Рекристаллизованные алюминиевые сплавы с текстурой латуни и способы их получения

Иллюстрации

Показать все

Изобретение относится к продуктам из алюминиевых сплавов и способам их изготовления. Рекристаллизованный листовой прокат из алюминиевого сплава 2xxx имеет толщину не более 12,7 мм (0,5 дюйма). По меньшей мере 60% упомянутого листового проката составляют рекристаллизованные зерна. Упомянутый прокат имеет текстуру латуни и текстуру Госса, причем интенсивность текстуры латуни составляет по меньшей мере примерно 10, при этом интенсивность текстуры Госса меньше, чем интенсивность текстуры латуни. Способ изготовления упомянутого проката включает проведение горячей прокатки и этапа холодной обработки листа алюминиевого сплава 2xxx, подвергание листа алюминиевого сплава 2ххх первому рекристаллизационному отжигу, проведение по меньшей мере одного из (i) другого этапа холодной обработки и (ii) этапа восстановительного отжига листа алюминиевого сплава, (d) подвергание листа алюминиевого сплава второму рекристаллизационному отжигу и (e) старение листа алюминиевого сплава. Указанный способ обеспечивает получение вышеуказанного рекристаллизованного листового проката из алюминиевого сплава 2xxx. Получается рекристаллизованный листовой прокат из алюминиевого сплава 2xxx с улучшенным сочетанием прочности и вязкости. 2 н. и 42 з.п. ф-лы, 21 ил., 1 табл., 5 пр.

Реферат

Перекрестная ссылка на родственную заявку

[0001] Эта заявка испрашивает приоритет по заявке США № 11/865526, поданной 1 октября 2007 г., которая включена сюда по ссылке во всей своей полноте.

Уровень техники

[0002] Детали из алюминиевых сплавов могут быть получены посредством процессов прокатки, выдавливания или ковки. В результате манипуляций с формой деталей из алюминиевых сплавов или из-за охлаждения расплавленного алюминия в сплаве могут вызываться нежелательные механические свойства и напряжения. Термообработка охватывает множество различных процессов, при которых изменения температуры металла используются для того, чтобы улучшить механические свойства и напряженное состояние сплава. Термообработка на твердый раствор, закалка, термообработка с выделением вторичных фаз и отжиг - все эти разные способы используются для термообработки алюминиевых продуктов.

Сущность изобретения

[0003] В широком смысле настоящее изобретение относится к продуктам из алюминиевых сплавов, имеющим рекристаллизованную микроструктуру, содержащую относительно высокие количества текстуры латуни по отношению к текстуре Госса, и к способам их получения. Продукты из алюминиевых сплавов могут проявлять улучшенное соотношение прочности и вязкости по сравнению с традиционными продуктами, полученными традиционными способами.

[0004] В одном аспекте предлагаются рекристаллизованные алюминиевые сплавы. В одном подходе рекристаллизованный алюминиевый сплав имеет текстуру латуни и текстуру Госса, и количество текстуры латуни превышает количество текстуры Госса. В одном варианте реализации количество текстуры латуни по меньшей мере в 2 раза больше, чем количество текстуры Госса. В одном варианте реализации количество текстуры латуни по отношению к текстуре Госса определяют путем сравнения измеренной интенсивности текстуры латуни с измеренной интенсивностью текстуры Госса для данного поликристаллического образца, определяемых с использованием рентгенодифракционных методов. В другом варианте реализации количество текстуры латуни по отношению к текстуре Госса определяют путем сравнения доли площади зерен с ориентацией латуни с долей площади зерен с ориентацией Госса для данного поликристаллического образца, используя микроскопию с визуализацией ориентации (Orientation Imaging Microscopy). В одном варианте реализации доля площади зерен с ориентацией латуни для данного поликристаллического образца составляет по меньшей мере примерно 10%. В одном варианте реализации доля площади зерен с ориентацией Госса для данного поликристаллического образца составляет не более чем примерно 5%. В одном варианте реализации рекристаллизованный листовой прокат имеет максимальное значение параметра R (известного также как "коэффициент Лэнкфорда") в диапазоне от примерно 40° до примерно 60°. В одном варианте реализации продукт, полученный из рекристаллизованного сплава, имеет по меньшей мере примерно такую же вязкость разрушения и по меньшей мере примерно такой же предел текучести на растяжение, как и эквивалентный по составу нерекристаллизованный сплав такого же вида продукта и сходных толщины и состояния.

[0005] В соответствии с настоящим изобретением могут использоваться алюминиевые сплавы с различными составами. В одном варианте реализации рекристаллизованный алюминиевый сплав представляет собой алюминиевый сплав серий 2XXX. В одном варианте реализации рекристаллизованный алюминиевый сплав представляет собой алюминиевый сплав серии 2199. В одном варианте реализации рекристаллизованный алюминиевый сплав включает до примерно 7,0 вес.% меди. В одном варианте реализации рекристаллизованный алюминиевый сплав включает до примерно 4,0 вес.% лития.

[0006] Рекристаллизованный алюминиевый сплав может применяться во множестве промышленных областей применения. В одном варианте реализации рекристаллизованный алюминиевый сплав находится в виде листового проката. В одном варианте реализации листовой прокат применяется по авиационно-космическому назначению (например, прокат для фюзеляжа). В других вариантах реализации листовой прокат применяется в автомобильной технике, транспорте или других промышленных областях применения.

[0007] В одном варианте реализации рекристаллизованный алюминиевый сплав является сплавом серии 2199 в виде листового проката. В этом варианте реализации количество текстуры латуни превышает количество текстуры Госса, и листовой прокат имеет толщину не более примерно 0,35 дюйма, LT предел текучести на растяжение по меньшей мере примерно 370 МПа и T-L вязкость разрушения (Kapp) по меньшей мере примерно 80 МПа(м1/2).

[0008] В другом аспекте предлагаются способы получения листового проката из рекристаллизованного алюминиевого сплава. В одном подходе способ включает в себя проведение горячей прокатки и этапа холодной обработки листа алюминиевого сплава, подвергание листа алюминиевого сплава первому рекристаллизационному отжигу, проведение по меньшей мере одного из (i) другого этапа холодной обработки и (ii) этапа восстановительного отжига листа алюминиевого сплава, подвергание листа алюминиевого сплава второму рекристаллизационному отжигу и состаривание листа алюминиевого сплава с получением рекристаллизованного алюминиевого листового проката.

[0009] Различные аспекты из отмеченных выше аспектов изобретения могут комбинироваться, давая различные продукты из рекристаллизованных алюминиевых сплавов, имеющие улучшенные характеристики прочности и/или вязкости, помимо прочего. Кроме того, эти и другие аспекты, преимущества и новые признаки изобретения частично изложены в следующем ниже описании и станут понятными для специалистов в данной области после изучения нижеследующего описания и фигур, или могут быть выявлены при осуществлении изобретения на практике.

Краткое описание чертежей

[0010] Фиг.1a - схематичный вид деформированной микроструктуры.

[0011] Фиг.1b - схематичный вид восстановленной микроструктуры.

[0012] Фиг.1c - схематичный вид рекристаллизованной микроструктуры.

[0013] Фиг.1d - схематичный вид другой рекристаллизованной микроструктуры.

[0014] Фиг.1e - схематичный вид другой рекристаллизованной микроструктуры.

[0015] Фиг.1f - схематичный вид частично рекристаллизованной микроструктуры.

[0016] Фиг.2 - схематичный вид процесса предшествующего уровня техники для получения листового проката из сплава.

[0017] Фиг.3 - схематическая технологическая карта, иллюстрирующая один вариант реализации способа получения рекристаллизованного листового проката.

[0018] Фиг.4 - схематическая технологическая карта, иллюстрирующая один вариант реализации способа получения рекристаллизованного листового проката.

[0019] Фиг.5 - схематическая технологическая карта, иллюстрирующая один вариант реализации способа получения рекристаллизованного листового проката.

[0020] Фиг. 6a и 6b - микрофотографии, показывающие микроструктуру листового проката, полученного в соответствии с вариантом реализации настоящего изобретения.

[0021] Фиг. 7a и 7b - микрофотографии, показывающие микроструктуру обработанного традиционным образом листового проката.

[0022] Фиг.8 - сканированное OIM-изображение листового проката, полученного в соответствии с вариантами реализации настоящего изобретения, на плоскости L в местоположении t/2.

[0023] Фиг.9 - сканированное OIM-изображение обработанного традиционным образом листового проката на плоскости L в местоположении t/2.

[0024] Фиг.10 - график, показывающий свойства вязкости разрушения и предела текучести на растяжение для листового проката, полученного в соответствии с вариантом реализации настоящего изобретения, и для полученного традиционным образом листового проката.

[0025] Фиг.11 - график, показывающий интенсивность текстуры Госса и интенсивность текстуры латуни как функцию толщины для различных видов полученного традиционным образом листового проката.

[0026] Фиг.12 - график, показывающий вязкость как функцию толщины для различных видов полученного традиционным образом листового проката.

[0027] Фиг.13 - график, показывающий прочность как функцию толщины для различных видов полученного традиционным образом листового проката.

[0028] Фиг.14 - схематическая технологическая карта, иллюстрирующая один вариант реализации способа получения рекристаллизованного листового проката.

[0029] Фиг.15 - график, показывающий интенсивность текстуры Госса и интенсивность текстуры латуни как функцию толщины для видов листового проката, полученных в соответствии с вариантами реализации настоящего изобретения.

[0030] Фиг.16 - схематическая технологическая карта, иллюстрирующая другой вариант реализации способа получения рекристаллизованного листового проката.

[0031] Фиг.17 - график, показывающий интенсивность текстуры латуни и интенсивность текстуры Госса как функцию суммарной холодной деформации для листового проката, полученного в соответствии с вариантами реализации настоящего изобретения.

[0032] Фиг.18 - график, показывающий вязкость как функцию толщины для полученного традиционным образом листового проката и для листового проката, полученного в соответствии с вариантами реализации настоящего изобретения.

[0033] Фиг.19 - график, показывающий прочность как функцию толщины для полученного традиционным образом листового проката и листового проката, полученного в соответствии с вариантами реализации настоящего изобретения.

[0034] Фиг.20 - график, показывающий прочность как функцию вязкости для полученного традиционным образом листового проката и листового проката, полученного в соответствии с вариантами реализации настоящего изобретения.

[0035] Фиг.21 - график, показывающий значения параметра R как функцию угла двумерного вращения относительно L-направления для листов, произведенных в соответствии с вариантами реализации настоящего изобретения, и для листов, произведенных традиционным образом.

Подробное описание

[0036] Алюминий и алюминиевые сплавы являются поликристаллическими материалами, характеристики и строение которых могут изменяться в результате деформации металла (например, при прокатке, выдавливании или ковке) или при приложении тепла (например, отжиге). При деформации алюминиевого сплава свободная энергия кристаллического материала может повыситься, например, из-за кристаллографического скольжения. Кристаллографическое скольжение подразумевает движение дислокаций в определенных плоскостях и направлениях в каждом кристалле. Возникновение кристаллографического скольжения при пластической деформации повышает плотность дислокаций и вращение кристаллов в материале. Вращение кристаллов, сопровождающее деформацию, является одной из причин текстур или неслучайных ориентаций кристаллов (называемых также зернами), развивающихся в поликристаллическом материале.

[0037] Микроструктура поликристаллического материала, такого как алюминиевый сплав, варьируется в зависимости от истории его обработки. Например, алюминиевые сплавы могут иметь деформированную микроструктуру после деформации, восстановленную микроструктуру после восстановительного отжига, описываемого более подробно ниже, и рекристаллизованную микроструктуру после рекристаллизационного отжига, описываемого более подробно ниже. Один пример микроструктуры, включающей деформированные зерна, показан на Фиг.1a. В показанном примере микроструктура 1a включает в себя множество деформированных зерен 12, причем каждое зерно имеет межзеренную границу 10. Из-за деформации внутренние зоны деформированных зерен 12 имеют высокую плотность дислокаций, показанную на Фиг.1a закрашиванием 14.

[0038] Чтобы уменьшить свободную энергию деформированного материала, материал можно отжечь. Отжиг подразумевает нагрев деформированного материала при повышенной температуре. В целом существуют два типа отжигов, используемых для обработки алюминиевых сплавов: восстановительные отжиги и рекристаллизационные отжиги. При восстановительном отжиге алюминиевый сплав нагревают до такой температуры, что межзеренная граница деформированных зерен в основном сохраняется, но дислокации внутри деформированных зерен 12 сдвигаются в сторону конфигураций с более низкими энергиями. Эти конфигурации с более низкими энергиями внутри зерен называют субзернами или ячейками. Таким образом, зерна, полученные после восстановительного отжига, обычно называются восстановленными зернами. Один пример микроструктуры, включающей восстановленные зерна, показан на Фиг.1b. В показанном примере восстановленная микроструктура 1b включает восстановленные зерна 22. Восстановленные зерна 22 обычно имеют те же самые межзеренные границы 10, что и деформированные зерна 12, но, благодаря восстановительному отжигу, внутри восстановленных зерен 12 образовались субзерна 16.

[0039] При рекристаллизационном отжиге алюминиевый сплав нагревают до температуры, которая дает новые зерна из деформированных зерен 12 и/или восстановленных зерен 22. Эти новые зерна называются рекристаллизованными зернами. Рекристаллизационный отжиг приводит к получению материала, имеющего рекристаллизованные зерна. Примеры микроструктур, включающих рекристаллизованные зерна, показаны на Фиг.1c-1e. В показанных примерах микроструктура 1c содержит удлиненные рекристаллизованные зерна 32c (Фиг.1c), микроструктура 1d содержит большие равноосные рекристаллизованные зерна 32d (Фиг.1d), а микроструктура 1e содержит малые равноосные рекристаллизованные зерна 32e (Фиг.1e).

[0040] Условия рекристаллизационного отжига, размер листа алюминиевого сплава и состав алюминиевого сплава, наряду с прочими, можно подбирать в попытке получить желаемые конфигурации рекристаллизованных зерен. Например, удлиненные рекристаллизованные зерна 32c могут быть получены после анизотропной механической деформации (например, холодной прокаткой) и при более низких температурах рекристаллизации. Большие равноосные рекристаллизованные зерна 32d могут быть получены при больших временах отжига. Малые равноосные рекристаллизованные зерна 32e могут быть получены при повышенной холодной обработке (нагартовке) и коротких временах отжига.

[0041] В некоторых случаях отжиг может давать частично рекристаллизованный материал, один пример которого показан на Фиг.1f. В показанном примере частично рекристаллизованная микроструктура 1f включает смесь восстановленных зерен 22 и рекристаллизованных зерен 32.

[0042] Зерна деформированного, восстановленного, рекристаллизованного или частично рекристаллизованного поликристаллических материалов обычно ориентированы неслучайным образом. Эти кристаллографически неслучайные ориентации зерен известны как текстура. Компоненты текстуры, возникающие при получении продуктов из алюминиевых сплавов, могут включать одну или более из текстуры меди, S-текстуры, текстуры латуни, кубической текстуры и текстуры Госса, наряду с прочими. Каждая из этих текстур определена ниже в таблице 1.

Таблица 1
Тип текстуры Индексы Миллера Бунге (φ1, Ф, φ2) Кокс (Ψ, Θ, Φ)
Медь {112}〈〉 90, 35, 45 0, 35, 45
S {123}〈 63 4 ¯ 〉 59, 37, 63 149, 37, 27
Латунь {110}〈 1 ¯ 12 〉 35, 45, 0 55, 45, 0
Кубическая {100}<001> 0, 0, 0 0, 0, 0
Госс {110}〈001〉 0, 45, 0 0, 45, 0

[0043] Текстуру обычно измеряют в поликристаллических материалах, используя рентгенодифракционные методы для получения микроскопических изображений поликристаллических материалов. Так как эти изображения могут меняться в зависимости от количества энергии, использовавшейся при рентгеновской дифракции, измеренные интенсивности текстуры обычно нормируют, рассчитывая величину фоновой интенсивности, или стохастической интенсивности, и сравнивая эту фоновую интенсивность с интенсивностью текстур на изображении. Таким образом, относительные интенсивности полученных измерений текстуры являются безразмерными величинами, которые можно сравнивать друг с другом, чтобы определить относительное количество разных текстур в поликристаллическом материале. Например, рентгенодифракционный анализ может определить фоновую интенсивность относительно интенсивности текстуры Госса или интенсивности текстуры латуни и использовать функции распределения ориентаций для получения нормированных интенсивностей Госса и интенсивностей латуни. Эти нормированные измерения интенсивностей Госса и латуни могут использоваться для того, чтобы определить относительные количества текстуры Госса и текстуры латуни для данного поликристаллического материала.

[0044] Кристаллографическую текстуру можно также измерять, используя микроскопию с визуализацией ориентации (Оrientation Imaging Microscopy, OIM). Когда пучок электронов из сканирующего электронного микроскопа (СЭМ) ударяется о кристаллический материал, установленный под углом (например, примерно 70°), электроны рассеиваются под поверхностью с последующей дифракцией на кристаллографических плоскостях. Дифрагированный пучок дает картину, состоящую из пересекающихся полос, называемую диаграммой обратного рассеяния электронов, или EBSP. EBSP-диаграммы могут использоваться для определения ориентации кристаллической решетки по отношению к некоторой лабораторной системе отсчета в материале с известной кристаллической структурой.

[0045] Принимая во внимание вышеизложенное, здесь используются следующие определения:

[0046] "Зерно" означает кристалл поликристаллического материала, такого как алюминиевый сплав.

[0047] "Деформированные зерна" означают зерна, которые деформированы в результате деформации поликристаллического материала.

[0048] "Дислокация" означает дефект кристаллической структуры материала, являющийся результатом смещенного расположения атомов в одном или более слоях кристаллической структуры. Деформированные зерна могут быть ограничены дислокационными ячейками, и, таким образом, деформированные зерна обычно имеют высокую плотность дислокаций.

[0049] "Восстановленные зерна" означают зерна, которые образованы из деформированных зерен. Восстановленные зерна обычно имеют ту же межзеренную границу, что и деформированные зерна, но обычно имеют более низкую свободную энергию, чем деформированные зерна, из-за образования субзерен из дислокаций деформированных зерен. Таким образом, восстановленные зерна обычно имеют более низкую плотность дислокаций, чем деформированные зерна. Восстановленные зерна обычно образуются при восстановительном отжиге.

[0050] "Рекристаллизованные зерна" означают новые зерна, которые образованы из деформированных зерен или восстановленных зерен. Рекристаллизованные зерна обычно образуются при рекристаллизационном отжиге.

[0051] "Рекристаллизованный материал" означает поликристаллический материал, преимущественно содержащий рекристаллизованные зерна. В одном варианте реализации по меньшей мере примерно 60% рекристаллизованного материала составляют рекристаллизованные зерна. В других вариантах реализации по меньшей мере примерно 70%, 80% или даже 90% рекристаллизованного материала составляют рекристаллизованные зерна. Таким образом, рекристаллизованный материал может включать существенное количество рекристаллизованных зерен.

[0052] "Рекристаллизованный алюминиевый сплав" означает продукт из алюминиевого сплава, состоящий из рекристаллизованного материала.

[0053] "Нерекристаллизованные зерна" означают зерна, которые являются либо деформированными зернами, либо восстановленными зернами.

[0054] "Нерекристаллизованный материал" означает поликристаллический материал, включающий существенное количество нерекристаллизованных зерен.

[0055] "Восстановительный отжиг" означает технологический этап, который дает конечный продукт, имеющий существенное количество восстановленных зерен. Таким образом, восстановительный отжиг обычно дает нерекристаллизованный материал. Восстановительный отжиг может подразумевать нагрев деформированного материала.

[0056] "Рекристаллизационный отжиг" означает технологический этап, который дает рекристаллизованный материал. Рекристаллизационный отжиг может подразумевать нагрев деформированного и/или восстановленного материала.

[0057] "Горячая прокатка" означает термомеханический процесс, который проводят при повышенной температуре для деформирования металла. Горячая прокатка также известна специалистам в данной области как динамический возврат. Горячая прокатка обычно не приводит к получению рекристаллизованных зерен, а, напротив, приводит обычно к получению деформированных зерен. В этом смысле, горячекатаный листовой продукт (прокат) обычно проявляет деформированную микроструктуру, как показанная выше на Фиг.1a.

[0058] "Холодная обработка" означает процессы деформации, применяемые к алюминиевому сплаву при температурах, близких к температуре окружающей среды, чтобы деформировать металл до другой формы и/или толщины. Процессы деформации включают прокатку, выдавливание (прессование) и ковку (штамповку). Этап холодной обработки может включать поперечную прокатку или однонаправленную прокатку.

[0059] "Микроструктура" означает структуру поликристаллического образца, наблюдаемую на микроскопических изображениях. Микроскопические изображения обычно дают по меньшей мере сведения о типах зерен, содержащихся в материале. Что касается настоящего изобретения, микроструктуры могут быть получены на надлежащим образом подготовленном образце (например, смотри методику подготовки, описываемую в связи с измерениями интенсивности текстуры) и с помощью поляризованного луча или пучка (например, посредством оптического микроскопа Zeiss) при увеличении от примерно 150X до примерно 200X.

[0060] "Деформированная микроструктура" означает микроструктуру, включающую деформированные зерна.

[0061] "Восстановленная микроструктура" означает микроструктуру, включающую восстановленные зерна.

[0062] "Рекристаллизованная микроструктура" означает микроструктуру, включающую рекристаллизованные зерна.

[0063] "Текстура" означает кристаллографическую ориентацию зерен в поликристаллическом материале.

[0064] "Текстура Госса" определена выше в таблице 1.

[0065] "Текстура латуни" определена выше в таблице 1.

[0066] "Доля текстуры Госса" означает долю площади зерен с ориентацией Госса у данного поликристаллического образца, рассчитываемую с использованием микроскопии с визуализацией ориентации, например, методики работы с OIM-образцом, описываемой ниже.

[0067] "Доля текстуры латуни" означает долю площади зерен с ориентацией латуни у данного поликристаллического образца, рассчитываемую с использованием микроскопии с визуализацией ориентации, например, методики работы с OIM-образцом, описываемой ниже.

[0068] "Методика работы с OIM-образцом" следующая: используемым программным обеспечением является TexSEM Lab OIM DC, версия 4.0 (EDAX Inc., Нью-Джерси, США), которое связано шиной FIREWIRE (Apple, Inc., Калифорния, США) с ПЗС-камерой DigiView 1612 (TSL/EDAX, Юта, США). СЭМ является микроскопом JEOL 840 (JEOL Ltd. Токио, Япония). Условия работы OIM следующие: наклон 70° с рабочим расстоянием 15 мм при 25 кВ, с динамическим фокусированием и размером пятна 1×10-7 амп. Режим суммирования - квадратная сетка. Суммируются только ориентации (т.е. информация о пиках Хафа не суммируется). Размер площади на одно сканирование составляет 3500 мкм × 600 мкм с шагом 5 мкм при 75X. Проводится четыре сканирования на образец. Полная площадь сканирования задана содержащей более 1000 зерен для анализа текстуры. Сканирования проводятся в плоскости L в местоположении t/2. Полученные данные обрабатываются многоитерационной доводкой расширений с углом допуска на зерно 5° и с 3 точками на минимальный размер зерна (15 мкм). Карта границ зерен предполагает угол разориентировки 15°. Карта ориентации кристаллов предполагает углы Эйлера φ1=35° Φ=45° φ2=0° (угол разориентировки ±15°) для компонента текстуры латуни и φ1=0° Φ=45° φ2=0° (угол разориентировки ±15°) для компонента текстуры Госса.

[0069] "Интенсивность текстуры" означает измеренную величину рентгеновской дифракции, связанную с конкретной текстурой, для данного поликристаллического образца. Интенсивность текстуры может быть измерена с помощью рентгеновской дифракции и в соответствии с работой "Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Material Properties" (Текстура и анизотропия, предпочтительные ориентации в поликристаллах и их влияние на свойства материала), Kocks et al., pp. 140-141, Cambridge University Press (1998). Измеренные значения абсолютной интенсивности компонентов текстуры могут быть разными в разных институтах из-за различий в аппаратном и/или программном обеспечении, и поэтому в соответствии с настоящим изобретением используются отношения интенсивностей текстуры. Интенсивности текстуры могут быть получены так, как предусматривается описываемой ниже "Методикой измерения интенсивности текстуры".

[0070] "Методика измерения интенсивности текстуры" следующая: образцы готовят шлифовкой вручную наждачной бумагой на основе карборунда (Si-C) фирмы Buehler в течение 3 минут, с последующей полировкой вручную алмазной полировочной жидкостью Buehler со средним размером частиц примерно 3 мкм. Образцы анодируют в водном фтористо-борном растворе в течение 30-45 секунд. Интенсивности текстуры измеряют с использованием рентгенодифракционного аппарата Rigaku Geigerflex (фирма Rigaku, Токио, Япония), где измеряют полюсные фигуры {111}, {200} и {220} до максимального угла наклона 75° по способу Шульца обратного отражения, используя излучение CuKα, а затем получают уточненные полюсные фигуры после расфокусировки и поправок на фон необработанных данных о полюсных фигурах, после чего из данных об уточненных трехполюсных фигурах рассчитывают функции распределения ориентаций (ODF), используя подходящее программное обеспечение, например, программу "popLA", выпускаемую Лос-Аламосской национальной лабораторией, Нью-Мексико, США.

[0071] "Интенсивность текстуры Госса" означает интенсивность текстуры, связываемой с текстурой Госса, для данного поликристаллического образца.

[0072] "Интенсивность текстуры латуни" означает интенсивность текстуры, связываемой с текстурой латуни, для данного поликристаллического образца.

[0073] "Количество текстуры Госса" означает либо (i) измеренную величину интенсивности текстуры Госса для данного поликристаллического образца, определенную с помощью рентгеновской дифракции, либо (ii) долю площади текстуры Госса у данного поликристаллического образца, измеренную с использованием микроскопии с визуализацией ориентации (OIM).

[0074] "Количество текстуры латуни" означает либо (i) измеренную величину интенсивности текстуры латуни для данного поликристаллического образца, определенную с помощью рентгеновской дифракции, либо (ii) долю площади текстуры латуни у данного поликристаллического образца, измеренную с использованием микроскопии с визуализацией ориентации (OIM).

[0075] "Нерекристаллизованный сплав" означает сплав, содержащий существенное количество нерекристаллизованных зерен, или сплав, подвергшийся только одному единственному рекристаллизационному отжигу посредством этапа термообработки на твердый раствор.

[0076] Алюминиевые сплавы в рамках объема настоящего изобретения, имеющие большее количество текстуры латуни, чем текстуры Госса, могут обладать улучшенным соотношением прочности и вязкости по сравнению с полученными традиционным образом продуктами. Таким образом, настоящее изобретение относится к рекристаллизованным алюминиевым сплавам, имеющим большее количество текстуры латуни, чем текстуры Госса. Продукты, полученные из этих рекристаллизованных сплавов, обычно имеют по меньшей мере примерно такую же вязкость разрушения и по меньшей мере примерно такой же предел текучести на растяжение, как и эквивалентный по составу нерекристаллизованный сплав такого же вида продукта и сходных толщины и состояния. Механический, термомеханический и/или термический процесс можно подбирать, чтобы получить рекристаллизованные алюминиевые сплавы, имеющие относительно большое количество текстуры латуни. При одном подходе этапы горячей и/или холодной обработки (например, прокатки) применяются в сочетании с по меньшей мере одним промежуточным рекристаллизационным отжигом и окончательным рекристаллизационным отжигом (например, этапом термообработки на твердый раствор), чтобы получить рекристаллизованные алюминиевые сплавы, имеющие большое количество текстуры латуни. После термообработки на твердый раствор могут применяться дополнительные операции отпуска, чтобы еще больше развить желаемые свойства рекристаллизованных алюминиевых сплавов.

[0077] Количество текстуры латуни у рекристаллизованного алюминиевого сплава обычно превышает количество текстуры Госса у рекристаллизованного алюминиевого сплава. В одном варианте реализации количество текстуры латуни и количество текстуры Госса определяют, используя методы микроскопии с визуализацией ориентации, как описано выше. В одном варианте реализации доля площади текстуры латуни составляет по меньшей мере примерно 10%. В одном варианте реализации доля площади текстуры Госса составляет не более чем примерно 5%.

[0078] В одном варианте реализации отношение количества текстуры латуни к количеству текстуры Госса в рекристаллизованном алюминиевом сплаве, определяемое по доле площади зерен с ориентацией латуни и доле площади с ориентацией Госса, составляет по меньшей мере примерно 1. В одном варианте реализации отношение доли площади зерен с ориентацией латуни (BVF) к доле площади зерен с ориентацией Госса (GVF) в рекристаллизованном алюминиевом сплаве составляет по меньшей мере примерно 1,5:1 (BVF:GVF). В других вариантах реализации отношение интенсивности текстуры латуни к интенсивности текстуры Госса в рекристаллизованном алюминиевом сплаве составляет по меньшей мере примерно 1,75:1 (BVF:GVF) или по меньшей мере примерно 2:1 (BVF:GVF).

[0079] В одном варианте реализации рекристаллизованный алюминиевый сплав обладает максимальным значением параметра R в диапазоне от примерно 40° до 60°. "Параметр R", или "коэффициент Лэнкфорда", показывает отношение пластических деформаций, выражаемое так:

R = e w e t ,

где ew - истинная деформация по ширине (в плоскости листа под углом 90° к оси растяжения), а et - истинная деформация по толщине. Значения параметра R могут быть измерены в соответствии со стандартом ASTM E517-00(2006)e1, 1 сентября 2006. Продукты из рекристаллизованных алюминиевых сплавов, обладающие максимальным значением параметра R в диапазоне от примерно 40° до примерно 60°, обычно указывают на продукты, имеющие большее количество текстуры латуни, тогда как продукты из рекристаллизованных алюминиевых сплавов, обладающие максимальным значением параметра R в диапазоне примерно 90°, указывают на продукты, имеющие большее количество текстуры Госса.

[0080] Как отмечено выше, интенсивности текстуры можно измерить с помощью рентгеновской дифракции и в соответствии с работой "Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Material Properties", Kocks et al., pp. 140-141, Cambridge University Press (1998). Однако измеренные значения абсолютной интенсивности компонентов текстуры могут быть разными в разных институтах из-за различия в аппаратном и/или программном обеспечении. Тем не менее, можно использовать относительные соотношения измеренных интенсивностей текстуры, чтобы определить относительные количества этих двух текстур в рекристаллизованном сплаве. Так, в одном варианте реализации рекристаллизованный алюминиевый сплав содержит рекристаллизованную микроструктуру с измеренной интенсивностью текстуры латуни, составляющей по меньшей мере примерно 5. В одном варианте реализации измеренная интенсивность текстуры латуни составляет по меньшей мере примерно 10. В других вариантах реализации измеренная интенсивность текстуры латуни составляет по меньшей мере примерно 15, или по меньшей мере примерно 20, или по меньшей мере примерно 25, или по меньшей мере примерно 30, или по меньшей мере примерно 40, или по меньшей мере примерно 50. Измеренная величина интенсивности текстуры Госса обычно меньше измеренной величины интенсивности текстуры латуни. В одном варианте реализации рекристаллизованный алюминиевый сплав содержит рекристаллизованную микроструктуру с измеренной интенсивностью текстуры Госса, составляющей менее примерно 20. В других вариантах реализации измеренная интенсивность текстуры Госса составляет менее примерно 15 или менее примерно 10, или менее примерно 5. Так, в одном варианте реализации отношение количества текстуры латуни к количеству текстуры Госса в рекристаллизованном алюминиевом сплаве составляет по меньшей мере примерно 1,25:1 (BTI:GTI). В других вариантах реализации отношение интенсивности текстуры латуни к интенсивности текстуры Госса в рекристаллизованном алюминиевом сплаве составляет по меньшей мере примерно 1,5:1 (BTI:GTI) или по меньшей мере примерно 2:1 (BTI:GTI), или по меньшей мере примерно 3:1 (BTI:GTI), или по меньшей мере примерно 4:1 (BTI:GTI), или по меньшей мере примерно 5:1 (BTI:GTI), или по меньшей мере примерно 6:1 (BTI:GTI), или по меньшей мере примерно 7:1 (BTI:GTI), или по меньшей мере примерно 8:1 (BTI:GTI), или по меньшей мере примерно 9:1 (BTI:GTI), или по меньшей мере примерно 10:1 (BTI:GTI). Независимо от того, используются ли методы рентгеновской дифракции или OIM, образцы, анализируемые в соответствии с настоящей заявкой, включают по меньшей мере 1000 зерен.

[0081] В одном варианте реализации рекристаллизованный алюминиевый сплав представляет собой листовой прокат ("рекристаллизованный листовой прокат"). Используемый здесь термин "листовой прокат" означает прокатанные алюминиевые продукты с толщинами от примерно 0,01 дюйма (~0,25 мм) до примерно 0,5 дюйма (~12,7 мм). Толщина листа может составлять от примерно 0,025 дюйма (~0,64 мм) до примерно 0,325 дюйма (~8,9 мм) или от примерно 0,05 дюйма (~1,3 мм) до примерно 0,325 дюйма (~8,3 мм). Для многих применений, таких как фюзеляжи некоторых летательных аппаратов, лист может быть толщиной от примерно 0,05 дюйма (~1,3 мм) до примерно 0,25 дюйма (~6,4 мм) или от примерно 0,05 дюйма (~1,3 мм) до примерно 0,2 дюйма (~5,1 мм). Лист может быть неплакированным или плакированным, с толщинами плакирующего слоя от примерно 1 до примерно 5 процентов от толщины листа. Листовой прокат может содержать алюминиевые сплавы различных составов. Некоторые подходящие составы сплавов включают термообрабатываемые (термически упрочняемые) сплавы, такие как сплавы на основе Al-Li, в том числе один или более сплавов серии 2XXX, определенных Алюминиевой Ассоциацией как сплавы серии 2XXX, и их варианты. Одним особенно подходящим сплавом является сплав серии 2199. В одном варианте реализации алюминиевый сплав содержит до примерно 7,0вес.% меди. В одном варианте реализации алюминиевый сплав содержит до примерно 4,0вес.% лития. Рекристаллизованный листовой прокат по настоящему изобретению может использоваться в самых различных промышленных областях применения. Например, рекристаллизованный листовой прокат может использоваться в авиационно-космической промышленности, например, для производства изделий для фюзеляжа (например, профиля фюзеляжа или обшивки фюзеляжа летательного аппарата) или на транспорте, в автомобильной промышленности, или по другим промышленным назначениям.

[0082] Рекристаллизованный листовой прокат по настоящему изобретению обычно обладает более высокими пределами текучести на растяжение и вязкость разрушения для данной толщины рекристаллизованного листового проката. В одном варианте реализации рекристаллизованный листовой прокат имеет по меньшей мере примерно такую же вязкость разрушения и примерно такой же предел текучести на растяжение, как и эквивалентный по составу нерекристаллизованный сплав такого же вида продукта и сходных тол