того, при вычислении знаменателя, могут вычисляться абсолютные значения после суммирования L и R. Однако, в случае суммирования L и R, а затем вычисления абсолютных значений, если L у R имеют противоположные знаки, то параметры баланса могут стать значительно больше. Следовательно, в данном случае, необходима контрмера, например, для установления порогового значения величины параметров баланса и ограничения параметров баланса.
Кроме того, в случае декодирования результатов квантования различий между выходными сигналами блока 221 умножения и сигналами каналов L и R, является предпочтительным вычисление коэффициентов усиления, в соответствии с уравнениями 1 и 2, с использованием сигнала канала L и сигнала канала R после суммирования декодированных, квантованных различий. Таким образом, возможно вычисление подходящих параметров баланса, даже если производительность кодирования исключительно посредством обработки регулирования баланса (то есть способность точного представления входных сигналов) не достаточна. Кроме того, для того, чтобы декодировать вышеупомянутые квантованные различия, в блоке 211 регулирования баланса на фиг.3, используется конфигурация добавления (не показана) блока декодирования квантованного различия между блоком 221 умножения и блоком 222 частотно-временного преобразования, в котором блок декодирования квантованного различия декодирует результат квантования различия между декодированным сигналом канала L, подвергаемым обработке регулирования баланса (то есть входным стереосигналом канала L, квантованным с использованием регулирования баланса), и сигналом канала L входного стереосигнала, и декодирует результат квантования различия между декодированным сигналом канала R, подвергаемым обработке регулирования баланса (то есть входным стереосигналом канала R, квантованным с использованием регулирования баланса), и сигналом канала R входного стереосигнала. Блок декодирования квантованного различия принимает декодированные стереосигналы каналов L и R в качестве входных данных из блока 221 умножения, принимает в качестве входных данных из блока 201 демультиплексирования и декодирует кодированные данные квантованного различия, суммирует результирующие декодированные сигналы квантованного различия с декодированными стереосигналами для каналов L и R соответственно, и выводит результаты суммирования на блок 222 частотно-временного преобразования в качестве итоговых декодированных стереосигналов.
Затем, фиг.4 изображает пример конфигурации блока 223 вычисления коэффициента усиления.
Как показано на фиг.4, блок 223 вычисления коэффициента усиления оснащен блоком 230 вычисления абсолютного значения канала L, блоком 231 вычисления абсолютного значения канала R, блоком 232 обработки сглаживания канала L, блоком 233 обработки сглаживания канала R, блоком 234 вычисления коэффициента усиления канала L, блоком 235 вычисления коэффициента усиления канала R, блоком 236 суммирования и блоком 237 масштабирования.
Блок 230 вычисления абсолютного значения канала L вычисляет абсолютное значение каждого компонента частоты параметров частотной области сигнала канала L, принимаемого в качестве входных данных из блока 221 умножения и выводит результаты на блок 232 обработки сглаживания канала L.
Блок 231 вычисления абсолютного значения канала R вычисляет абсолютное значение каждого компонента частоты параметров частотной области сигнала канала R, принимаемого в качестве входных данных из блока 221 умножения и выводит результаты на блок 233 обработки сглаживания канала R.
В блоке 232 обработки сглаживания канала L применяется обработка сглаживания по частотной оси к абсолютному значению каждого компонента частоты параметров частотной области сигнала канала L, и выводятся параметры частотной области сглаживания сигнала канала L по частотной оси на блок 234 вычисления коэффициента усиления канала L и на блок 236 суммирования.
В данном примере, обработка сглаживания по частотной оси является равноценной применению обработки фильтром низких частот по частотным осям к параметрам частотной области.
Более конкретно, как показано в уравнении 3, обработка выполняется для суммирования одного компонента перед, или одного компонента после каждого компонента частоты, а затем вычисления среднего значения, то есть вычисления среднего смещения трех точек. В уравнении 3, LF(f) относится к параметру частотной области сигнала канала L (параметру после вычисления абсолютного значения), LFs(f) относится к параметру частотной области после обработки сглаживания канала L, а f относится к порядковому номеру частоты (который является целым числом).
LFs(f)=(LF(f-1)+LF(f)+LF(f+1))/3 (Уравнение 3)
Кроме того, как показано в уравнении 4, также возможно выполнение обработки сглаживания по частотной оси с использованием авторегрессионной обработки фильтром низких частот. В данном примере, α относится к коэффициенту сглаживания.
LFs(f)=LF(f)+α×LFs(f-1) 0<α<1 (Уравнение 4)
В блоке 233 обработки сглаживания канала R применяется обработка сглаживания по частотной оси к абсолютному значению каждого компонента частоты параметров частотной области сигнала канала R, и выводятся параметры частотной области сглаживания сигнала канала R по частотной оси на блок 235 вычисления коэффициента усиления канала R и на блок 236 суммирования.
Поскольку обработка сглаживания в блоке 233 обработки сглаживания канала R подобна обработке сглаживания в блоке 232 обработки сглаживания канала L, то выполняется обработка для суммирования одного компонента перед или одного компонента после каждого компонента частоты, а затем вычисляется среднее значение, то есть вычисляется среднее смещение трех точек, как показано в уравнении 5. В уравнении 5, RF(f) относится к параметру частотной области сигнала канала R (параметр после вычисления абсолютного значения), а RFs(f) относится к параметру частотной области после обработки сглаживания канала R.
RFs(f)=(RF(f-1)+RF(f)+RF(f+1))/3 (Уравнение 5)
Кроме того, как показано в уравнении 6, также возможно выполнение обработки сглаживания по частотной оси с использованием авторегрессионной обработки фильтром низких частот.
RFs(f)=RF(f)+α×RFs(f-1) 0<α<1 (Уравнение 6)
Кроме того, обработка сглаживания канала L и обработка сглаживания канала R обязательно являются одной и той же обработкой. Например, если характеристики сигнала канала L и характеристики сигнала канала R различны, может иметь место случай, в котором целенаправленно используется различная обработка сглаживания.
Блок 236 суммирования суммирует, на основе компонента частоты, сглаживание параметров частотной области сигнала канала L со сглаживанием параметров частотной области сигнала канала R, и выводит результаты суммирования на блок 234 вычисления коэффициента усиления канала L и на блок 235 вычисления коэффициента усиления канала R.
Блок 234 вычисления коэффициента усиления канала L вычисляет отношение амплитуд между параметром (LFs(f)) частотной области, сглаживающим сигнал канала L и результатом (LFs(f)+RFs(f)) суммирования, принимаемым в качестве входных данных из блока 236 суммирования, и выводит отношение амплитуд на блок 237 масштабирования. То есть, блок 234 вычисления коэффициента усиления канала L вычисляет gL(f), показанный в уравнении 7.
gL(f)=LFs(f)/(LFs(f)+RFs(f)) (Уравнение 7)
Блок 235 вычисления коэффициента усиления канала R, вычисляет отношение амплитуд между параметром (RFs(f)) частотной области, сглаживающим сигнал канала R и результатом (LFs(f)+RFs(f)) суммирования, принимаемым в качестве входных данных из блока 236 суммирования, и выводит отношение амплитуд на блок 237 масштабирования. То есть, блок 235 вычисления коэффициента усиления канала R вычисляет коэффициент gR(f), показанный в уравнении 8.
gR(f)=RFs(f)/(LFs(f)+RFs(f)) (Уравнение 8)
Блок 237 масштабирования выполняет обработку масштабирования gL(f) и gR(f) для вычисления параметра GL(f) баланса для канала L и параметра GR(f) баланса для канала R, дает им задержку в один кадр, а затем выводит данные параметры баланса на блок 220 выбора.
В данном примере, если монофонический сигнал М(f) определяется как, например, М(f)=0.5(L(f)+R(f)), то блок 237 масштабирования выполняет обработку масштабирования gL(f) и gR(f) так, что GL(f)+GR(f)=2.0. Более конкретно, блок 237 масштабирования вычисляет GL(f) и GR(f) посредством умножения gL(f) и gR(f) на 2/(gL(f)+gR(f)).
Кроме того, в случае, если GL(f) и GR(f) вычисляются в блоке 234 вычисления коэффициента усиления канала L и в блоке 235 вычисления коэффициента усиления канала R, так, чтобы, удовлетворять соотношению GL(f)+GR(f)=2.0, то блоку 237 масштабирования не требуется выполнения обработки масштабирования. Например, в случае, если GR(f) вычисляется как GR(f)=2.0-GL(f) после вычисления GL(f) в блоке 234 вычисления коэффициента усиления, то блоку 237 обработки масштабирования не требуется выполнения обработки масштабирования. Следовательно, в данном случае, также возможно введение выходных данных блока 234 вычисления коэффициента усиления канала L и блока 235 вычисления коэффициента усиления канала R на блок 220 выбора. Более подробно данная конфигурация будет описана позже, с использованием фиг.12. Кроме того, несмотря на то, что в данном примере был описан случай, в котором сначала коэффициент усиления канала L вычисляется, также возможно сначала вычисление коэффициента усиления канала R, а затем вычисление коэффициента GL(f) усиления канала L из соотношения GL(f)=2.0-GR(f).
Кроме того, в случае, если не является возможным последовательное использование параметров баланса, включенных в состав кодированных данных, то продолжается режим, в котором выбираются параметры баланса, выводимые из блока 223 вычисления коэффициента усиления. Даже в этом случае, если повторяется вышеупомянутая обработка в блоке 223 вычисления коэффициента усиления, посредством повтора вышеупомянутой обработки сглаживания, вычисляемые в блоке 223 вычисления коэффициента усиления параметры баланса постепенно усредняются по всей полосе частот так, что является возможным регулирование баланса уровней между каналом L и каналом R до подходящего баланса уровней.
Кроме того, если продолжается режим, в котором выбираются выводимые из блока 223 вычисления коэффициента усиления параметры баланса, то имеется возможность выполнения обработки постепенного приближения параметров баланса от вычисленных ранее параметров баланса к 1.0 (то есть ближе к монофоническому). Например, может быть выполнена обработка, показанная в уравнении 9. В этом случае, в кадрах, отличных от кадра, в котором сначала не могут быть использованы параметры баланса, рассмотренная выше обработка сглаживания не является необходимой. Следовательно, при использовании данной обработки, имеется возможность сокращения количества вычислений, относящихся к вычислению коэффициента усиления, по сравнению со случаем, в котором выполняется рассмотренная выше обработка сглаживания. Кроме того, β является коэффициентом сглаживания.
GL(f)=βGL(f)+(1-β) 0<β<1 (Уравнение 9)
Кроме того, после продолжения режима, в котором выбираются выводимые из блока 223 вычисления коэффициента усиления параметры баланса, если данный режим изменяется на режим, в котором выбираются выводимые из блока 210 декодирования коэффициента усиления параметры баланса, то происходит эффект, при котором быстро изменяется звуковой образ или локализация источника звука. Посредством данного быстрого изменения, субъективное качество может понижаться. Следовательно, в данном случае, может быть возможным использование в качестве параметра баланса, принимаемого в качестве входных данных на блок 221 умножения, среднего значения между параметром баланса, выводимым из блока 210 декодирования коэффициента усиления, и параметром баланса, выводимым из блока 223 вычисления коэффициента усиления, непосредственно перед изменением режима выбора. Например, параметр баланса, принимаемый в качестве входных данных на блок 221 умножения, может быть вычислен в соответствии с уравнением 10. В данном примере, параметр баланса, принимаемый в качестве входных данных из блока 210 декодирования коэффициента усиления, является G^, параметр баланса, выводимый в результате из блока 223 вычисления коэффициента усиления, является Gp, а параметр баланса, принимаемый в качестве входных данных на блок 221 умножения, является Gm. Кроме того, γ является внутренним коэффициентом деления, а β является коэффициентом сглаживания для сглаживания γ.
Gm=γGp+(1-γ)G^, γ=βγ, 0<β<1 (Уравнение 10)
Таким образом, продолжается режим, в котором выбираются параметры баланса, выводимые блоком 210 декодирования коэффициента усиления, γ приближается к «0», по мере того, как повторяется обработка в уравнении 10, а если продолжается режим, в котором выбираются параметры баланса, выводимые из блока 210 декодирования коэффициента усиления, то для некоторых кадров Gm=G^. В данном примере, является возможным как предварительное определение количества кадров, требуемого для Gm=G^, так и установление Gm=G^ во время синхронизации режима, в котором выбираются параметры баланса, выводимые из блока 210 декодирования коэффициента усиления, продолжается для этого количества кадров. Следовательно, посредством постепенного приближения параметра баланса, принимаемого в качестве входных данных на блок 221 умножения, к параметру баланса, принимаемому в качестве входных данных из блока 210 декодирования коэффициента усиления, является возможным предотвращение ухудшения субъективного качества, вследствие быстрого изменения звукового образа или локализации источника звука.
Следовательно, в соответствии с настоящим вариантом осуществления, в случае, если не могут быть использованы (или не используются) параметры баланса, включаемые в состав кодированных стереоданных, то обработка регулирования баланса выполняется на монофоническом сигнале, с использованием параметров баланса, вычисляемых из сигнала канала L и сигнала канала R стереосигнала, полученного ранее. Следовательно, в соответствии с настоящим вариантом осуществления, имеется возможность гашения колебания локализации декодированных сигналов и поддержки стереовоспроизведения.
Кроме того, в настоящем варианте осуществления вычисляются параметры баланса с использованием отношения амплитуд сигнала канала L или сигнала канала R в отношении сигнала, суммирующего сигнал канала L с сигналом канала R стереосигнала. Следовательно, в соответствии с настоящим вариантом осуществления, имеется возможность вычисления подходящих параметров баланса, по сравнению со случаем использования отношения амплитуд сигнала канала L или сигнала канала R по отношению к монофоническому сигналу.
Кроме того, в настоящем варианте осуществления применяется обработка сглаживания по частотной оси к сигналу канала L и сигналу канала R для вычисления параметров баланса. Следовательно, в соответствии с настоящим вариантом осуществления, имеется возможность получения стабильной локализации и стереовоспроизведения, даже в случае, если единица измерения частоты (частотное разрешение) для выполнения обработки регулирования баланса является малой величиной.
Следовательно, в соответствии с настоящим вариантом осуществления, даже в случае, если информация о регулировании баланса, такая как параметры баланса, не может быть использована в качестве параметрических параметров стерео, то имеется возможность формирования псевдо стереосигналов высокого качества.
Пример изменения
Фиг.5 изображает пример изменения конфигурации блока 203a стереодекодирования устройства 200 декодирования акустического сигнала. В данном примере изменения используется блок 301 демультиплексирования и блок 302 декодирования остаточного сигнала, в дополнение к конфигурации на фиг.2. На фиг.5 блокам, выполняющим те же операции, что и на фиг.2, назначаются те же ссылочные номера, что и на фиг.2, и описание их действия будет опущено.
Блок 301 демультиплексирования принимает в качестве входных данных кодированных стереоданных, вводимых из блока 201 демультиплексирования, демультиплексирует кодированные стереоданные в кодированные дан