Полимерные гидрогели и способы их приготовления

Иллюстрации

Показать все

Изобретение относится к медикаментам для ограничения потребления калорий на основе полимерных гидрогелей. Предложен медикамент для ограничения потребления калорий у нуждающегося в этом пациента, включающий эффективное количество полимерного гидрогеля, приготовленного способом, включающим стадии получения водного раствора, включающего полисахарид и лимонную кислоту; и нагревания этого раствора для удаления воды и осуществления поперечной сшивки полисахарида лимонной кислотой с образованием полимерного гидрогеля. Предложены также варианты медикамента, в которых в качестве полисахарида используют карбоксиметилцеллюлозу. 4 н. и 33 з.п. ф-лы, 2 ил., 8 табл., 4 пр.

Реферат

Настоящее изобретение относится к полимерным гидрогелям и способам их приготовления.

Полимерные гидрогели представляют собой поперечно-сшитые гидрофильные полимеры, способные поглощать большие количества воды. В частности, поперечно-сшитые полимерные гидрогели, способные поглощать количества воды, в 10 раз превышающие их сухую массу, называются «суперабсорбентами (сверхпоглотителями)». Некоторые из указанных материалов способны поглотить более 1 литра воды на 1 грамм сухого полимера.

Поперечные связи или поперечные сшивки, т.е. физические или химические связи между цепочками макромолекул, образующие сетку полимерного гидрогеля, гарантируют структурную целостность системы полимер-жидкость, с одной стороны, предотвращая полную солюбилизацию полимера и, с другой стороны, способствуя удержанию водной фазы внутри молекулярной сетки.

Коммерчески доступные в настоящее время сверхпоглощающие полимерные гидрогели отличаются не только своими уникальными поглощающими свойствами, но и биосовместимостью, которая, по-видимому, объясняется высоким содержанием воды и, прежде всего, способностью регулировать поглощающие свойства в соответствии с внешними воздействиями. Таким образом, эти полимерные гидрогели могут быть использованы в ряде промышленных отраслей в качестве «интеллектуальных» материалов, например, для изготовления сенсорных датчиков или исполнительных устройств. Кроме обычного применения в качестве поглощающей основы в отрасли производства изделий личной гигиены, их стали применять и в развившихся в последнее время инновационных отраслях, например, в биомедицине для разработки лекарственных препаратов с контролируемым высвобождением, для изготовления искусственных мышц, датчиков и т.д., и в сельском хозяйстве и садоводстве, например, в устройствах с контролируемым высвобождением воды и питательных веществ в сухие почвы.

Тем не менее, имеющиеся в настоящее время сверхпоглощающие полимерные гидрогели почти исключительно представляют собой изделия на основе акриловых полимеров, и, следовательно, не являются биоразлагаемыми.

В связи с растущим интересом к защите окружающей среды, в последнее время значительный интерес уделяют разработке сверхпоглощающих материалов на основе биоразлагаемых полимеров, свойства которых аналогичны свойствам традиционно применяемых сверхпоглощающих полиакриловых материалов.

Примеры биоразлагаемых полимеров, применяемых для получения сверхпоглощающих полимерных гидрогелей, включают производные крахмала и целлюлозы.

В 1990 году Anbergen и Oppermann [1] предложили способ синтеза сверхпоглощающего материала, целиком изготовленного из производных целлюлозы. В частности, они использовали гидроксиэтилцеллюлозу (ГЭЦ) и натриевую соль карбоксиметилцеллюлозы (CMCNa), в которых поперечные сшивки образовывали химическим способом в щелочном растворе под действием дивинилсульфона. Тем не менее, поглотительные свойства таких материалов невысоки по сравнению со свойствами сверхпоглощающих материалов, полученных на основе акриловых полимеров.

В 1996 году Esposito с сотрудниками [2], исследуя способ синтеза, предложенный Anbergen и Opperman, разработали способ повышения поглотительных свойств геля, в основном воздействуя на физические свойства материала. Основная идея состояла в создании в структуре полимера микропор, способствующих поглощению и удержанию воды за счет капиллярных сил. Указанные микропоры получали на стадии сушки, в процессе фазовой инверсии в среде, не растворяющей полимер (нерастворителе), и поглотительные свойства получаемого материала были заметно выше, чем у геля, высушенного на воздухе.

Поперечные сшивки в CMCNa могут быть образованы химическим способом при действии любого бифункционального в отношении целлюлозы реагента. Кроме дивинилсульфона, применяемого в способе синтеза, предложенном Anbergen и Opperman, в качестве веществ, образующих поперечные связи, применяют эпихлоргидрин, формальдегид и различные диэпоксиды. Тем не менее, в непрореагировавшем состоянии указанные соединения высоко токсичны [3]. Среди нетрадиционных веществ, образующих поперечные связи, известны некоторые карбодиимиды. В частности, применение карбодиимидов для получения поперечных связей в солях карбоксиметилцеллюлозы или в самой карбоксиметилцеллюлозе (CMC) было описано в публикации [4]. Карбодиимиды вызывают образование сложноэфирных связей между макромолекулами целлюлозы, но сами связей не образуют, превращаясь в производное мочевины, имеющее очень низкую токсичность [5]. Сверхпоглощающий полимерный гидрогель, получаемый при образовании поперечных связей в натриевой соли карбоксиметилцеллюлозы и в гидроксиэтилцеллюлозе под действием карбодиимида, в качестве сшивающего агента, образующего поперечные связи, описан в международной патентной заявке WO 2006/070337 [6].

Тем не менее, недостатком карбодиимида, применяемого в соответствии с WO 2006/070337 в качестве сшивающего агента, является его чрезвычайно высокая стоимость. Кроме того, при проведении реакции образования поперечных связей в CMCNa, это вещество превращается в малотоксичное производное мочевины, которое должно быть удалено на стадии промывки, что также повышает себестоимость и сложность способа производства. Указанные недостатки очень неблагоприятны, особенно в тех случаях, в которых требуется получение больших объемов полимерных гидрогелей, и, следовательно, требуются значительные расходы на приобретение исходных материалов и значительные затраты на утилизацию токсичных веществ, получаемых в процессе синтеза.

Кроме того, образование веществ, имеющих некоторую, хотя и незначительную степень токсичности, представляет собой ключевой фактор, не позволяющий использовать такие полимеры для изготовления биомедицинской и фармацевтической продукции.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является обеспечение полимерных гидрогелей, не имеющих вышеуказанных недостатков, связанных с применением карбодиимида в качестве вещества, образующего поперечные связи.

Эти и другие задачи изобретения могут быть достигнуты посредством полимерных гидрогелей согласно изобретению и способа их изготовления, рассматриваемого в настоящем описании. Полимерные гидрогели согласно настоящему изобретению получают с использовании поликарбоновой кислоты, например, лимонной кислоты, в качестве сшивающего агента, и в предпочтительных примерах реализации также включают применение молекулярного спейсера (разделительного агента).

Частично, изобретение относится к тому обнаруженному факту, что образование поперечных связей в растворимых производных целлюлозы под действием лимонной кислоты (3-карбокси-3-гидрокси-1,5-пентандиовой кислоты, далее обозначаемой «ЛК») приводит к образованию полимерных гидрогелей и сверхпоглощающих полимерных гидрогелей. ЛК представляет собой природную кислоту, нетоксичную, коммерчески доступную и имеющую низкую рыночную стоимость. Несмотря на то, что ранее сообщалось о применении ЛК в качестве вещества, образующего поперечные связи в полимерах, например, целлюлозе, гидроксипропилметилцеллюлозе и крахмале в текстильной и пищевой промышленности [7-11], в этих отраслях ЛК используют для образования поперечных связей и дальнейшей стабилизации нерастворимых волокон, с целью получения тканей с повышенной упругостью и улучшенными механическими свойствами. Тем не менее, применение ЛК для образования поперечных связей в карбоксиметилцеллюлозе или других растворимых гидрофильных полимерах с целью приготовления полимерных гидрогелей и сверхпоглощающих полимерных гидрогелей ранее описано не было.

Способ приготовления полимерного гидрогеля, предлагаемый согласно настоящему изобретению, включает стадию образования поперечных связей в водном растворе, включающем гидрофильный полимер, под действием поликарбоновой кислоты, возможно в присутствии соединения, которое действует как молекулярный спейсер.

В одном из примеров осуществления, водный раствор включает два или более гидрофильных полимера, например, гидроксилированных полимера. Например, водный раствор может включать первый гидрофильный полимер и второй гидрофильный полимер, которые могут присутствовать в одинаковых или различных массовых количествах. В одном из примеров осуществления, первый гидрофильный полимер представляет собой ионный полимер, а второй полимер представляет собой неионный полимер.

В одном из предпочтительных примеров осуществления, изобретение относится к способу приготовления полимерного гидрогеля, включающему следующие стадии: (a) предоставление водного раствора карбоксиметилцеллюлозы, гидроксиэтилцеллюлозы, лимонной кислоты и молекулярного спейсера; (b) нагревание водного раствора, при котором происходит испарение воды и образование поперечных связей в карбоксиметилцеллюлозе и гидроксиэтилцеллюлозе с образованием полимерного гидрогеля; (c) промывку полимерного гидрогеля водой или полярным органическим растворителем с образованием промытого полимерного гидрогеля; (d) погружение промытого полимерного гидрогеля в среду, которая является нерастворителем для целлюлозы, в результате чего получают сухой полимерный гидрогель.

В другом примере осуществления, настоящее изобретение относится к полимерным гидрогелям, например, сверхпоглощающим полимерным гидрогелям, которые могут быть приготовлены способами, предлагаемыми согласно настоящему изобретению. Такие полимерные гидрогели включают по меньшей мере один гидрофильный полимер, поперечно-сшитый под действием поликарбоновой кислоты.

Кроме того, изобретение включает готовые изделия, которые включают такие полимерные гидрогели.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На Фиг.1 показан предлагаемый механизм образования поперечных связей в полимере под действием лимонной кислоты.

На Фиг.2 показан график зависимости общего потребления пищи от времени для крыс, которым перорально вводили полимерный гидрогель согласно изобретению, и крыс, которым перорально вводили только носитель.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к полимерным гидрогелям, способам приготовления полимерных гидрогелей, способам применения полимерных гидрогелей и готовых изделий, включающих полимерные гидрогели.

Способ приготовления полимерного гидрогеля, предлагаемый согласно настоящему изобретению, включает стадию образования поперечных связей в водном растворе, включающем гидрофильный полимер, под действием поликарбоновой кислоты, в результате чего образуется полимерный гидрогель. В некоторых примерах осуществления, водный раствор включает два или более гидрофильных полимеров. Например, водный раствор может включать первый гидрофильный полимер и второй гидрофильный полимер, которые могут присутствовать в одинаковых или различных массовых количествах. В предпочтительных примерах осуществления, первый гидрофильный полимер представляет собой ионный полимер, а второй полимер представляет собой неионный полимер.

Реакцию образования поперечных связей предпочтительно проводят при повышенной температуре, например, при температуре, превышающей комнатную температуру (25°C). Например, реакция может быть проведена при температуре, приблизительно составляющей от 30°C до 150°C, предпочтительно приблизительно от 50°C до 120°C. В одном из примеров осуществления, при проведении реакции образования поперечных связей при повышенной температуре, реакционный раствор концентрируют, удаляя из него воду. Удаление воды может быть осуществлено, например, испарением. В одном из примеров осуществления, удаляют часть воды. В другом примере осуществления, удаляют по существу всю воду, получая при этом сухой остаток. Возможно, реакционную смесь выдерживают при повышенной температуре в течение некоторого времени после испарения воды досуха.

В соответствии с настоящим описанием, термин «гидрофильный полимер» означает по существу водорастворимый полимер, который предпочтительно включает гидроксилированные мономерные звенья. Гидрофильный полимер может представлять собой гомополимер, который включает только одно повторяющееся мономерное звено, или сополимер, включающий два или более различных повторяющихся мономерных звеньев. В предпочтительном примере осуществления, гидрофильный полимер представляет собой гидроксилированный полимер, например, полиаллиловый спирт, поливиниловый спирт или полисахарид. Примеры подходящих полисахаридов включают замещенные целлюлозы, замещенные декстраны, крахмалы и замещенные крахмалы, гликозаминогликаны, хитозан и альгинаты.

Полисахариды, которые могут быть использованы, включают алкилцеллюлозы, например, C1-C6-алкилцеллюлозы, включающие метилцеллюлозу, этилцеллюлозу и н-пропилцеллюлозу; замещенные алкилцеллюлозы, включающие гидрокси-C1-C6-алкилцеллюлозы и гидрокси-C1-C6-алкил-C1-C6-алкилцеллюлозы, например, гидроксиэтилцеллюлозу, гидрокси-н-пропилцеллюлозу, гидрокси-н-бутилцеллюлозу, гидроксипропилметилцеллюлозу, этилгидроксиэтилцеллюлозу и карбоксиметилцеллюлозу; крахмалы, например, кукурузный крахмал, гидроксипропилкрахмал и карбоксиметилкрахмал; замещенные декстраны, например, декстрансульфат, декстранфосфат и диэтиламинодекстран; гликозаминогликаны, включающие гепарин, гиалуронан, хондроитин, хондроитинсульфат и гепарансульфат; и полиуроновые кислоты, например, полиглюкуроновую кислоту, полимануроновую кислоту, полигалактуроновую кислоту и полиарабиновую кислоту.

В соответствии с настоящим описанием, термин «ионный полимер» означает полимер, включающий мономерные звенья, содержащие кислотные функциональные группы, например, карбоксильную, сульфатную, сульфонатную, фосфатную или фосфонатную группы, или основные функциональные группы, например, аминогруппу, замещенную амино- или гуанидильную группы. При нахождении в водном растворе в подходящем диапазоне pH, ионный полимер, включающий кислотные функциональные группы, будет представлять собой полианион, и в настоящем описании такой полимер называется «анионным полимером». Аналогично, в водном растворе в подходящем диапазоне pH, ионный полимер, включающий основные функциональные группы, будет представлять собой поликатион. В настоящем описании такой полимер называется «катионным полимером». В соответствии с настоящим описанием, термины «ионный полимер», «анионный полимер» и «катионный полимер» означают гидрофильные полимеры, в которых кислотные или основные функциональные группы не имеют заряда, а также полимеры, в которых некоторые или все кислотные или основные функциональные группы имеют заряд в сочетании с подходящим противоионом. Подходящие анионные полимеры включают альгинат, декстрансульфат, карбоксиметилцеллюлозу, гиалуроновую кислоту, полиглюкуроновую кислоту, полимануроновую кислоту, полигалактуроновую кислоту, полиарабиновую кислоту; хондроитинсульфат и декстранфосфат. Подходящие катионные полимеры включают хитозан и диметиламинодекстран. Предпочтительный ионный полимер представляет собой карбоксиметилцеллюлозу, которая может быть использована как в кислотной форме, так и в виде соли с подходящим катионом, например, катионом натрия или калия.

В соответствии с настоящим описанием, термин «неионный полимер», означает гидрофильный полимер, который не содержит мономерных звеньев, включающих ионизируемые функциональные группы, например, кислотные или основные группы. Такой полимер не имеет заряда в водном растворе. Примеры подходящих неионных полимеров, применяемых в соответствии с предлагаемым способом, включают полиаллиловый спирт, поливиниловый спирт, крахмалы, например, кукурузный крахмал и гидроксипропилкрахмал, алкилцеллюлозы, например, C1-C6-алкилцеллюлозы, включающие метилцеллюлозу, этилцеллюлозу и н-пропилцеллюлозу; замещенные алкилцеллюлозы, включающие гидрокси-C1-C6-алкилцеллюлозы и гидрокси-C1-C6-алкил-C1-C6-алкилцеллюлозы, например, гидроксиэтилцеллюлозу, гидрокси-н-пропилцеллюлозу, гидрокси-н-бутилцеллюлозу, гидроксипропилметилцеллюлозу и этилгидроксиэтилцеллюлозу.

В соответствии с настоящим описанием, термин «поликарбоновая кислота» означает органическую кислоту, включающую две или более карбоксильных функциональных группы, например, дикарбоновые кислоты, трикарбоновые кислоты и тетракарбоновые кислоты, и также включает ангидридные формы таких органических кислот. Дикарбоновые кислоты включают щавелевую кислоту, малоновую кислоту, малеиновую кислоту, яблочную кислоту, янтарную кислоту, глутаровую кислоту, адипиновую кислоту, пимелиновую кислоту, октандиовую кислоту, азелаиновую кислоту, себациновую кислоту, фталевую кислоту, о-фталевую кислоту, изофталевую кислоту, мета-фталевую кислоту и терефталевую кислоту. Предпочтительные дикарбоновые кислоты включают C4-C12-дикарбоновые кислоты. Подходящие трикарбоновые кислоты включают лимонную кислоту, изолимонную кислоту, аконитовую кислоту и пропан-1,2,3-грикарбоновую кислоту. Подходящие тетракарбоновые кислоты включают пиромеллитовую кислоту, 2,3,3',4'-бифенилтетракарбоновую кислоту, 3,3',4,4'-тетракарбоксидифениловый эфир, 2,3',3,4'-тетракарбоксидифениловый эфир, 3,3',4,4'-бензофенонтетракарбоновую кислоту, 2,3,6,7-тетракарбоксинафталин, 1,4,5,7-тетракарбоксинафталин, 1,4,5,6-тетракарбоксинафталин, 3,3',4,4'-тетракарбоксидифенилметан, 2,2-бис(3,4-дикарбоксифенил)пропан, бутантетракарбоновую кислоту и циклопентантетракарбоновую кислоту. Особенно предпочтительная поликарбоновая кислота представляет собой лимонную кислоту.

Способ также может включать стадии очистки полимерного гидрогеля, например, промывкой полимерного гидрогеля в полярном растворителе, например, воде, полярном органическом растворителе, например, спирте, например, метаноле или этаноле, или в сочетании указанных растворителей. Полимерный гидрогель, погруженный в полярный растворитель, набухает и высвобождает любой компонент, например, побочные продукты или непрореагировавшую поликарбоновую кислоту, который не был включен в полимерную сетку. В качестве предпочтительного полярного растворителя используют воду, более предпочтительно использование дистиллированной воды. Объем воды, требуемый на этой стадии для достижения максимальной степени набухания геля, приблизительно составляет от 10 до 20 начальных объемов самого геля. Учитывая значительное количество воды, используемое при осуществлении этой стадии в промышленном масштабе, а также утилизацию и/или рециркуляцию промывных вод, становится понятной необходимость отсутствия любых токсичных побочных продуктов синтеза. Стадия промывки полимерного гидрогеля может быть произведена более одного раза; при этом возможна замена используемого полярного растворителя. Например, полимерный гидрогель может быть промыт метанолом или этанолом, а затем дистиллированной водой, и обе указанные стадии могут быть повторены один или более раз.

Способ также может включать сушку полимерного гидрогеля. Стадию сушки выполняют погружением полностью набухшего полимерного гидрогеля в среду, нерастворяющую целлюлозу (нерастворитель для целлюлозы); этот способ известен как фазовая инверсия. Подходящие нерастворители для целлюлозы включают, например, ацетон и этанол. Сушка полимерного гидрогеля методом фазовой инверсии приводит к получению в готовом изделии микропористой структуры, которая усиливает поглотительные свойства полимерного гидрогеля за счет действия капиллярных сил. Кроме того, если поры соединены или открыты, т.е. микропоры соединены друг с другом, кинетика абсорбции/десорбции геля также улучшается. При погружении полностью или частично набухшего геля в нерастворяющую среду (нерастворитель), гель подвергается фазовой инверсии, сопровождающейся удалением воды, до тех пор, пока гель не осаждается в виде стеклообразного твердого вещества, образующего белые частицы. Для получения сухого геля в течение короткого периода времени могут потребоваться несколько промывок различными нерастворителями. Например, если набухший полимерный гидрогель погружают в такую нерастворяющую среду (нерастворитель), как ацетон, получается смесь вода/ацетон, содержание воды в которой увеличивается по мере высушивания полимерного гидрогеля; при определенном отношении вода/ацетон, например, при концентрации ацетона приблизительно равной 55%, вода уже не может выделяться из полимерного гидрогеля, и, таким образом, для продолжения сушки в полимерный гидрогель следует добавить дополнительное количество ацетона. Чем выше отношение ацетон/вода в процессе сушки, тем быстрее она осуществляется. Скорость сушки и начальные размеры частиц полимерного гидрогеля влияют на размеры получаемых пор: более крупные частицы и более высокая скорость сушки увеличивают размер пор; при этом предпочтительно получение микропор, поскольку они обеспечивают высокий капиллярный эффект, приводящий к повышению сорбции и удержанию большего количества воды.

Полимерные гидрогели согласно изобретению могут быть высушены и другими способами, такими как сушка на воздухе, сушка замораживанием или сушка в сушильном шкафу. Указанные способы сушки могут быть использованы как по отдельности, так и в сочетании, или в сочетании со стадией сушки, включающем использование нерастворяющей среды (нерастворителя), описанным выше. Например, полимерный гидрогель может быть высушен с применением нерастворяющей среды (нерастворителя) с последующей сушкой на воздухе, сушкой замораживанием, сушкой в сушильном шкафу или сочетанием указанных способов, позволяющих удалить все остаточные следы нерастворяющей среды (нерастворителя). Сушка в сушильном шкафу может быть произведена при температуре, составляющей, например, приблизительно 30-45°C до полного удаления остатков нерастворяющей среды (нерастворителя). Промытый и высушенный полимерный гидрогель затем может быть направлен на использование как таковой, или он может быть размолот для получения частиц полимерного гидрогеля, имеющих требуемый размер.

Раствор, в котором осуществляют образование поперечных связей, может включать соединение, которое служит молекулярным спейсером (разделительным агентом). Используемый в настоящем описании термин «молекулярный спейсер» относится к полигидроксилированному соединению, которое, несмотря на то, что он не принимает активного участия в реакции, приводящей к образованию поперечно-сшитой полимерной структуры гидрогеля, приводит к получению полимерного гидрогеля с повышенной поглощающей способностью. Несмотря на то, что в некоторых случаях, молекулярный спейсер может принимать некоторое участие в реакции образования поперечных связей, полагают, что функция молекулярных спенсеров заключается в стерическом блокировании доступа к полимерным цепочкам, которое увеличивает среднее расстояние между полимерными цепочками. Таким образом, образование поперечных связей может происходить на участках, расположенных не слишком близко друг к другу, что повышает способность полимерной сетки к растяжению, т.е. сильно повышает поглотительные свойства полимерного гидрогеля. Подходящие соединения, применяемые в качестве молекулярных спейсеров в способах согласно настоящему изобретению, включают моносахариды, дисахариды и сахарные спирты, включающие сахарозу, сорбит, растительный глицерин, маннит, трегалозу, лактозу, мальтозу, эритрит, ксилит, лактит, мальтит, арабит, глицерин, изомальт и целлобиозу. Молекулярный спейсер предпочтительно вносят в раствор, в котором происходит образование поперечных связей, в количестве, приблизительно составляющем от 0,5% до 10% масс. в пересчете на массу растворителя, более предпочтительно приблизительно от 2% до 8%, и еще более предпочтительно в количестве, приблизительно составляющем 4%.

В соответствии с предпочтительным примером осуществления изобретения, молекулярный спейсер, применяемый в синтезе полимерного гидрогеля, выбирают из группы, состоящей из сорбита, сахарозы и растительного глицерина.

В соответствии с особенно предпочтительным примером осуществления способа настоящего изобретения, в качестве молекулярного спейсера применяют сорбит в концентрации, составляющей от 0,5 до 10% масс. в пересчете на массу воды, предпочтительно составляющей от 2 до 8% масс. в пересчете на массу воды, еще более предпочтительно в концентрации, составляющей 4% масс. в пересчете на массу воды.

В одном из примеров осуществления, указанный водный раствор включает ионный полимер, предпочтительно анионный полимер и наиболее предпочтительно карбоксиметилцеллюлозу. В особенно предпочтительном примере осуществления, анионный полимер представляет собой карбоксиметилцеллюлозу, и поликарбоновая кислота представляет собой лимонную кислоту.

В другом примере осуществления, указанный водный раствор включает ионный полимер и неионный полимер. Ионный полимер предпочтительно представляет собой анионный полимер, и наиболее предпочтительно карбоксиметилцеллюлозу. Неионный полимер предпочтительно представляет собой замещенную целлюлозу, более предпочтительно гидроксиалкилцеллюлозу или гидроксиалкилалкилцеллюлозу, и наиболее предпочтительно, гидроксиэтилцеллюлозу («ГЭЦ»). Предпочтительная поликарбоновая кислота представляет собой лимонную кислоту.

Массовые отношения ионных и неионных полимеров (ионный: неионный) могут приблизительно находиться в диапазоне от 1:10 до 10:1, предпочтительно приблизительно от 1:5 до 5:1. В предпочтительных примерах осуществления, массовое отношение превышает 1:1, например, приблизительно составляет от 2 до 5. В особенно предпочтительном примере осуществления, ионный полимер представляет собой карбоксиметилцеллюлозу, неионный полимер представляет собой гидроксиэтилцеллюлозу, и массовое отношение (ионный: неионный) приблизительно составляет 3:1.

В предпочтительном примере осуществления способа согласно изобретению, который приводит к получению сверхпоглощающих полимерных гидрогелей, имеющих особенно высокий коэффициент набухания (SR (swelling ratio)), общая концентрация предшественника в водном растворе составляет по меньшей мере 2% масс. в пересчете на массу воды исходного водного раствора, и количество вещества, образующего поперечные связи, приблизительно составляет от 1% до 5% масс. в пересчете на массу предшественника. В соответствии с настоящим описанием, термин «предшественник» означает гидрофильный полимер (полимеры), применяемые в качестве предшественников при образовании полимерной сетки полимерного гидрогеля, например, в некоторых примерах осуществления, термин «масса предшественника» означает массу используемой CMCNa или общую массу применяемых CMCNa и ГЭЦ. Указанный водный раствор предпочтительно включает сорбит в количестве, составляющем приблизительно 4% масс. в пересчете на массу воды.

Коэффициент набухания (SR) представляет собой меру способности полимерного гидрогеля поглощать воду. Значение SR получают при равновесных измерениях набухания (с использованием, например, микровесов Sartorius, имеющих чувствительность 1015) и рассчитывают, исходя из следующей формулы:

SR=(Ws-Wd)Wd

в которой

Ws - масса полимерного гидрогеля после погружения в дистиллированную воду на 24 часов, и Wd - масса полимерного гидрогеля до погружения; при этом полимерный гидрогель предварительно высушивали для удаления всей остаточной воды.

В соответствии со способом приготовления согласно этому примеру осуществления изобретения, реакцию образования поперечных связей предпочтительно проводят при температуре, приблизительно составляющей от 60°C до 120°C. Изменение температуры на данной стадии процесса позволяет повышать или понижать степень образования поперечных связей полимерной сетки. Предпочтительная температура проведения процесса образования поперечных связей составляет приблизительно 80°C.

Один особенно предпочтительный пример осуществления способа согласно изобретению включает следующие стадии: Стадия 1, гидрофильный полимер (полимеры), карбоновую кислоту и возможно молекулярный спейсер растворяют в воде при комнатной температуре; Стадия 2, воду удаляют из раствора при 40°C в течение двух суток; Стадия 3, продукт, полученный на Стадии 2, нагревают до 80°C в течение 10 часов для инициирования реакции образования поперечных связей и образования полимерного гидрогеля; Стадия 4, полимерный гидрогель три раза промывают водой в течение 24 часов; Стадия 5, промытый полимерный гидрогель погружают в ацетон на 24 часа для удаления воды; Стадия 6, полимерный гидрогель далее сушат в сушильном шкафу при 45°C в течение 5 часов; и Стадия 7, высушенный полимерный гидрогель измельчают, получая частицы полимерного гидрогеля.

Настоящее изобретение также относится к полимерным гидрогелям, которые могут быть приготовлены способами, предлагаемыми согласно изобретению. Такие полимерные гидрогели включают гидрофильный полимер, сшитый поликарбоновой кислотой. В других примерах осуществления, полимерные гидрогели согласно изобретению включают по меньшей мере два гидрофильных полимера, сшитых поликарбоновой кислотой. В одном из предпочтительных примеров осуществления, полимерный гидрогель включает ионный полимер и неионный полимер и поликарбоновую кислоту, предпочтительно C4-C12-дикарбоновую кислоту, трикарбоновую кислоту или тетракарбоновую кислоту, и при этом образование поперечных связей в ионном полимере и неионном полимере обеспечивается за счет поликарбоновой кислоты. Массовое отношение ионного полимера к неионному полимеру предпочтительно составляет приблизительно от 1:5 до 5:1, более предпочтительно приблизительно от 2:1 до 5:1, и наиболее предпочтительно приблизительно 3:1. В одном особенно предпочтительном примере осуществления, ионный полимер представляет собой карбоксиметилцеллюлозу, неионный полимер представляет собой гидроксиэтилцеллюлозу, и поликарбоновая кислота представляет собой лимонную кислоту. В другом предпочтительном примере осуществления, полимерный гидрогель включает ионный полимер, например, анионный полимер или катионный полимер. Более предпочтительно, ионный полимер представляет собой карбоксиметилцеллюлозу или ее соль, например, натрий-карбоксиметилцеллюлозу. В другом особенно предпочтительном примере осуществления, полимерный гидрогель включает карбоксиметилцеллюлозу, сшитую под действием лимонной кислоты.

Коэффициенты набухания полимерных гидрогелей согласно изобретению составляют по меньшей мере приблизительно 5. Предпочтительно, полимерные гидрогели согласно изобретению представляют собой сверхпоглощающие полимерные гидрогели, например, полимерные гидрогели, SR которых составляет по меньшей мере 10. В предпочтительных примерах осуществления, SR полимерных гидрогелей согласно изобретению, составляет по меньшей мере приблизительно 20, приблизительно 30, приблизительно 40, приблизительно 50, приблизительно 60, приблизительно 70, приблизительно 80, приблизительно 90 или приблизительно 100. Например, в некоторых примерах осуществления, SR полимерных гидрогелей согласно изобретению, составляет приблизительно от 10 до 100, приблизительно от 20 до 100, приблизительно от 30 до 100, приблизительно от 40 до 100, приблизительно от 50 до 100, приблизительно от 60 до 100, приблизительно от 70 до 100, приблизительно от 80 до 100 или приблизительно от 90 до 100. В некоторых примерах осуществления, изобретение включает полимерные гидрогели, SR которых составляет до 150, 200, 250, 300, 330 или 350.

В некоторых примерах осуществления полимерные гидрогели согласно изобретению могут поглощать такое количество одной или более физиологических жидкостей, например, крови, плазмы крови, мочи, кишечной жидкости или желудочного сока, которое по меньшей мере в 10, 20, 30, 40, 50, 60, 70, 80, 90 или 100 раз превышает их сухую массу. Способность полимерного гидрогеля поглощать физиологические жидкости может быть проверена традиционными способами, включающими испытание образцов физиологических жидкостей, полученных от одного или более пациентов, или с использованием синтетических физиологических жидкостей, например, синтетической мочи или желудочного сока. В некоторых примерах осуществления, полимерные гидрогели могут поглощать значительные количества жидкости, приготовленной из одного объема синтетического желудочного сока (СЖС) и восьми объемов воды. СЖС может быть приготовлен с помощью процедур испытания растворов, одобренных фармакопеей США (USP (United States Pharmacopeia)), которые известны в данной области техники. В некоторых примерах осуществления, полимерные гидрогели согласно изобретению могут поглощать такие массы смеси СЖС/вода, которые по меньшей мере приблизительно в 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 или более раз превышают их сухую массу.

Полимерные гидрогели согласно изобретению включают сшитые полимеры, имеющие различную степень гидратации. Например, степень гидратации получаемых полимерных гидрогелей может варьироваться по существу от сухого или безводного состояния, например, состояния, в котором приблизительно от 0% до 5% масс. полимерного гидрогеля составляет вода или водная жидкость, до состояний, включающих значительные количества воды или водной жидкости, вплоть до состояния, в котором полимерный гидрогель поглотил максимальное количество воды или водной жидкости.

Полимерные гидрогели согласно изобретению могут быть использованы в способах лечения ожирения, снижения потребления пищи или калорийности, или достижения или поддержания чувства насыщения. Указанные способы включают стадию введения эффективного количества полимерного гидрогеля согласно изобретению в желудок пациента, предпочтительно путем проглатывания пациентом, например, млекопитающим, включая человека, полимерного гидрогеля. Такие полимерные гидрогели могут быть использованы для заполнения объема желудка, например, посредством увеличения пищевого кома без увеличения калорийности пищи. Полимерный гидрогель может быть принят пациентом внутрь перед едой или во время еды, например, в виде смеси полимерного гидрогеля с пищей. При проглатывании и контакте с желудочным соком или сочетанием желудочного сока и воды, полимерный гидрогель набухает. Полимерный гидрогель может быть принят внутрь сам по себе или в виде смеси с сухой или жидкой пищей в сухом, частично набухшем или полностью набухшем состоянии, но предпочтительно его принимают внутрь в гидратированном состоянии, которое в значительной степени отличается от полностью гидратированного состояния, более предпочтительно полимерный гидрогель принимают внутрь безводном виде. Таким образом, объем желудка, занятый полимерным гидрогелем, будет значительно превышать объем полимерного гидрогеля, принятого пациентом. Полимерные гидрогели согласно изобретению также могут занимать объем и/или оказывать давление на стенку тонкого кишечника при продвижении из желудка в тонкий кишечник с одновременным набуханием. Предпочтительно, полимерный гидрогель остается в тонком кишечнике в набухшем состоянии в течение времени, достаточного для замедления потребления пищи пациентом, после чего сжимается до объема, достаточного для выведения из организма. Период времени, достаточный для замедления потребления пищи пациентом, обычно равен времени, необходимому для принятия пищи пациентом и для прохождения потребленной пищи через тонкий кишечник. Указанное сжатие может происходить, например, при разложении геля за счет разрушения поперечных связей, высвобождения жидкости и снижения объема до величины, достаточной для выведения из организма. Предпочтительные полимеры, применяемые для осуществления указанного способа, подвергаются pH-зависимому набуханию, достигая большего объема при более высоких значениях pH, по сравнению с более низкими pH. Таким образом, указанный полимер не подвергается значительному набуханию в желудке, если в нем нет пищи и/или воды, способных повышать pH содержимого желудка, и проходит в тонкий кишечник. При введении вместе с пищей, полимерный гидрогель сначала набухает в желудке, зат