Разрешение конфликта идентификатора сотовой ячейки

Иллюстрации

Показать все

Изобретение относится к системам связи. Описываемый способ обеспечивает достижение технического результата в виде разрешения конфликтных ситуаций/конфликтов идентификаторов сотовых ячеек в сети сотовой радиосвязи. Узел обнаружения определяет, что первый идентификатор сотовой ячейки, связанный с первой конфликтующей сотовой ячейкой, является одинаковым с идентификатором второй сотовой ячейки, связанным со второй конфликтующей сотовой ячейкой. Выбирается одна ячейка из первой и второй конфликтующих сотовых ячеек для изменения ее идентификатора сотовой ячейки. Для выбранной сотовой ячейки определяется отличный идентификатор сотовой ячейки. Отличный идентификатор сотовой ячейки затем предоставляется на другие сотовые ячейки и предпочтительно на терминалы пользовательского оборудования (UE) без разрушения продолжающейся связи UE. 2 н. и 14 з.п. ф-лы, 20 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Область техники относится к мобильной радиосвязи, касающейся терминалов мобильной радиосвязи и базовых станций радиосвязи в системе мобильной радиосвязи.

УРОВЕНЬ ТЕХНИКИ

Универсальная система (УСМС, UMTS) мобильной связи является системой мобильной связи 3-его поколения (3G), использующей технологию широкополосного множественного доступа с кодовым разделением каналов (ШМДКР, WCDMA), стандартизированную в рамках Проекта (3GPP) партнерства систем связи 3-го поколения. В версии 99 проекта 3GPP контроллер радиосети (RNC) управляет ресурсами и мобильностью пользователя. Управление ресурсами включает в себя управление допуском, управление перегрузкой и коммутацию каналов, которое соответствует изменению скорости передачи данных для соединения.

Стандарт «долговременного развития» (LTE) для UMTS находится в процессе разработки организацией «Проект партнерства систем связи 3-го поколения» (3GPP), которая стандартизирует UMTS. На Web-сайте 3GPP размещены многие технические описания, относящиеся к усовершенствованному универсальному наземному радиодоступу (E-UTRA) и системе усовершенствованного универсального наземного радиодоступа (E-UTRAN), например, техническое описание 3GPP TS 36.300. Цель работы по стандартизации LTE состоит в том, чтобы разработать структуру для развития технологии радиодоступа 3GPP в направлении технологии радиодоступа с высокоскоростной передачей данных, малым временем задержки и оптимизированной пакетной связью. В частности LTE имеет целью поддерживать услуги, обеспечиваемые на домене с коммутацией пакетов (PS). Ключевая цель технологии LTE 3GPP состоит в том, чтобы давать возможность высокоскоростной пакетной связи со скоростью приблизительно 100 Мбит/с или выше.

На Фиг.1 иллюстрируется пример системы 10 мобильной связи типа LTE. Сеть E-UTRAN 12 включает в себя усовершенствованные Узлы B (Node B, eNB) 18 системы E-UTRAN, которые обеспечивают протокольные окончания (сети связи) плоскости пользователя и плоскости управления E-UTRA в направлении терминалов 20 пользовательского оборудования (UE) через радиоинтерфейс. Узел eNB иногда более обобщенно называется базовой станцией, и UE иногда называется терминалом мобильной радиосвязи или мобильной станцией.

Каждая базовая станция передает сигнатурную последовательность по полной зоне сотовой ячейки для терминалов UE для обнаружения и измерения. Измерения, выполненные терминалами UE относительно уровня принимаемого сигнала для различных сигнатурных последовательностей базовых станций, используются в большинстве систем радиосвязи (например, Глобальной системе мобильной связи (ГСМС, GSM), широкополосного множественного доступа с кодовым разделением каналов (WCDMA), LTE, WCDMA-2000 и т.д.), чтобы выполнять, например, начальный выбор сотовой ячейки и принятие решения по передаче обслуживания. Сигнатурная последовательность в WCDMA включает в себя конкретный код скремблирования, который применяется к общему пилотному каналу, передаваемому от каждого NodeB. Стандарт WCDMA определяет 512 уникальных кодов скремблирования с 512 соответствующими значениями MCI. В LTE сигнатурная последовательность является двумерной и формируется в виде посимвольного произведения двумерной ортогональной последовательности и двумерной псевдослучайной последовательности. Всего стандарт LTE определяет 510 таких уникальных сигнатурных последовательностей с 510 соответствующими значениями MCI. В LTE, UE измеряют сигнатурную последовательность для соседних сотовых ячеек, чтобы определить мощность (RSRP) приема опорного символа, и эти измерения RSRP используются при выполнении начального выбора сотовой ячейки для множества UE, чтобы "образовать группу", а также при выполнении передач обслуживания для соединений UE.

В идеальном случае, сигнатурные последовательности, которые может обнаруживать отдельный UE, однозначно отображены на конкретную базовую станцию. Но в большинстве систем радиосвязи, число уникальных сигнатурных последовательностей, которые определяет конкретный стандарт, меньше числа базовых станций в системе. Число сигнатурных последовательностей является ограниченным, поскольку передача сигнатурной последовательности связана со «стоимостью» радиоресурса, то есть, мощностью, полосой частот, кодовым пространством, частотным пространством, или временем, и что стоимость возрастает с ростом числа уникальных сигнатурных последовательностей, для которых система предназначена. Другая причина, почему ограничено число сигнатурных последовательностей, связана с мобильными станциями UE, часто сообщающими отчет измерений, связанных с различными сигнатурными последовательностями, обратно на радиосеть, например, на обслуживающую базовую станцию. UE может сообщать отчет нескольких таких измерений несколько раз в секунду, и следовательно, желательно, чтобы такие отчеты измерений могли кодироваться с помощью меньшего числа битов, чтобы уменьшить воздействие этих сообщений на ограниченную полосу частот радиосвязи.

В свете этих соображений, может быть установлено однозначное соответствие между сигнатурной последовательностью, передаваемой базовой станцией, и получаемым в ходе измерений идентификатором сотовой ячейки (MCI), используемым отдельными UE в кодированных отчетах измерений. Термин MCI используется в документе в качестве удобного способа указания, какую конкретную сигнатурную последовательность передает данная базовая станция. MCI может рассматриваться в виде индекса, который дает возможность UE определять соответствующую сигнатурную последовательность.

UE осуществляют непрерывный мониторинг системной информации, а также сигнатурных последовательностей, широковещательно передаваемых базовыми станциями в пределах дальности передачи, чтобы информировать себя о базовых станциях-"кандидатах" в зоне обслуживания. Когда UE требуется осуществить доступ к услугам сети радиодоступа, оно посылает запрос по каналу (RACH) произвольного доступа на подходящую базовую станцию, обычно базовую станцию с наиболее благоприятными условиями радиосвязи. Как показано на Фиг.1, базовые станции взаимосоединены между собой посредством интерфейса X2. Базовые станции также соединены посредством интерфейса S1 с усовершенствованной опорной сетью 14 пакетной передачи (Evolved Packet Core, EPC), которая включает в себя модуль управления мобильностью (Mobility Management Entity, MME) согласно S1-MME, и со шлюзом системной архитектуры развития (System Architecture Evolution, SAE) согласно S1-U. В этом примере шлюз MME/SAE является единым узлом 22. Интерфейс S1 поддерживает связь «от множества точек к множеству точек» между шлюзами MME/SAE и узлами eNB. E-UTRAN 12 и EPC 14 вместе образуют сеть наземной мобильной связи общего пользования (PLMN). Шлюзы 22 MME/SAE соединены непосредственно или косвенно с сетью Internet 16 и другими сетями.

Одна важная область внимания в работе по стандартизации LTE/SAE состоит в обеспечении, чтобы усовершенствованная сеть являлась простой для развертывания и рентабельной для работы. Мнение таково, что усовершенствованная сеть будет иметь возможность автоматической оптимизации и самонастройки в максимально возможном числе аспектов. Процессом самонастройки является такой, где конфигурация вновь развертываемых узлов задается посредством автоматических установочных процедур, чтобы получить необходимую базовую конфигурацию для функционирования системы. Вновь развернутая базовая станция обычно связывается с центральным сервером (или несколькими такими серверами) в сети и получает параметры конфигурации необходимые, чтобы начинать функционировать. Автоматическая оптимизация является процессом, где используются измерения UE и базовой станции и измерения рабочей характеристики, чтобы автоматически "настроить" сеть. Одним примером является автоматизация формирования перечня соседних сотовых ячеек, и один неограничительный способ автоматического создания перечня соседних сотовых ячеек описан в принадлежащей тому же заявителю заявке на патент США № 11/538,077, поданной 3 октября 2006, и опубликованной в виде документа US 2007/0097938. В системах GSM и WCDMA базовые станции посылают перечни соседних сотовых ячеек на соединенные UE, так что они имеют заданный набор широковещательных передач сотовой ячейки для измерения (например, качества или уровня сигнала этих широковещательных передач), чтобы давать возможность определения, какая из соседних сотовых ячеек, если какая-либо имеется, является подходящим кандидатом для передачи обслуживания. В системе LTE, перечни (описаний) взаимосвязей (NCR) соседних сотовых ячеек также используются в узлах eNB, чтобы устанавливать соединения через интерфейсы S1 и/или X2.

Областью, потенциально полезной для самонастройки, является автоматическое назначение базовой станции более коротких измеряемых идентификаторов сотовой ячейки (ИИСЯ, MCI). Более короткие идентификаторы сотовой ячейки, подобные MCI, используемые в отчетах измерений UE, часто передаваемых на сеть, уменьшают объем используемых радиоресурсов. Поэтому более короткие идентификаторы сотовой ячейки в документе иногда называются сообщаемыми идентификаторами сотовой ячейки. В дополнение к короткому MCI, каждая сотовая ячейка связывается с более длинным идентификатором сотовой ячейки, который однозначно идентифицирует ячейку в сети наземной мобильной связи общего пользования (PLMN), к которой относится сотовая ячейка. Неограничительным примером такого более длинного идентификатора является идентификатор сотовой ячейки на уровне PLMN (CIPL, Cell Identity for a cell within a PLMN).

При ограниченном числе MCI или других сообщаемых идентификаторов сотовой ячейки, некоторые MCI, вероятно, будут многократно используемыми в более крупных сетях, что означает необходимость планирования сети. В настоящее время такое планирование обычно делается вручную. Например, при планировании в сети радиодоступа (СРД, RAN) LTE, каждой сотовой ячейке в сети назначается MCI, и планировщик пытается распределять значения MCI так, чтобы соседние сотовые ячейки не имели одинаковый MCI. Но такие попытки не всегда могут быть успешными. Это справедливо, даже если эта операция должна выполняться автоматически с использованием подходящего алгоритма распределения, осуществленного на компьютере. Алгоритм автоматического распределения MCI предпочтительно также должен быть способным назначать значения MCI в развертывании трудных сетей, например, сетей с большим количеством домашних базовых станций, над которыми оператор сети имеет слабый контроль.

Чтобы выполнять передачу обслуживания в LTE от исходной сотовой ячейки на целевую сотовую ячейку, две участвующие (в связи) сотовые ячейки должны сначала установить взаимосвязь (NCR) соседних сотовых ячеек. NCR содержит, по меньшей мере, MCI (или другой короткий идентификатор сотовой ячейки) и CIPL (или другой более длинный идентификатор сотовой ячейки). NCR может также включать в себя информацию связности, такую как IP-адрес соответствующей сотовой ячейки, информацию о конфигурациях интерфейсов X2 и S1, и параметры, необходимые для различных управляющих алгоритмов управления радиоресурсами, такие как пороговые значения для передачи обслуживания. Информация о технологии (ТРД, RAT) радиодоступа (например, LTE, WCDMA, или GSM), а также другие возможности целевой сотовой ячейки также могут быть включены в NCR.

Создание перечня NCR на каждой базовой станции может выполняться автоматически. Всякий раз, когда развертывается новая базовая станция, она связывается с центральным сервером в сети, и этот сервер назначает базовой станции CIPL и IP-адрес. Базовая станция может начинать функционировать при пустом перечне NCR, и всякий раз, когда она принимает от обслуживаемого UE отчет измерений, который содержит MCI, не включенный в NCR, базовая станция запрашивает UE получить CIPL для этой соответствующей (не являющейся обслуживающей) базовой станции. В LTE, CIPL является широковещательно передаваемым (нечасто) на широковещательном канале (BCH), что дает возможность UE обнаруживать соответствующий CIPL для необслуживающей базовой станции и представлять отчет о нем обратно на обслуживающую базовую станцию. Обслуживающая базовая станция может затем связываться с центральным сервером, чтобы получить остальную информацию NCR, соответствующую этой необслуживающей базовой станции.

Если базовая станция имеет двух «соседей» с различными CIPL, но с одинаковым MCI, то имеется "конфликтная ситуация" или конфликт MCI. В результате, одна или несколько сотовых ячеек должны изменить свой старый конфликтующий MCI на не конфликтующий MCI. Выполнение такого изменения требует закрытия сотовой ячейки, повторного задания конфигурации нового значения MCI, и последующего повторного запуска сотовой ячейки. Альтернативно, сотовая ячейка может изменять только MCI без закрытия и повторного запуска, что означает, что все UE, в текущий момент "сгруппированные" на этой сотовой ячейке, выходят из синхронизации, нарушая все активные связи UE в этой сотовой ячейке. Эти нарушенные UE должны выполнять новые операции поиска сотовой ячейки, вероятно, имея результатом, что по меньшей мере, большинство из них выбирают ту же сотовую ячейку и выполняют попытку произвольного доступа. Такой массовый произвольный доступ является проблематичным, поскольку типичный канал произвольного доступа не предназначен для обработки большого количества одновременных попыток доступа. В качестве альтернативы, такие UE могут выбрать другую, менее удовлетворительную ячейку.

Другая проблема таких конфликтов MCI состоит в том, что все соседние сотовые ячейки по отношению к сотовой ячейке с новым MCI более не имеют корректной и текущей информации в своих соответственных перечнях отношений (NCR) соседних сотовых ячеек. Следовательно, когда эти соседние сотовые ячейки принимают от нескольких UE отчеты измерений, использующие новый MCI, соседние сотовые ячейки должны затем повторно установить свои взаимосвязи с сотовой ячейкой при новом MCI. До тех пор соседние сотовые ячейки не могут давать команду для выполнения передачи обслуживания на эту сотовую ячейку никаким UE, что может приводить к сбросу тех вызовов, которые нуждаются в отбрасываемой передаче обслуживания.

В заявке на патент США US 2006 172707 описан способ разрешения допуска базовой станции в сеть. Также, в Европейском патенте № 1657950 описан способ автоматической настройки кода скремблирования для использования базовой станцией.

Конфликты MCI будут вызывать значительные трудности, когда новые домашние или прочие базовые станции установлены без какой-либо координации в плотно населенной области (например, Манхэттене). Каждый раз, когда потребитель устанавливает домашнюю базовую станцию или перемещает положение этой домашней базовой станции, имеется высокая вероятность множества конфликтов MCI, поскольку оператор сети связи не управляет этой установкой или перемещением базовой станцией, и, следовательно, не может выполнять планирование/координацию сотовой ячейки, необходимые для избежания конфликтов MCI. В течение этапа "развертывания" новой сети, будут добавляться новые сотовые ячейки, и в результате, также, вероятно будут происходить конфликты MCI. Базовые станции "пересылки" также могут быть установлены в движущихся транспортных средствах, подобных автомобилям, автобусам, и поездам. Поскольку эти базовые станций перемещаются, на практике могут иметься частые конфликты MCI. К тому же, другие автономные изменения в сети с самоорганизацией, подобные подстройкам уровней мощности или наклона антенны, могут вызывать возникновение конфликтов нескольких MCI.

Большинство конфликтов MCI проявляют себя в виде неоднозначности в перечнях NCR, то есть, в перечне NCR имеются две сотовые ячейки с различными CIPL, но с одинаковым MCI. Однако также является возможным, что UE на практике имеют приемлемые условия радиосвязи по отношению к обеим и обслуживающей сотовой ячейке, и сотовой ячейке-кандидату и что обе используют одинаковый MCI. В этом случае, UE может не быть способным представлять на обслуживающую сотовую ячейку отчет о более слабой сотовой ячейке в качестве сотовой ячейки-кандидата, поскольку более слабая сотовая ячейка непосредственно подвергается влиянию обслуживающей ячейки на той же сигнатурной последовательности. Чтобы интуитивно пояснить, почему это так, можно рассмотреть два различных сценария.

В первом сценарии только обслуживающая сотовая ячейка передает сигнатурную последовательность. UE осуществляет поиск этой сигнатурной последовательности посредством взаимной корреляции принятого сигнала с той же сигнатурной последовательностью. Если принятый сигнал содержит соответствующую сигнатурную последовательность, то выходной сигнал взаимной корреляции содержит четкий (различимый) пик. Местоположение пика обеспечивает UE временную синхронизацию, и амплитуда пика является пропорциональной уровню сигнала соответствующей сотовой ячейки. Но вследствие многолучевого распространения в радиоканале, UE принимает несколько копий (экземпляров) переданной сигнатурной последовательности, которые имеют различные задержки, амплитуды и фазовые сдвиги. Например, может быть прямой путь распространения сигнала от передатчика в сотовой ячейке и UE, и непрямой путь отраженного сигнала, который доходит до UE несколько позже. В этом случае операция взаимной корреляции в UE образует два отдельных пика для той же сигнатурной последовательности, один на каждый путь распространения радиосигнала. UE использует эту информацию пика корреляции, чтобы выполнять оценку и выравнивание канала.

Теперь можно рассмотреть второй сценарий без многолучевого распространения, но при двух различных сотовых ячейках, передающих одинаковую сигнатурную последовательность. Переданные сигналы от этих двух сотовых ячеек поступят на UE со слегка различными задержками, амплитудами и фазовыми сдвигами. UE выполняет взаимную корреляцию с принятым сигналом, и выходной сигнал содержит два отдельных пика для той же сигнатурной последовательности, но в этом случае, один пик на каждую сотовую ячейку. Эти два сценария демонстрируют то, что UE не может установить различие между обычным многолучевым распространением в радиоканале и одинаковой сигнатурной последовательностью, передаваемой от двух различных сотовых ячеек.

Таким образом, желательно обеспечить автоматизированный подход, чтобы эффективным образом разрешать конфликтные ситуации идентификатора сотовой ячейки, а также иметь возможность распространять измененные или новые идентификаторы сотовых ячеек «бесшовным» (без прерывания), автоматизированным и согласованным образом.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Описываемый способ автоматически разрешает конфликтные ситуации/конфликты идентификаторов сотовой ячейки в сети сотовой радиосвязи. Это получают посредством способов и устройств, как изложено в прилагаемой формуле изобретения. Узел обнаружения определяет, что первый идентификатор сотовой ячейки, связанный с первой, вызывающей конфликт сотовой ячейкой, является одинаковым со вторым идентификатором сотовой ячейки, связанным со второй вызывающей конфликт сотовой ячейкой. Выбирается одна ячейка из первой и второй конфликтующих сотовых ячеек, чтобы изменить ее идентификатор сотовой ячейки. Для выбранной сотовой ячейки определяется отличный идентификатор сотовой ячейки. Отличный идентификатор сотовой ячейки затем предоставляется на другие сотовые ячейки и предпочтительно на терминалы пользовательского оборудования (UE) без нарушения продолжающейся связи UE. Например, сообщение изменения идентификатора сотовой ячейки может посылаться на одну или несколько других сотовых ячеек. Это сообщение может включать в себя временной параметр от принимающей сотовой ячейки, чтобы указывать, когда изменять идентификатор сотовой ячейки для выбранной сотовой ячейки на отличный идентификатор сотовой ячейки.

Способ может быть осуществлен в одном или нескольких узлах сети радиосвязи. В предпочтительном примерном варианте осуществления, функции распределены между множеством узлов сети радиосвязи, где сотовая ячейка связана с базовой станцией. Термин "сотовая ячейка" используется, чтобы ссылаться и на зону обслуживания сотовой ячейки, и на базовую станцию, которая управляет операциями в этой зоне обслуживания. Например, сотовая ячейка обнаружения может выполнять задачи выявления и выбора, и выбранная сотовая ячейка может выполнять задачи определения и предоставления. Кроме того, каждая сотовая ячейка предпочтительно поддерживает перечень отношений соседних сотовых ячеек, который включает в себя идентификатор каждой сотовой ячейки наряду с другой информацией.

Операции обнаружения конфликта идентификатора сотовой ячейки можно содействовать путем приема от одного или нескольких терминалов пользовательского оборудования (UE) информации относительно передач, принятых от первой и второй сотовой ячейки, включающих в себя одинаковый идентификатор сотовой ячейки. В качестве альтернативы, операция обнаружения конфликта идентификатора сотовой ячейки может включать в себя этап приема информации, относящейся к идентификаторам сотовых ячеек для других сотовых ячеек, от других сетевых узлов, например, других базовых станций. Сетевой узел может также определять информацию взаимосвязей соседних сотовых ячеек (NCR) исходя из одной или нескольких сотовых ячеек, являющихся соседними с выбранной сотовой ячейкой. На основании информации NCR, сетевой узел может определить отличный идентификатор сотовой ячейки, который отличается от идентификаторов сотовой ячейки, указанных в информации NCR.

Предпочтительный (но не необходимый) признак относится к блокировке невыбранной ячейки из первой и второй сотовых ячеек для недопущения изменения информации идентификатора сотовой ячейки в невыбранной сотовой ячейке. После изменения выбранной сотовой ячейкой своего идентификатора сотовой ячейки на отличный идентификатор сотовой ячейки, блокировка невыбранной сотовой ячейки снимается. Дополнительные возможности блокировки включают в себя этапы выявления, что невыбранная сотовая ячейка уже находится в блокированном состоянии, последующего выявления, что невыбранная сотовая ячейка находится в разблокированном состоянии, посылки сообщения блокировки идентификатора сотовой ячейки на невыбранную ячейку из первой и второй сотовых ячеек для недопущения изменения информации идентификатора сотовой ячейки в невыбранной сотовой ячейке, и посылки сообщения изменения идентификатора сотовой ячейки на выбранную сотовую ячейку. Предпочтительно выполняется определение, был ли обнаруженный конфликт идентификатора сотовой ячейки разрешен перед посылкой на невыбранную сотовую ячейку сообщения блокировки идентификатора сотовой ячейки.

Другая возможность блокировки включает в себя этапы выявления, что выбранная сотовая ячейка находится в блокированном состоянии, не допускающем изменение информации идентификатора сотовой ячейки для выбранной сотовой ячейки, последующего выявления, что выбранная сотовая ячейка находится в разблокированном состоянии, посылки сообщения блокировки идентификатора сотовой ячейки на невыбранную ячейку из первой и второй сотовой ячейки для недопущения изменения информации идентификатора сотовой ячейки в невыбранной сотовой ячейке, и посылки сообщения изменения идентификатора сотовой ячейки на выбранную сотовую ячейку. Снова, предпочтительно выполняется определение, был ли выявленный конфликт идентификатора сотовой ячейки разрешен перед посылкой на невыбранную сотовую ячейку сообщения блокировки идентификатора сотовой ячейки.

Первый и второй идентификаторы сотовой ячейки могут быть сообщаемыми в отчете идентификаторами сотовой ячейки, используемыми терминалами UE для идентификации сотовых ячеек, связанными с сообщаемым в отчете параметром, обеспечиваемым терминалами UE в отчетах измерений, посылаемых терминалами UE на систему сотовой радиосвязи. Например, если сотовая система радиосвязи является сетью долговременного развития (LTE), первый и второй идентификаторы сотовой ячейки могут быть измеряемыми идентификаторами сотовой ячейки (значениями MCI).

Если первая и вторая конфликтующие сотовые ячейки используют одинаковый MCI, то терминалы UE не могут обнаруживать, измерять, и сообщать в отчете вторую конфликтующую сотовую ячейку в ходе измерений передачи обслуживания на первую конфликтующую сотовую ячейку. Причина состоит в том, что UE не могут установить различие между обычным многолучевым распространением в радиоканале и "искусственным" многолучевым распространением, вызванным передачей несколькими сотовыми ячейками сигнала той же MCI/сигнатурной последовательности, как пояснено в разделе уровня техники. Чтобы давать возможность UE разрешить эту неоднозначность, первая сотовая ячейка широковещательно передает сообщение перерыва передачи в заранее заданное время впереди. В это время первая сотовая ячейка не передает свою MCI/сигнатурную последовательность, то есть, в течение перерыва передачи, UE осуществляет поиск этой MCI/сигнатурной последовательности, связанной с первой ячейкой. Если некоторый из UE обнаруживает MCI/сигнатурную последовательность первой сотовой ячейки в течение перерыва передачи, то UE имеет сведения, что в системе эта же сигнатурная последовательность передается другой ячейкой в дополнение к первой сотовой ячейке.

В примерной процедуре перерыва передачи, первая сотовая ячейка информирует один или несколько обслуживаемых терминалов UE о предстоящем перерыве передачи его MCI/сигнатурной последовательности и запрашивает, чтобы один или несколько терминал(ов) UE пытался выявить, используют ли другие сотовые ячейки значение MCI первой сотовой ячейки в течение этого перерыва передачи. В случае, если один или несколько терминал(ов) UE выявляют другую сотовую ячейку, использующую значение MCI первой сотовой ячейки в течение перерыва передачи, то они сообщают его обратно на первую сотовую ячейку. Первая сотовая ячейка затем будет инициировать процедуру изменения MCI, чтобы разрешить конфликт MCI.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - блок-схема примерной системы LTE мобильной радиосвязи;

Фиг.2 - блок-схема примерной более общей системы RAN мобильной радиосвязи;

Фиг.3 - схема, иллюстрирующая примерную базовую станцию, обслуживающую множество сотовых ячеек и широковещательно передающую соответствующие сигнатурные последовательности сотовой ячейки в каждой зоне (обслуживания) сотовой ячейки;

Фиг.4A-4C - иллюстрация примерных конфликтных ситуаций идентификатора сотовой ячейки;

Фиг.5 - схема последовательности операций, иллюстрирующая неограничительные примерные процедуры для автоматического разрешения конфликта идентификатора сотовой ячейки;

Фиг.6 - концептуальная иллюстрация перерыва передачи; и

Фиг.7 - схема сигнализации, иллюстрирующая неограничительные примерные сообщения сигнализации для выдачи перерывов передачи;

Фиг.8 - схема сигнализации, иллюстрирующая неограничительные примерные сообщения сигнализации для автоматического разрешения конфликта идентификатора сотовой ячейки и «бесшовного» изменения идентификатора сотовой ячейки в соответствии с первым неограничительным, примерным вариантом осуществления;

Фиг.9 - схема сигнализации, иллюстрирующая неограничительные примерные сообщения сигнализации без процедур блокировки, где перечень MCI из элементов в перечне NCR обслуживающей сотовой ячейки включен в начальное сообщение изменения MCI;

Фиг.10A-10D иллюстрируют примерное разрешение конфликта идентификатора сотовой ячейки;

Фиг.11 - схема сигнализации, иллюстрирующая неограничительные примерные сообщения сигнализации для автоматического разрешения конфликта MCI, когда невыбранная конфликтующая сотовая ячейка отвергает запрос блокировки MCI вследствие ожидающей блокировки MCI;

Фиг.12 - схема сигнализации, иллюстрирующая неограничительные примерные сообщения сигнализации для автоматического разрешения конфликта MCI, когда выбранная конфликтующая сотовая ячейка отвергает запрос блокировки MCI вследствие блокировки MCI;

Фиг.13 - функциональная блок-схема, иллюстрирующая неограничительную примерную базовую станцию;

Фиг.14 - функциональная блок-схема, иллюстрирующая неограничительный, примерный терминал UE; и

Фиг.15 - схема, иллюстрирующая неограничительные, примерные маршруты сигнализации.

ПОДРОБНОЕ ОПИСАНИЕ

В нижеследующем описании, с целью пояснения и без ограничения, изложены конкретные подробности, такие как конкретные узлы, функциональные объекты, способы, протоколы, стандарты, и т.д., чтобы обеспечить понимание описываемой технологии. В других случаях подробные описания известных способов, устройств, способов и т.д. опущены, чтобы не затенять описание ненужной подробностью.

Специалистами в данной области техники будет оценено, что блок-схемы в документе могут представлять концептуальные представления иллюстративной схемы, осуществляющей принципы способа. Подобным образом будет оценено, что любые схемы последовательности операций, схемы переходов состояний, псевдокод и т.п. представляют различные процессы, которые могут быть осуществлены в машиночитаемом носителе и таким образом исполняемыми посредством компьютера или процессора, независимо, показан ли такой компьютер или процессор явно.

Функции различных элементов, включая функциональные блоки, помеченных "процессор" или "контроллер", могут обеспечиваться благодаря использованию специальных аппаратных средств, а также аппаратных средств, способных исполнять программное обеспечение в увязке с соответствующим программным обеспечением. При обеспечении процессором, функции могут обеспечиваться одиночным специальным процессором, одиночным общедоступным процессором, или несколькими отдельными процессорами, некоторые из которых могут быть используемыми совместно или распределенными. Кроме того, явное использование термина "процессор" или "контроллер" не должно рассматриваться для ссылки только на универсальный или специализированный компьютер, способный исполнять программный код, и может включать в себя, без ограничения, аппаратные средства цифрового процессора сигналов (ЦПС, DSP), аппаратные средства проблемно-ориентированных интегральных микросхем (ПОИМ, ASIC), постоянное запоминающее устройство (ПЗУ, ROM) для хранения программного обеспечения, оперативное запоминающее устройство (ОЗУ, RAM) и энергонезависимое ЗУ.

Специалистам в данной области техники будет очевидно, что кроме изложенных ниже конкретных подробностей могут быть осуществлены на практике другие исполнения. Подразумевается, что все формулировки, излагающие принципы, аспекты, и варианты осуществления, а также конкретные примеры, охватывают и структурные, и функциональные эквиваленты. Такие эквиваленты включают в себя и известные в настоящее время эквиваленты, а также и эквиваленты, разработанные в будущем, то есть, любые разработанные элементы, которые выполняют ту же функцию, независимо от структуры.

Способ описывается в контексте усовершенствованной системы UMTS по 3GPP, например, LTE, чтобы обеспечить примерный и неограничительный контекст для пояснения. Но этот способ может использоваться в любой современной системе сотовой связи, которая поддерживает идентификацию сотовой ячейки. Один неограничительный пример общей системы 30 сотовой связи показан на Фиг.2. Сеть 32 радиодоступа (RAN) соединяется с одной или несколькими другими сетями 38, например, одним или несколькими узлами базовой сети, и одной или несколькими внешними сетями, например, телефонной коммутируемой сетью общего пользования (ТфОП, PSTN) и Internet. RAN 32 включает в себя базовые станции 34, которые осуществляют связь друг с другом, например, для передачи обслуживания и других согласованных функций. Базовые станции взаимодействуют по радио/эфирному интерфейсу с терминалами мобильной радиосвязи, именуемыми также терминалами пользовательского оборудования (UE) 36. Хотя MCI используется в контексте LTE в качестве примера идентификатора сотовой ячейки, описываемый в документе способ может применяться для любого идентификатора сотовой ячейки.

Как описано выше, каждая базовая станция широковещательно передает заранее заданную "сигнатурную последовательность" или другой идентификатор на известной частоте, которая может быть обнаружена посредством UE, сканирующих такие вещательные передачи базовых станции в зоне сотовой ячейки, связанной с вещательной передачей. Термин "сотовая ячейка" относится к географической области, где связанная базовая станция или узел eNB предоставляет множеству UE услугу радиосвязи. Но сотовая ячейка также иногда используется в качестве краткого обозначения ссылки на базовую станцию или eNB, связанные с этой сотовой ячейкой. Каждая сигнатурная последовательность, обнаруживаемая отдельными UE, отображается на относительно короткий идентификатор сотовой ячейки, который используют UE при посылке обратно на обслуживающую сотовую ячейку частых отчетов измерений. На Фиг.3 показана примерная базовая станция, обслуживающая три сотовые ячейки 1-3. Каждая сотовая ячейка передает свою собственную сигнатурную последовательность. Прочие базовые станции могут иметь только одну сотовую ячейку или другое число сотовых ячеек. Независимо, собственная сигнатурная последовательность каждой сотовой ячейки отображена на соответствующий, относительно короткий идентификатор сотовой ячейки. Обычно именно эти более короткие, сообщаемые в отчете или измеряемые идентификаторы сотовой ячейки подвергаются конфликтам, хотя описываемый способ может использоваться, чтобы разрешать любую конфликтную ситуацию или конфликт идентификатора сотовой ячейки. Более длинный, в большей степени уникальный идентификатор сотовой ячейки, также может быть отображен на короткий идентификатор сотовой ячейки/сигнатурную последовательность сотовой ячейки.

На Фиг.4 иллюстрируются три неограничительные примерные конфликтные ситуации сообщаемого в отчете или измеряемого идентификатора сотовой ячейки. Если выявлена конфликтная ситуация, сотовая ячейка обнаружения определяет, какая из конфликтующих сотовых ячеек будет изменять свой MCI. На Фиг.4A, близлежащая сотовая ячейка для показанного на фигуре UE, имеет такой же MCI=17, как и обслуживающая сотовая ячейка, в текущий момент обслуживающая UE. Обслуживающая сотовая ячейка имеет перечень взаимосвязей (NCR) соседних сотовых ячеек, который включает в себя сотовые ячейки со значениями MCI 5, 6, и 15. В этом случае терминал UE не может обнаруживать, измерять, и сообщать сотовую ячейку-кандидат с MCI=17 на обслуживающую сотовую ячейку, поскольку ее MCI является одинаковым с обслуживающей сотовой ячейкой. Вместо этого может быть обнаружена близлежащая сотовая ячейка, если обслуживающая сотовая ячейка осуществляет перерыв передачи, в течение которого она не осуществляет широковещательную передачу своей MCI/сигнатурной последовательности, в течение этого перерыва, терминалы UE в этой обслуживающей сотовой ячейке могут выявить, используют ли близлежащие сотовые ячейки тот же MCI, что и обслуживающая сотовая ячейка. Выявив такое, UE информируют обслуживающую сотовую ячейку, и в этот момент, обслуживающая сотовая ячейка является и сотовой ячейкой обнаружения, и одной из конфликтующих сотовых ячеек. На Фиг.4B показана сотовая ячейка-кандидат с одинаковым MCI (MCI=17) с "одной" сотовой ячейкой в перечне (NCR) взаимосвязей соседних сотовых ячеек для обслуживающей сотовой ячейки, включающем в себя значения MCI 5, 6, и 17, но другой CIPL. Сотовой ячейкой обнаружения является обслуживающая сотовая ячейка (MCI=15), и конфликтующими сотовыми ячейками являются сотовая ячейка-кандидат и одна сотовая ячейка в перечне NCR обслуживающей сотовой ячейки, включающем в себя значения MCI 5, 6, и 17. На Фиг.4C иллюстрируется обслуживающая сотовая ячейка, имеющую целью добавить сотовую ячейку-кандидат (MCI=5) к своему перечню NCR, но сотовая ячейка-кандидат выявляет конфликт MCI в результате новой взаимосвязи, поскольку значение MCI обслуживающей сотовой ячейки уже существует для "одной" сотовой ячейки в перечне NCR сотовой ячейки-кандидата, включающем в себя значения MCI 5, 6, и 17. Сотовой ячейкой обнаружения явля